| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkFloatUtils_DEFINED |
| #define SkFloatUtils_DEFINED |
| |
| #include "SkTypes.h" |
| #include <limits.h> |
| #include <float.h> |
| |
| template <size_t size> |
| class SkTypeWithSize { |
| public: |
| // Prevents using SkTypeWithSize<N> with non-specialized N. |
| typedef void UInt; |
| }; |
| |
| template <> |
| class SkTypeWithSize<32> { |
| public: |
| typedef uint32_t UInt; |
| }; |
| |
| template <> |
| class SkTypeWithSize<64> { |
| public: |
| typedef uint64_t UInt; |
| }; |
| |
| template <typename RawType> |
| struct SkNumericLimits { |
| static const int digits = 0; |
| }; |
| |
| template <> |
| struct SkNumericLimits<double> { |
| static const int digits = DBL_MANT_DIG; |
| }; |
| |
| template <> |
| struct SkNumericLimits<float> { |
| static const int digits = FLT_MANT_DIG; |
| }; |
| |
| //See |
| //http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299 |
| //http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h |
| //http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm |
| |
| template <typename RawType, unsigned int ULPs> |
| class SkFloatingPoint { |
| public: |
| /** Bits is a unsigned integer the same size as the floating point number. */ |
| typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits; |
| |
| /** # of bits in a number. */ |
| static const size_t kBitCount = CHAR_BIT * sizeof(RawType); |
| |
| /** # of fraction bits in a number. */ |
| static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1; |
| |
| /** # of exponent bits in a number. */ |
| static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
| |
| /** The mask for the sign bit. */ |
| static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
| |
| /** The mask for the fraction bits. */ |
| static const Bits kFractionBitMask = |
| ~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
| |
| /** The mask for the exponent bits. */ |
| static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
| |
| /** How many ULP's (Units in the Last Place) to tolerate when comparing. */ |
| static const size_t kMaxUlps = ULPs; |
| |
| /** |
| * Constructs a FloatingPoint from a raw floating-point number. |
| * |
| * On an Intel CPU, passing a non-normalized NAN (Not a Number) |
| * around may change its bits, although the new value is guaranteed |
| * to be also a NAN. Therefore, don't expect this constructor to |
| * preserve the bits in x when x is a NAN. |
| */ |
| explicit SkFloatingPoint(const RawType& x) { fU.value = x; } |
| |
| /** Returns the exponent bits of this number. */ |
| Bits exponent_bits() const { return kExponentBitMask & fU.bits; } |
| |
| /** Returns the fraction bits of this number. */ |
| Bits fraction_bits() const { return kFractionBitMask & fU.bits; } |
| |
| /** Returns true iff this is NAN (not a number). */ |
| bool is_nan() const { |
| // It's a NAN if both of the folloowing are true: |
| // * the exponent bits are all ones |
| // * the fraction bits are not all zero. |
| return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
| } |
| |
| /** |
| * Returns true iff this number is at most kMaxUlps ULP's away from ths. |
| * In particular, this function: |
| * - returns false if either number is (or both are) NAN. |
| * - treats really large numbers as almost equal to infinity. |
| * - thinks +0.0 and -0.0 are 0 DLP's apart. |
| */ |
| bool AlmostEquals(const SkFloatingPoint& rhs) const { |
| // Any comparison operation involving a NAN must return false. |
| if (is_nan() || rhs.is_nan()) return false; |
| |
| const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits, |
| rhs.fU.bits); |
| //SkDEBUGF(("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist)); |
| return dist <= kMaxUlps; |
| } |
| |
| private: |
| /** The data type used to store the actual floating-point number. */ |
| union FloatingPointUnion { |
| /** The raw floating-point number. */ |
| RawType value; |
| /** The bits that represent the number. */ |
| Bits bits; |
| }; |
| |
| /** |
| * Converts an integer from the sign-and-magnitude representation to |
| * the biased representation. More precisely, let N be 2 to the |
| * power of (kBitCount - 1), an integer x is represented by the |
| * unsigned number x + N. |
| * |
| * For instance, |
| * |
| * -N + 1 (the most negative number representable using |
| * sign-and-magnitude) is represented by 1; |
| * 0 is represented by N; and |
| * N - 1 (the biggest number representable using |
| * sign-and-magnitude) is represented by 2N - 1. |
| * |
| * Read http://en.wikipedia.org/wiki/Signed_number_representations |
| * for more details on signed number representations. |
| */ |
| static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
| if (kSignBitMask & sam) { |
| // sam represents a negative number. |
| return ~sam + 1; |
| } else { |
| // sam represents a positive number. |
| return kSignBitMask | sam; |
| } |
| } |
| |
| /** |
| * Given two numbers in the sign-and-magnitude representation, |
| * returns the distance between them as an unsigned number. |
| */ |
| static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
| const Bits &sam2) { |
| const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
| const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
| return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
| } |
| |
| FloatingPointUnion fU; |
| }; |
| |
| #endif |