blob: 964a8dc84ab87d880dc073faedbc89d57e450bc7 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLCFGGenerator.h"
#include "ir/SkSLConstructor.h"
#include "ir/SkSLBinaryExpression.h"
#include "ir/SkSLDoStatement.h"
#include "ir/SkSLExpressionStatement.h"
#include "ir/SkSLFieldAccess.h"
#include "ir/SkSLForStatement.h"
#include "ir/SkSLFunctionCall.h"
#include "ir/SkSLIfStatement.h"
#include "ir/SkSLIndexExpression.h"
#include "ir/SkSLPostfixExpression.h"
#include "ir/SkSLPrefixExpression.h"
#include "ir/SkSLReturnStatement.h"
#include "ir/SkSLSwizzle.h"
#include "ir/SkSLTernaryExpression.h"
#include "ir/SkSLVarDeclarationsStatement.h"
#include "ir/SkSLWhileStatement.h"
namespace SkSL {
BlockId CFG::newBlock() {
BlockId result = fBlocks.size();
fBlocks.emplace_back();
if (fBlocks.size() > 1) {
this->addExit(fCurrent, result);
}
fCurrent = result;
return result;
}
BlockId CFG::newIsolatedBlock() {
BlockId result = fBlocks.size();
fBlocks.emplace_back();
return result;
}
void CFG::addExit(BlockId from, BlockId to) {
if (from == 0 || fBlocks[from].fEntrances.size()) {
fBlocks[from].fExits.insert(to);
fBlocks[to].fEntrances.insert(from);
}
}
void CFG::dump() {
for (size_t i = 0; i < fBlocks.size(); i++) {
printf("Block %d\n-------\nBefore: ", (int) i);
const char* separator = "";
for (auto iter = fBlocks[i].fBefore.begin(); iter != fBlocks[i].fBefore.end(); iter++) {
printf("%s%s = %s", separator, iter->first->description().c_str(),
iter->second ? iter->second->description().c_str() : "<undefined>");
separator = ", ";
}
printf("\nEntrances: ");
separator = "";
for (BlockId b : fBlocks[i].fEntrances) {
printf("%s%d", separator, (int) b);
separator = ", ";
}
printf("\n");
for (size_t j = 0; j < fBlocks[i].fNodes.size(); j++) {
printf("Node %d: %s\n", (int) j, fBlocks[i].fNodes[j].fNode->description().c_str());
}
printf("Exits: ");
separator = "";
for (BlockId b : fBlocks[i].fExits) {
printf("%s%d", separator, (int) b);
separator = ", ";
}
printf("\n\n");
}
}
void CFGGenerator::addExpression(CFG& cfg, const Expression* e) {
switch (e->fKind) {
case Expression::kBinary_Kind: {
const BinaryExpression* b = (const BinaryExpression*) e;
switch (b->fOperator) {
case Token::LOGICALAND: // fall through
case Token::LOGICALOR: {
// this isn't as precise as it could be -- we don't bother to track that if we
// early exit from a logical and/or, we know which branch of an 'if' we're going
// to hit -- but it won't make much difference in practice.
this->addExpression(cfg, b->fLeft.get());
BlockId start = cfg.fCurrent;
cfg.newBlock();
this->addExpression(cfg, b->fRight.get());
cfg.newBlock();
cfg.addExit(start, cfg.fCurrent);
break;
}
case Token::EQ: {
this->addExpression(cfg, b->fRight.get());
this->addLValue(cfg, b->fLeft.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({
BasicBlock::Node::kExpression_Kind,
b
});
break;
}
default:
this->addExpression(cfg, b->fLeft.get());
this->addExpression(cfg, b->fRight.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({
BasicBlock::Node::kExpression_Kind,
b
});
}
break;
}
case Expression::kConstructor_Kind: {
const Constructor* c = (const Constructor*) e;
for (const auto& arg : c->fArguments) {
this->addExpression(cfg, arg.get());
}
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, c });
break;
}
case Expression::kFunctionCall_Kind: {
const FunctionCall* c = (const FunctionCall*) e;
for (const auto& arg : c->fArguments) {
this->addExpression(cfg, arg.get());
}
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, c });
break;
}
case Expression::kFieldAccess_Kind:
this->addExpression(cfg, ((const FieldAccess*) e)->fBase.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, e });
break;
case Expression::kIndex_Kind:
this->addExpression(cfg, ((const IndexExpression*) e)->fBase.get());
this->addExpression(cfg, ((const IndexExpression*) e)->fIndex.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, e });
break;
case Expression::kPrefix_Kind:
this->addExpression(cfg, ((const PrefixExpression*) e)->fOperand.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, e });
break;
case Expression::kPostfix_Kind:
this->addExpression(cfg, ((const PostfixExpression*) e)->fOperand.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, e });
break;
case Expression::kSwizzle_Kind:
this->addExpression(cfg, ((const Swizzle*) e)->fBase.get());
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, e });
break;
case Expression::kBoolLiteral_Kind: // fall through
case Expression::kFloatLiteral_Kind: // fall through
case Expression::kIntLiteral_Kind: // fall through
case Expression::kVariableReference_Kind:
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, e });
break;
case Expression::kTernary_Kind: {
const TernaryExpression* t = (const TernaryExpression*) e;
this->addExpression(cfg, t->fTest.get());
BlockId start = cfg.fCurrent;
cfg.newBlock();
this->addExpression(cfg, t->fIfTrue.get());
BlockId next = cfg.newBlock();
cfg.fCurrent = start;
cfg.newBlock();
this->addExpression(cfg, t->fIfFalse.get());
cfg.addExit(cfg.fCurrent, next);
cfg.fCurrent = next;
break;
}
case Expression::kFunctionReference_Kind: // fall through
case Expression::kTypeReference_Kind: // fall through
case Expression::kDefined_Kind:
ASSERT(false);
break;
}
}
// adds expressions that are evaluated as part of resolving an lvalue
void CFGGenerator::addLValue(CFG& cfg, const Expression* e) {
switch (e->fKind) {
case Expression::kFieldAccess_Kind:
this->addLValue(cfg, ((const FieldAccess*) e)->fBase.get());
break;
case Expression::kIndex_Kind:
this->addLValue(cfg, ((const IndexExpression*) e)->fBase.get());
this->addExpression(cfg, ((const IndexExpression*) e)->fIndex.get());
break;
case Expression::kSwizzle_Kind:
this->addLValue(cfg, ((const Swizzle*) e)->fBase.get());
break;
case Expression::kVariableReference_Kind:
break;
default:
// not an lvalue, can't happen
ASSERT(false);
break;
}
}
void CFGGenerator::addStatement(CFG& cfg, const Statement* s) {
switch (s->fKind) {
case Statement::kBlock_Kind:
for (const auto& child : ((const Block*) s)->fStatements) {
addStatement(cfg, child.get());
}
break;
case Statement::kIf_Kind: {
const IfStatement* ifs = (const IfStatement*) s;
this->addExpression(cfg, ifs->fTest.get());
BlockId start = cfg.fCurrent;
cfg.newBlock();
this->addStatement(cfg, ifs->fIfTrue.get());
BlockId next = cfg.newBlock();
if (ifs->fIfFalse) {
cfg.fCurrent = start;
cfg.newBlock();
this->addStatement(cfg, ifs->fIfFalse.get());
cfg.addExit(cfg.fCurrent, next);
cfg.fCurrent = next;
} else {
cfg.addExit(start, next);
}
break;
}
case Statement::kExpression_Kind: {
this->addExpression(cfg, ((ExpressionStatement&) *s).fExpression.get());
break;
}
case Statement::kVarDeclarations_Kind: {
const VarDeclarationsStatement& decls = ((VarDeclarationsStatement&) *s);
for (const auto& vd : decls.fDeclaration->fVars) {
if (vd.fValue) {
this->addExpression(cfg, vd.fValue.get());
}
}
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, s });
break;
}
case Statement::kDiscard_Kind:
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, s });
cfg.fCurrent = cfg.newIsolatedBlock();
break;
case Statement::kReturn_Kind: {
const ReturnStatement& r = ((ReturnStatement&) *s);
if (r.fExpression) {
this->addExpression(cfg, r.fExpression.get());
}
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, s });
cfg.fCurrent = cfg.newIsolatedBlock();
break;
}
case Statement::kBreak_Kind:
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, s });
cfg.addExit(cfg.fCurrent, fLoopExits.top());
cfg.fCurrent = cfg.newIsolatedBlock();
break;
case Statement::kContinue_Kind:
cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, s });
cfg.addExit(cfg.fCurrent, fLoopContinues.top());
cfg.fCurrent = cfg.newIsolatedBlock();
break;
case Statement::kWhile_Kind: {
const WhileStatement* w = (const WhileStatement*) s;
BlockId loopStart = cfg.newBlock();
fLoopContinues.push(loopStart);
BlockId loopExit = cfg.newIsolatedBlock();
fLoopExits.push(loopExit);
this->addExpression(cfg, w->fTest.get());
BlockId test = cfg.fCurrent;
cfg.addExit(test, loopExit);
cfg.newBlock();
this->addStatement(cfg, w->fStatement.get());
cfg.addExit(cfg.fCurrent, loopStart);
fLoopContinues.pop();
fLoopExits.pop();
cfg.fCurrent = loopExit;
break;
}
case Statement::kDo_Kind: {
const DoStatement* d = (const DoStatement*) s;
BlockId loopStart = cfg.newBlock();
fLoopContinues.push(loopStart);
BlockId loopExit = cfg.newIsolatedBlock();
fLoopExits.push(loopExit);
this->addStatement(cfg, d->fStatement.get());
this->addExpression(cfg, d->fTest.get());
cfg.addExit(cfg.fCurrent, loopExit);
cfg.addExit(cfg.fCurrent, loopStart);
fLoopContinues.pop();
fLoopExits.pop();
cfg.fCurrent = loopExit;
break;
}
case Statement::kFor_Kind: {
const ForStatement* f = (const ForStatement*) s;
if (f->fInitializer) {
this->addStatement(cfg, f->fInitializer.get());
}
BlockId loopStart = cfg.newBlock();
BlockId next = cfg.newIsolatedBlock();
fLoopContinues.push(next);
BlockId loopExit = cfg.newIsolatedBlock();
fLoopExits.push(loopExit);
if (f->fTest) {
this->addExpression(cfg, f->fTest.get());
BlockId test = cfg.fCurrent;
cfg.addExit(test, loopExit);
}
cfg.newBlock();
this->addStatement(cfg, f->fStatement.get());
cfg.addExit(cfg.fCurrent, next);
cfg.fCurrent = next;
if (f->fNext) {
this->addExpression(cfg, f->fNext.get());
}
cfg.addExit(next, loopStart);
fLoopContinues.pop();
fLoopExits.pop();
cfg.fCurrent = loopExit;
break;
}
default:
printf("statement: %s\n", s->description().c_str());
ABORT("unsupported statement kind");
}
}
CFG CFGGenerator::getCFG(const FunctionDefinition& f) {
CFG result;
result.fStart = result.newBlock();
result.fCurrent = result.fStart;
this->addStatement(result, f.fBody.get());
result.newBlock();
result.fExit = result.fCurrent;
return result;
}
} // namespace