| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Simplify.h" |
| |
| #undef SkASSERT |
| #define SkASSERT(cond) while (!(cond)) { sk_throw(); } |
| |
| // FIXME: remove once debugging is complete |
| #if 01 // set to 1 for no debugging whatsoever |
| |
| //const bool gRunTestsInOneThread = false; |
| |
| #define DEBUG_ACTIVE_LESS_THAN 0 |
| #define DEBUG_ADD 0 |
| #define DEBUG_ADD_BOTTOM_TS 0 |
| #define DEBUG_ADD_INTERSECTING_TS 0 |
| #define DEBUG_ADJUST_COINCIDENT 0 |
| #define DEBUG_ASSEMBLE 0 |
| #define DEBUG_BOTTOM 0 |
| #define DEBUG_BRIDGE 0 |
| #define DEBUG_DUMP 0 |
| #define DEBUG_SORT_HORIZONTAL 0 |
| #define DEBUG_OUT 0 |
| #define DEBUG_OUT_LESS_THAN 0 |
| #define DEBUG_SPLIT 0 |
| #define DEBUG_STITCH_EDGE 0 |
| #define DEBUG_TRIM_LINE 0 |
| |
| #else |
| |
| //const bool gRunTestsInOneThread = true; |
| |
| #define DEBUG_ACTIVE_LESS_THAN 0 |
| #define DEBUG_ADD 01 |
| #define DEBUG_ADD_BOTTOM_TS 0 |
| #define DEBUG_ADD_INTERSECTING_TS 0 |
| #define DEBUG_ADJUST_COINCIDENT 1 |
| #define DEBUG_ASSEMBLE 1 |
| #define DEBUG_BOTTOM 0 |
| #define DEBUG_BRIDGE 1 |
| #define DEBUG_DUMP 1 |
| #define DEBUG_SORT_HORIZONTAL 01 |
| #define DEBUG_OUT 01 |
| #define DEBUG_OUT_LESS_THAN 0 |
| #define DEBUG_SPLIT 1 |
| #define DEBUG_STITCH_EDGE 1 |
| #define DEBUG_TRIM_LINE 1 |
| |
| #endif |
| |
| #if DEBUG_ASSEMBLE || DEBUG_BRIDGE |
| static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; |
| #endif |
| #if DEBUG_STITCH_EDGE |
| static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; |
| #endif |
| |
| static int LineIntersect(const SkPoint a[2], const SkPoint b[2], |
| Intersections& intersections) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| return intersect(aLine, bLine, intersections); |
| } |
| |
| static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], |
| Intersections& intersections) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| intersect(aQuad, bLine, intersections); |
| return intersections.fUsed; |
| } |
| |
| static int CubicLineIntersect(const SkPoint a[2], const SkPoint b[3], |
| Intersections& intersections) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| const _Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}}; |
| return intersect(aCubic, bLine, intersections); |
| } |
| |
| static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], |
| Intersections& intersections) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| const Quadratic bQuad = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}}; |
| intersect2(aQuad, bQuad, intersections); |
| return intersections.fUsed; |
| } |
| |
| static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], |
| Intersections& intersections) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| const Cubic bCubic = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}, {b[2].fX, b[2].fY}, |
| {b[3].fX, b[3].fY}}; |
| intersect(aCubic, bCubic, intersections); |
| return intersections.fUsed; |
| } |
| |
| static int LineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
| SkScalar y, double aRange[2]) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| return horizontalLineIntersect(aLine, left, right, y, aRange); |
| } |
| |
| static int QuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
| SkScalar y, double aRange[3]) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| return horizontalIntersect(aQuad, left, right, y, aRange); |
| } |
| |
| static int CubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
| SkScalar y, double aRange[4]) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| return horizontalIntersect(aCubic, left, right, y, aRange); |
| } |
| |
| static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { |
| const _Line line = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| double x, y; |
| xy_at_t(line, t, x, y); |
| out->fX = SkDoubleToScalar(x); |
| out->fY = SkDoubleToScalar(y); |
| } |
| |
| static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { |
| const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| double x, y; |
| xy_at_t(quad, t, x, y); |
| out->fX = SkDoubleToScalar(x); |
| out->fY = SkDoubleToScalar(y); |
| } |
| |
| static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { |
| const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| double x, y; |
| xy_at_t(cubic, t, x, y); |
| out->fX = SkDoubleToScalar(x); |
| out->fY = SkDoubleToScalar(y); |
| } |
| |
| static SkScalar LineYAtT(const SkPoint a[2], double t) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| double y; |
| xy_at_t(aLine, t, *(double*) 0, y); |
| return SkDoubleToScalar(y); |
| } |
| |
| static SkScalar QuadYAtT(const SkPoint a[3], double t) { |
| const Quadratic quad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}}; |
| double y; |
| xy_at_t(quad, t, *(double*) 0, y); |
| return SkDoubleToScalar(y); |
| } |
| |
| static SkScalar CubicYAtT(const SkPoint a[4], double t) { |
| const Cubic cubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, {a[2].fX, a[2].fY}, |
| {a[3].fX, a[3].fY}}; |
| double y; |
| xy_at_t(cubic, t, *(double*) 0, y); |
| return SkDoubleToScalar(y); |
| } |
| |
| static void LineSubDivide(const SkPoint a[2], double startT, double endT, |
| SkPoint sub[2]) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| _Line dst; |
| sub_divide(aLine, startT, endT, dst); |
| sub[0].fX = SkDoubleToScalar(dst[0].x); |
| sub[0].fY = SkDoubleToScalar(dst[0].y); |
| sub[1].fX = SkDoubleToScalar(dst[1].x); |
| sub[1].fY = SkDoubleToScalar(dst[1].y); |
| } |
| |
| static void QuadSubDivide(const SkPoint a[3], double startT, double endT, |
| SkPoint sub[3]) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| Quadratic dst; |
| sub_divide(aQuad, startT, endT, dst); |
| sub[0].fX = SkDoubleToScalar(dst[0].x); |
| sub[0].fY = SkDoubleToScalar(dst[0].y); |
| sub[1].fX = SkDoubleToScalar(dst[1].x); |
| sub[1].fY = SkDoubleToScalar(dst[1].y); |
| sub[2].fX = SkDoubleToScalar(dst[2].x); |
| sub[2].fY = SkDoubleToScalar(dst[2].y); |
| } |
| |
| static void CubicSubDivide(const SkPoint a[4], double startT, double endT, |
| SkPoint sub[4]) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| Cubic dst; |
| sub_divide(aCubic, startT, endT, dst); |
| sub[0].fX = SkDoubleToScalar(dst[0].x); |
| sub[0].fY = SkDoubleToScalar(dst[0].y); |
| sub[1].fX = SkDoubleToScalar(dst[1].x); |
| sub[1].fY = SkDoubleToScalar(dst[1].y); |
| sub[2].fX = SkDoubleToScalar(dst[2].x); |
| sub[2].fY = SkDoubleToScalar(dst[2].y); |
| sub[3].fX = SkDoubleToScalar(dst[3].x); |
| sub[3].fY = SkDoubleToScalar(dst[3].y); |
| } |
| |
| static void QuadSubBounds(const SkPoint a[3], double startT, double endT, |
| SkRect& bounds) { |
| SkPoint dst[3]; |
| QuadSubDivide(a, startT, endT, dst); |
| bounds.fLeft = bounds.fRight = dst[0].fX; |
| bounds.fTop = bounds.fBottom = dst[0].fY; |
| for (int index = 1; index < 3; ++index) { |
| bounds.growToInclude(dst[index].fX, dst[index].fY); |
| } |
| } |
| |
| static void CubicSubBounds(const SkPoint a[4], double startT, double endT, |
| SkRect& bounds) { |
| SkPoint dst[4]; |
| CubicSubDivide(a, startT, endT, dst); |
| bounds.fLeft = bounds.fRight = dst[0].fX; |
| bounds.fTop = bounds.fBottom = dst[0].fY; |
| for (int index = 1; index < 4; ++index) { |
| bounds.growToInclude(dst[index].fX, dst[index].fY); |
| } |
| } |
| |
| static SkPath::Verb QuadReduceOrder(SkPoint a[4]) { |
| const Quadratic aQuad = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}}; |
| Quadratic dst; |
| int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill); |
| for (int index = 0; index < order; ++index) { |
| a[index].fX = SkDoubleToScalar(dst[index].x); |
| a[index].fY = SkDoubleToScalar(dst[index].y); |
| } |
| if (order == 1) { // FIXME: allow returning points, caller should discard |
| a[1] = a[0]; |
| return (SkPath::Verb) order; |
| } |
| return (SkPath::Verb) (order - 1); |
| } |
| |
| static SkPath::Verb CubicReduceOrder(SkPoint a[4]) { |
| const Cubic aCubic = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}, |
| {a[2].fX, a[2].fY}, {a[3].fX, a[3].fY}}; |
| Cubic dst; |
| int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); |
| for (int index = 0; index < order; ++index) { |
| a[index].fX = SkDoubleToScalar(dst[index].x); |
| a[index].fY = SkDoubleToScalar(dst[index].y); |
| } |
| if (order == 1) { // FIXME: allow returning points, caller should discard |
| a[1] = a[0]; |
| return (SkPath::Verb) order; |
| } |
| return (SkPath::Verb) (order - 1); |
| } |
| |
| static bool IsCoincident(const SkPoint a[2], const SkPoint& above, |
| const SkPoint& below) { |
| const _Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}}; |
| const _Line bLine = {{above.fX, above.fY}, {below.fX, below.fY}}; |
| return implicit_matches_ulps(aLine, bLine, 32); |
| } |
| |
| /* |
| list of edges |
| bounds for edge |
| sort |
| active T |
| |
| if a contour's bounds is outside of the active area, no need to create edges |
| */ |
| |
| /* given one or more paths, |
| find the bounds of each contour, select the active contours |
| for each active contour, compute a set of edges |
| each edge corresponds to one or more lines and curves |
| leave edges unbroken as long as possible |
| when breaking edges, compute the t at the break but leave the control points alone |
| |
| */ |
| |
| void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) { |
| SkPath::Iter iter(path, false); |
| SkPoint pts[4]; |
| SkPath::Verb verb; |
| SkRect bounds; |
| bounds.setEmpty(); |
| int count = 0; |
| while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { |
| switch (verb) { |
| case SkPath::kMove_Verb: |
| if (!bounds.isEmpty()) { |
| *boundsArray.append() = bounds; |
| } |
| bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY); |
| count = 0; |
| break; |
| case SkPath::kLine_Verb: |
| count = 1; |
| break; |
| case SkPath::kQuad_Verb: |
| count = 2; |
| break; |
| case SkPath::kCubic_Verb: |
| count = 3; |
| break; |
| case SkPath::kClose_Verb: |
| count = 0; |
| break; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return; |
| } |
| for (int i = 1; i <= count; ++i) { |
| bounds.growToInclude(pts[i].fX, pts[i].fY); |
| } |
| } |
| } |
| |
| static bool extendLine(const SkPoint line[2], const SkPoint& add) { |
| // FIXME: allow this to extend lines that have slopes that are nearly equal |
| SkScalar dx1 = line[1].fX - line[0].fX; |
| SkScalar dy1 = line[1].fY - line[0].fY; |
| SkScalar dx2 = add.fX - line[0].fX; |
| SkScalar dy2 = add.fY - line[0].fY; |
| return dx1 * dy2 == dx2 * dy1; |
| } |
| |
| // OPTIMIZATION: this should point to a list of input data rather than duplicating |
| // the line data here. This would reduce the need to assemble the results. |
| struct OutEdge { |
| bool operator<(const OutEdge& rh) const { |
| const SkPoint& first = fPts[0]; |
| const SkPoint& rhFirst = rh.fPts[0]; |
| return first.fY == rhFirst.fY |
| ? first.fX < rhFirst.fX |
| : first.fY < rhFirst.fY; |
| } |
| |
| SkPoint fPts[4]; |
| int fID; // id of edge generating data |
| uint8_t fVerb; // FIXME: not read from everywhere |
| bool fCloseCall; // edge is trimmable if not originally coincident |
| }; |
| |
| class OutEdgeBuilder { |
| public: |
| OutEdgeBuilder(bool fill) |
| : fFill(fill) { |
| } |
| |
| void addCurve(const SkPoint line[4], SkPath::Verb verb, int id, |
| bool closeCall) { |
| OutEdge& newEdge = fEdges.push_back(); |
| memcpy(newEdge.fPts, line, (verb + 1) * sizeof(SkPoint)); |
| newEdge.fVerb = verb; |
| newEdge.fID = id; |
| newEdge.fCloseCall = closeCall; |
| } |
| |
| bool trimLine(SkScalar y, int id) { |
| size_t count = fEdges.count(); |
| while (count-- != 0) { |
| OutEdge& edge = fEdges[count]; |
| if (edge.fID != id) { |
| continue; |
| } |
| if (edge.fCloseCall) { |
| return false; |
| } |
| SkASSERT(edge.fPts[0].fY <= y); |
| if (edge.fPts[1].fY <= y) { |
| continue; |
| } |
| edge.fPts[1].fX = edge.fPts[0].fX + (y - edge.fPts[0].fY) |
| * (edge.fPts[1].fX - edge.fPts[0].fX) |
| / (edge.fPts[1].fY - edge.fPts[0].fY); |
| edge.fPts[1].fY = y; |
| #if DEBUG_TRIM_LINE |
| SkDebugf("%s edge=%d %1.9g,%1.9g\n", __FUNCTION__, id, |
| edge.fPts[1].fX, y); |
| #endif |
| return true; |
| } |
| return false; |
| } |
| |
| void assemble(SkPath& simple) { |
| size_t listCount = fEdges.count(); |
| if (listCount == 0) { |
| return; |
| } |
| do { |
| size_t listIndex = 0; |
| int advance = 1; |
| while (listIndex < listCount && fTops[listIndex] == 0) { |
| ++listIndex; |
| } |
| if (listIndex >= listCount) { |
| break; |
| } |
| int closeEdgeIndex = -listIndex - 1; |
| // the curve is deferred and not added right away because the |
| // following edge may extend the first curve. |
| SkPoint firstPt, lastCurve[4]; |
| uint8_t lastVerb; |
| #if DEBUG_ASSEMBLE |
| int firstIndex, lastIndex; |
| const int tab = 8; |
| #endif |
| bool doMove = true; |
| int edgeIndex; |
| do { |
| SkPoint* ptArray = fEdges[listIndex].fPts; |
| uint8_t verb = fEdges[listIndex].fVerb; |
| SkPoint* curve[4]; |
| if (advance < 0) { |
| curve[0] = &ptArray[verb]; |
| if (verb == SkPath::kCubic_Verb) { |
| curve[1] = &ptArray[2]; |
| curve[2] = &ptArray[1]; |
| } |
| curve[verb] = &ptArray[0]; |
| } else { |
| curve[0] = &ptArray[0]; |
| if (verb == SkPath::kCubic_Verb) { |
| curve[1] = &ptArray[1]; |
| curve[2] = &ptArray[2]; |
| } |
| curve[verb] = &ptArray[verb]; |
| } |
| if (verb == SkPath::kQuad_Verb) { |
| curve[1] = &ptArray[1]; |
| } |
| if (doMove) { |
| firstPt = *curve[0]; |
| simple.moveTo(curve[0]->fX, curve[0]->fY); |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%s %d moveTo (%g,%g)\n", __FUNCTION__, |
| listIndex + 1, curve[0]->fX, curve[0]->fY); |
| firstIndex = listIndex; |
| #endif |
| for (int index = 0; index <= verb; ++index) { |
| lastCurve[index] = *curve[index]; |
| } |
| doMove = false; |
| } else { |
| bool gap = lastCurve[lastVerb] != *curve[0]; |
| if (gap || lastVerb != SkPath::kLine_Verb) { // output the accumulated curve before the gap |
| // FIXME: see comment in bridge -- this probably |
| // conceals errors |
| SkASSERT(fFill && UlpsDiff(lastCurve[lastVerb].fY, |
| curve[0]->fY) <= 10); |
| switch (lastVerb) { |
| case SkPath::kLine_Verb: |
| simple.lineTo(lastCurve[1].fX, lastCurve[1].fY); |
| break; |
| case SkPath::kQuad_Verb: |
| simple.quadTo(lastCurve[1].fX, lastCurve[1].fY, |
| lastCurve[2].fX, lastCurve[2].fY); |
| break; |
| case SkPath::kCubic_Verb: |
| simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY, |
| lastCurve[2].fX, lastCurve[2].fY, |
| lastCurve[3].fX, lastCurve[3].fY); |
| break; |
| } |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%*s %d %sTo (%g,%g)\n", tab, "", lastIndex + 1, |
| kLVerbStr[lastVerb], lastCurve[lastVerb].fX, |
| lastCurve[lastVerb].fY); |
| #endif |
| } |
| int firstCopy = 1; |
| if (gap || (lastVerb == SkPath::kLine_Verb |
| && (verb != SkPath::kLine_Verb |
| || !extendLine(lastCurve, *curve[verb])))) { |
| // FIXME: see comment in bridge -- this probably |
| // conceals errors |
| SkASSERT(lastCurve[lastVerb] == *curve[0] || |
| (fFill && UlpsDiff(lastCurve[lastVerb].fY, |
| curve[0]->fY) <= 10)); |
| simple.lineTo(curve[0]->fX, curve[0]->fY); |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%*s %d gap lineTo (%g,%g)\n", tab, "", |
| lastIndex + 1, curve[0]->fX, curve[0]->fY); |
| #endif |
| firstCopy = 0; |
| } else if (lastVerb != SkPath::kLine_Verb) { |
| firstCopy = 0; |
| } |
| for (int index = firstCopy; index <= verb; ++index) { |
| lastCurve[index] = *curve[index]; |
| } |
| } |
| lastVerb = verb; |
| #if DEBUG_ASSEMBLE |
| lastIndex = listIndex; |
| #endif |
| if (advance < 0) { |
| edgeIndex = fTops[listIndex]; |
| fTops[listIndex] = 0; |
| } else { |
| edgeIndex = fBottoms[listIndex]; |
| fBottoms[listIndex] = 0; |
| } |
| if (edgeIndex) { |
| listIndex = abs(edgeIndex) - 1; |
| if (edgeIndex < 0) { |
| fTops[listIndex] = 0; |
| } else { |
| fBottoms[listIndex] = 0; |
| } |
| } |
| if (edgeIndex == closeEdgeIndex || edgeIndex == 0) { |
| switch (lastVerb) { |
| case SkPath::kLine_Verb: |
| simple.lineTo(lastCurve[1].fX, lastCurve[1].fY); |
| break; |
| case SkPath::kQuad_Verb: |
| simple.quadTo(lastCurve[1].fX, lastCurve[1].fY, |
| lastCurve[2].fX, lastCurve[2].fY); |
| break; |
| case SkPath::kCubic_Verb: |
| simple.cubicTo(lastCurve[1].fX, lastCurve[1].fY, |
| lastCurve[2].fX, lastCurve[2].fY, |
| lastCurve[3].fX, lastCurve[3].fY); |
| break; |
| } |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%*s %d %sTo last (%g, %g)\n", tab, "", |
| lastIndex + 1, kLVerbStr[lastVerb], |
| lastCurve[lastVerb].fX, lastCurve[lastVerb].fY); |
| #endif |
| if (lastCurve[lastVerb] != firstPt) { |
| simple.lineTo(firstPt.fX, firstPt.fY); |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%*s %d final line (%g, %g)\n", tab, "", |
| firstIndex + 1, firstPt.fX, firstPt.fY); |
| #endif |
| } |
| simple.close(); |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%*s close\n", tab, ""); |
| #endif |
| break; |
| } |
| // if this and next edge go different directions |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%*s advance=%d edgeIndex=%d flip=%s\n", tab, "", |
| advance, edgeIndex, advance > 0 ^ edgeIndex < 0 ? |
| "true" : "false"); |
| #endif |
| if (advance > 0 ^ edgeIndex < 0) { |
| advance = -advance; |
| } |
| } while (edgeIndex); |
| } while (true); |
| } |
| |
| // sort points by y, then x |
| // if x/y is identical, sort bottoms before tops |
| // if identical and both tops/bottoms, sort by angle |
| static bool lessThan(SkTArray<OutEdge>& edges, const int one, |
| const int two) { |
| const OutEdge& oneEdge = edges[abs(one) - 1]; |
| int oneIndex = one < 0 ? 0 : oneEdge.fVerb; |
| const SkPoint& startPt1 = oneEdge.fPts[oneIndex]; |
| const OutEdge& twoEdge = edges[abs(two) - 1]; |
| int twoIndex = two < 0 ? 0 : twoEdge.fVerb; |
| const SkPoint& startPt2 = twoEdge.fPts[twoIndex]; |
| if (startPt1.fY != startPt2.fY) { |
| #if DEBUG_OUT_LESS_THAN |
| SkDebugf("%s %d<%d (%g,%g) %s startPt1.fY < startPt2.fY\n", __FUNCTION__, |
| one, two, startPt1.fY, startPt2.fY, |
| startPt1.fY < startPt2.fY ? "true" : "false"); |
| #endif |
| return startPt1.fY < startPt2.fY; |
| } |
| if (startPt1.fX != startPt2.fX) { |
| #if DEBUG_OUT_LESS_THAN |
| SkDebugf("%s %d<%d (%g,%g) %s startPt1.fX < startPt2.fX\n", __FUNCTION__, |
| one, two, startPt1.fX, startPt2.fX, |
| startPt1.fX < startPt2.fX ? "true" : "false"); |
| #endif |
| return startPt1.fX < startPt2.fX; |
| } |
| const SkPoint& endPt1 = oneEdge.fPts[oneIndex ^ oneEdge.fVerb]; |
| const SkPoint& endPt2 = twoEdge.fPts[twoIndex ^ twoEdge.fVerb]; |
| SkScalar dy1 = startPt1.fY - endPt1.fY; |
| SkScalar dy2 = startPt2.fY - endPt2.fY; |
| SkScalar dy1y2 = dy1 * dy2; |
| if (dy1y2 < 0) { // different signs |
| #if DEBUG_OUT_LESS_THAN |
| SkDebugf("%s %d<%d %s dy1 > 0\n", __FUNCTION__, one, two, |
| dy1 > 0 ? "true" : "false"); |
| #endif |
| return dy1 > 0; // one < two if one goes up and two goes down |
| } |
| if (dy1y2 == 0) { |
| #if DEBUG_OUT_LESS_THAN |
| SkDebugf("%s %d<%d %s endPt1.fX < endPt2.fX\n", __FUNCTION__, |
| one, two, endPt1.fX < endPt2.fX ? "true" : "false"); |
| #endif |
| return endPt1.fX < endPt2.fX; |
| } |
| SkScalar dx1y2 = (startPt1.fX - endPt1.fX) * dy2; |
| SkScalar dx2y1 = (startPt2.fX - endPt2.fX) * dy1; |
| #if DEBUG_OUT_LESS_THAN |
| SkDebugf("%s %d<%d %s dy2 < 0 ^ dx1y2 < dx2y1\n", __FUNCTION__, |
| one, two, dy2 < 0 ^ dx1y2 < dx2y1 ? "true" : "false"); |
| #endif |
| return dy2 > 0 ^ dx1y2 < dx2y1; |
| } |
| |
| // Sort the indices of paired points and then create more indices so |
| // assemble() can find the next edge and connect the top or bottom |
| void bridge() { |
| size_t index; |
| size_t count = fEdges.count(); |
| if (!count) { |
| return; |
| } |
| SkASSERT(!fFill || count > 1); |
| fTops.setCount(count); |
| sk_bzero(fTops.begin(), sizeof(fTops[0]) * count); |
| fBottoms.setCount(count); |
| sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count); |
| SkTDArray<int> order; |
| for (index = 1; index <= count; ++index) { |
| *order.append() = -index; |
| } |
| for (index = 1; index <= count; ++index) { |
| *order.append() = index; |
| } |
| QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), order.end() - 1, lessThan); |
| int* lastPtr = order.end() - 1; |
| int* leftPtr = order.begin(); |
| while (leftPtr < lastPtr) { |
| int leftIndex = *leftPtr; |
| int leftOutIndex = abs(leftIndex) - 1; |
| const OutEdge& left = fEdges[leftOutIndex]; |
| int* rightPtr = leftPtr + 1; |
| int rightIndex = *rightPtr; |
| int rightOutIndex = abs(rightIndex) - 1; |
| const OutEdge& right = fEdges[rightOutIndex]; |
| bool pairUp = fFill; |
| if (!pairUp) { |
| const SkPoint& leftMatch = |
| left.fPts[leftIndex < 0 ? 0 : left.fVerb]; |
| const SkPoint& rightMatch = |
| right.fPts[rightIndex < 0 ? 0 : right.fVerb]; |
| pairUp = leftMatch == rightMatch; |
| } else { |
| #if DEBUG_OUT |
| // FIXME : not happy that error in low bit is allowed |
| // this probably conceals error elsewhere |
| if (UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY, |
| right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) > 1) { |
| *fMismatches.append() = leftIndex; |
| if (rightPtr == lastPtr) { |
| *fMismatches.append() = rightIndex; |
| } |
| pairUp = false; |
| } |
| #else |
| SkASSERT(UlpsDiff(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY, |
| right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY) <= 10); |
| #endif |
| } |
| if (pairUp) { |
| if (leftIndex < 0) { |
| fTops[leftOutIndex] = rightIndex; |
| } else { |
| fBottoms[leftOutIndex] = rightIndex; |
| } |
| if (rightIndex < 0) { |
| fTops[rightOutIndex] = leftIndex; |
| } else { |
| fBottoms[rightOutIndex] = leftIndex; |
| } |
| ++rightPtr; |
| } |
| leftPtr = rightPtr; |
| } |
| #if DEBUG_OUT |
| int* mismatch = fMismatches.begin(); |
| while (mismatch != fMismatches.end()) { |
| int leftIndex = *mismatch++; |
| int leftOutIndex = abs(leftIndex) - 1; |
| const OutEdge& left = fEdges[leftOutIndex]; |
| const SkPoint& leftPt = left.fPts[leftIndex < 0 ? 0 : left.fVerb]; |
| SkDebugf("%s left=%d %s (%1.9g,%1.9g)\n", |
| __FUNCTION__, left.fID, leftIndex < 0 ? "top" : "bot", |
| leftPt.fX, leftPt.fY); |
| } |
| SkASSERT(fMismatches.count() == 0); |
| #endif |
| #if DEBUG_BRIDGE |
| for (index = 0; index < count; ++index) { |
| const OutEdge& edge = fEdges[index]; |
| uint8_t verb = edge.fVerb; |
| SkDebugf("%s %d edge=%d %s (%1.9g,%1.9g) (%1.9g,%1.9g)\n", |
| index == 0 ? __FUNCTION__ : " ", |
| index + 1, edge.fID, kLVerbStr[verb], edge.fPts[0].fX, |
| edge.fPts[0].fY, edge.fPts[verb].fX, edge.fPts[verb].fY); |
| } |
| for (index = 0; index < count; ++index) { |
| SkDebugf(" top of % 2d connects to %s of % 2d\n", index + 1, |
| fTops[index] < 0 ? "top " : "bottom", abs(fTops[index])); |
| SkDebugf(" bottom of % 2d connects to %s of % 2d\n", index + 1, |
| fBottoms[index] < 0 ? "top " : "bottom", abs(fBottoms[index])); |
| } |
| #endif |
| } |
| |
| protected: |
| SkTArray<OutEdge> fEdges; |
| SkTDArray<int> fTops; |
| SkTDArray<int> fBottoms; |
| bool fFill; |
| #if DEBUG_OUT |
| SkTDArray<int> fMismatches; |
| #endif |
| }; |
| |
| // Bounds, unlike Rect, does not consider a vertical line to be empty. |
| struct Bounds : public SkRect { |
| static bool Intersects(const Bounds& a, const Bounds& b) { |
| return a.fLeft <= b.fRight && b.fLeft <= a.fRight && |
| a.fTop <= b.fBottom && b.fTop <= a.fBottom; |
| } |
| |
| bool isEmpty() { |
| return fLeft > fRight || fTop > fBottom |
| || (fLeft == fRight && fTop == fBottom) |
| || isnan(fLeft) || isnan(fRight) |
| || isnan(fTop) || isnan(fBottom); |
| } |
| }; |
| |
| class Intercepts { |
| public: |
| Intercepts() |
| : fTopIntercepts(0) |
| , fBottomIntercepts(0) |
| , fExplicit(false) { |
| } |
| |
| Intercepts& operator=(const Intercepts& src) { |
| fTs = src.fTs; |
| fTopIntercepts = src.fTopIntercepts; |
| fBottomIntercepts = src.fBottomIntercepts; |
| return *this; |
| } |
| |
| // OPTIMIZATION: remove this function if it's never called |
| double t(int tIndex) const { |
| if (tIndex == 0) { |
| return 0; |
| } |
| if (tIndex > fTs.count()) { |
| return 1; |
| } |
| return fTs[tIndex - 1]; |
| } |
| |
| #if DEBUG_DUMP |
| void dump(const SkPoint* pts, SkPath::Verb verb) { |
| const char className[] = "Intercepts"; |
| const int tab = 8; |
| for (int i = 0; i < fTs.count(); ++i) { |
| SkPoint out; |
| switch (verb) { |
| case SkPath::kLine_Verb: |
| LineXYAtT(pts, fTs[i], &out); |
| break; |
| case SkPath::kQuad_Verb: |
| QuadXYAtT(pts, fTs[i], &out); |
| break; |
| case SkPath::kCubic_Verb: |
| CubicXYAtT(pts, fTs[i], &out); |
| break; |
| default: |
| SkASSERT(0); |
| } |
| SkDebugf("%*s.fTs[%d]=%1.9g (%1.9g,%1.9g)\n", tab + sizeof(className), |
| className, i, fTs[i], out.fX, out.fY); |
| } |
| SkDebugf("%*s.fTopIntercepts=%u\n", tab + sizeof(className), |
| className, fTopIntercepts); |
| SkDebugf("%*s.fBottomIntercepts=%u\n", tab + sizeof(className), |
| className, fBottomIntercepts); |
| SkDebugf("%*s.fExplicit=%d\n", tab + sizeof(className), |
| className, fExplicit); |
| } |
| #endif |
| |
| SkTDArray<double> fTs; |
| unsigned char fTopIntercepts; // 0=init state 1=1 edge >1=multiple edges |
| unsigned char fBottomIntercepts; |
| bool fExplicit; // if set, suppress 0 and 1 |
| |
| }; |
| |
| struct HorizontalEdge { |
| bool operator<(const HorizontalEdge& rh) const { |
| return fY == rh.fY ? fLeft == rh.fLeft ? fRight < rh.fRight |
| : fLeft < rh.fLeft : fY < rh.fY; |
| } |
| |
| #if DEBUG_DUMP |
| void dump() { |
| const char className[] = "HorizontalEdge"; |
| const int tab = 4; |
| SkDebugf("%*s.fLeft=%1.9g\n", tab + sizeof(className), className, fLeft); |
| SkDebugf("%*s.fRight=%1.9g\n", tab + sizeof(className), className, fRight); |
| SkDebugf("%*s.fY=%1.9g\n", tab + sizeof(className), className, fY); |
| } |
| #endif |
| |
| SkScalar fLeft; |
| SkScalar fRight; |
| SkScalar fY; |
| }; |
| |
| struct InEdge { |
| bool operator<(const InEdge& rh) const { |
| return fBounds.fTop == rh.fBounds.fTop |
| ? fBounds.fLeft < rh.fBounds.fLeft |
| : fBounds.fTop < rh.fBounds.fTop; |
| } |
| |
| // Avoid collapsing t values that are close to the same since |
| // we walk ts to describe consecutive intersections. Since a pair of ts can |
| // be nearly equal, any problems caused by this should be taken care |
| // of later. |
| int add(double* ts, size_t count, ptrdiff_t verbIndex) { |
| // FIXME: in the pathological case where there is a ton of intercepts, binary search? |
| bool foundIntercept = false; |
| int insertedAt = -1; |
| Intercepts& intercepts = fIntercepts[verbIndex]; |
| for (size_t index = 0; index < count; ++index) { |
| double t = ts[index]; |
| if (t <= 0) { |
| intercepts.fTopIntercepts <<= 1; |
| fContainsIntercepts |= ++intercepts.fTopIntercepts > 1; |
| continue; |
| } |
| if (t >= 1) { |
| intercepts.fBottomIntercepts <<= 1; |
| fContainsIntercepts |= ++intercepts.fBottomIntercepts > 1; |
| continue; |
| } |
| fIntersected = true; |
| foundIntercept = true; |
| size_t tCount = intercepts.fTs.count(); |
| double delta; |
| for (size_t idx2 = 0; idx2 < tCount; ++idx2) { |
| if (t <= intercepts.fTs[idx2]) { |
| // FIXME: ? if (t < intercepts.fTs[idx2]) // failed |
| delta = intercepts.fTs[idx2] - t; |
| if (delta > 0) { |
| insertedAt = idx2; |
| *intercepts.fTs.insert(idx2) = t; |
| } |
| goto nextPt; |
| } |
| } |
| if (tCount == 0 || (delta = t - intercepts.fTs[tCount - 1]) > 0) { |
| insertedAt = tCount; |
| *intercepts.fTs.append() = t; |
| } |
| nextPt: |
| ; |
| } |
| fContainsIntercepts |= foundIntercept; |
| return insertedAt; |
| } |
| |
| void addPartial(SkTArray<InEdge>& edges, int ptStart, int ptEnd, |
| int verbStart, int verbEnd) { |
| InEdge* edge = edges.push_back_n(1); |
| int verbCount = verbEnd - verbStart; |
| edge->fIntercepts.push_back_n(verbCount); |
| // uint8_t* verbs = &fVerbs[verbStart]; |
| for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) { |
| edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx]; |
| } |
| edge->fPts.append(ptEnd - ptStart, &fPts[ptStart]); |
| edge->fVerbs.append(verbCount, &fVerbs[verbStart]); |
| edge->setBounds(); |
| edge->fWinding = fWinding; |
| edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know? |
| } |
| |
| void addSplit(SkTArray<InEdge>& edges, SkPoint* pts, uint8_t verb, |
| Intercepts& intercepts, int firstT, int lastT, bool flipped) { |
| InEdge* edge = edges.push_back_n(1); |
| edge->fIntercepts.push_back_n(1); |
| if (firstT == 0) { |
| *edge->fIntercepts[0].fTs.append() = 0; |
| } else { |
| *edge->fIntercepts[0].fTs.append() = intercepts.fTs[firstT - 1]; |
| } |
| bool add1 = lastT == intercepts.fTs.count(); |
| edge->fIntercepts[0].fTs.append(lastT - firstT, &intercepts.fTs[firstT]); |
| if (add1) { |
| *edge->fIntercepts[0].fTs.append() = 1; |
| } |
| edge->fIntercepts[0].fExplicit = true; |
| edge->fPts.append(verb + 1, pts); |
| edge->fVerbs.append(1, &verb); |
| // FIXME: bounds could be better for partial Ts |
| edge->setSubBounds(); |
| edge->fContainsIntercepts = fContainsIntercepts; // FIXME: may not be correct -- but do we need to know? |
| if (flipped) { |
| edge->flipTs(); |
| edge->fWinding = -fWinding; |
| } else { |
| edge->fWinding = fWinding; |
| } |
| } |
| |
| bool cached(const InEdge* edge) { |
| // FIXME: in the pathological case where there is a ton of edges, binary search? |
| size_t count = fCached.count(); |
| for (size_t index = 0; index < count; ++index) { |
| if (edge == fCached[index]) { |
| return true; |
| } |
| if (edge < fCached[index]) { |
| *fCached.insert(index) = edge; |
| return false; |
| } |
| } |
| *fCached.append() = edge; |
| return false; |
| } |
| |
| void complete(signed char winding) { |
| setBounds(); |
| fIntercepts.push_back_n(fVerbs.count()); |
| if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top |
| flip(); |
| } |
| fContainsIntercepts = fIntersected = false; |
| } |
| |
| void flip() { |
| size_t index; |
| size_t last = fPts.count() - 1; |
| for (index = 0; index < last; ++index, --last) { |
| SkTSwap<SkPoint>(fPts[index], fPts[last]); |
| } |
| last = fVerbs.count() - 1; |
| for (index = 0; index < last; ++index, --last) { |
| SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]); |
| } |
| } |
| |
| void flipTs() { |
| SkASSERT(fIntercepts.count() == 1); |
| Intercepts& intercepts = fIntercepts[0]; |
| SkASSERT(intercepts.fExplicit); |
| SkTDArray<double>& ts = intercepts.fTs; |
| size_t index; |
| size_t last = ts.count() - 1; |
| for (index = 0; index < last; ++index, --last) { |
| SkTSwap<double>(ts[index], ts[last]); |
| } |
| } |
| |
| void reset() { |
| fCached.reset(); |
| fIntercepts.reset(); |
| fPts.reset(); |
| fVerbs.reset(); |
| fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
| fWinding = 0; |
| fContainsIntercepts = false; |
| fIntersected = false; |
| } |
| |
| void setBounds() { |
| SkPoint* ptPtr = fPts.begin(); |
| SkPoint* ptLast = fPts.end(); |
| if (ptPtr == ptLast) { |
| SkDebugf("%s empty edge\n", __FUNCTION__); |
| SkASSERT(0); |
| // FIXME: delete empty edge? |
| return; |
| } |
| fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY); |
| ++ptPtr; |
| while (ptPtr != ptLast) { |
| fBounds.growToInclude(ptPtr->fX, ptPtr->fY); |
| ++ptPtr; |
| } |
| } |
| |
| // recompute bounds based on subrange of T values |
| void setSubBounds() { |
| SkASSERT(fIntercepts.count() == 1); |
| Intercepts& intercepts = fIntercepts[0]; |
| SkASSERT(intercepts.fExplicit); |
| SkASSERT(fVerbs.count() == 1); |
| SkTDArray<double>& ts = intercepts.fTs; |
| if (fVerbs[0] == SkPath::kQuad_Verb) { |
| SkASSERT(fPts.count() == 3); |
| QuadSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds); |
| } else { |
| SkASSERT(fVerbs[0] == SkPath::kCubic_Verb); |
| SkASSERT(fPts.count() == 4); |
| CubicSubBounds(fPts.begin(), ts[0], ts[ts.count() - 1], fBounds); |
| } |
| } |
| |
| void splitInflectionPts(SkTArray<InEdge>& edges) { |
| if (!fIntersected) { |
| return; |
| } |
| uint8_t* verbs = fVerbs.begin(); |
| SkPoint* pts = fPts.begin(); |
| int lastVerb = 0; |
| int lastPt = 0; |
| uint8_t verb; |
| bool edgeSplit = false; |
| for (int ceptIdx = 0; ceptIdx < fIntercepts.count(); ++ceptIdx, pts += verb) { |
| Intercepts& intercepts = fIntercepts[ceptIdx]; |
| verb = *verbs++; |
| if (verb <= SkPath::kLine_Verb) { |
| continue; |
| } |
| size_t tCount = intercepts.fTs.count(); |
| if (!tCount) { |
| continue; |
| } |
| size_t tIndex = (size_t) -1; |
| SkScalar y = pts[0].fY; |
| int lastSplit = 0; |
| int firstSplit = -1; |
| bool curveSplit = false; |
| while (++tIndex < tCount) { |
| double nextT = intercepts.fTs[tIndex]; |
| SkScalar nextY = verb == SkPath::kQuad_Verb |
| ? QuadYAtT(pts, nextT) : CubicYAtT(pts, nextT); |
| if (nextY < y) { |
| edgeSplit = curveSplit = true; |
| if (firstSplit < 0) { |
| firstSplit = tIndex; |
| int nextPt = pts - fPts.begin(); |
| int nextVerb = verbs - 1 - fVerbs.begin(); |
| if (lastVerb < nextVerb) { |
| addPartial(edges, lastPt, nextPt, lastVerb, nextVerb); |
| #if DEBUG_SPLIT |
| SkDebugf("%s addPartial 1\n", __FUNCTION__); |
| #endif |
| } |
| lastPt = nextPt; |
| lastVerb = nextVerb; |
| } |
| } else { |
| if (firstSplit >= 0) { |
| if (lastSplit < firstSplit) { |
| addSplit(edges, pts, verb, intercepts, |
| lastSplit, firstSplit, false); |
| #if DEBUG_SPLIT |
| SkDebugf("%s addSplit 1 tIndex=%d,%d\n", |
| __FUNCTION__, lastSplit, firstSplit); |
| #endif |
| } |
| addSplit(edges, pts, verb, intercepts, |
| firstSplit, tIndex, true); |
| #if DEBUG_SPLIT |
| SkDebugf("%s addSplit 2 tIndex=%d,%d flip\n", |
| __FUNCTION__, firstSplit, tIndex); |
| #endif |
| lastSplit = tIndex; |
| firstSplit = -1; |
| } |
| } |
| y = nextY; |
| } |
| if (curveSplit) { |
| if (firstSplit < 0) { |
| firstSplit = lastSplit; |
| } else { |
| addSplit(edges, pts, verb, intercepts, lastSplit, |
| firstSplit, false); |
| #if DEBUG_SPLIT |
| SkDebugf("%s addSplit 3 tIndex=%d,%d\n", __FUNCTION__, |
| lastSplit, firstSplit); |
| #endif |
| } |
| addSplit(edges, pts, verb, intercepts, firstSplit, |
| tIndex, pts[verb].fY < y); |
| #if DEBUG_SPLIT |
| SkDebugf("%s addSplit 4 tIndex=%d,%d %s\n", __FUNCTION__, |
| firstSplit, tIndex, pts[verb].fY < y ? "flip" : ""); |
| #endif |
| } |
| } |
| // collapse remainder -- if there's nothing left, clear it somehow? |
| if (edgeSplit) { |
| int nextVerb = verbs - 1 - fVerbs.begin(); |
| if (lastVerb < nextVerb) { |
| int nextPt = pts - fPts.begin(); |
| addPartial(edges, lastPt, nextPt, lastVerb, nextVerb); |
| #if DEBUG_SPLIT |
| SkDebugf("%s addPartial 2\n", __FUNCTION__); |
| #endif |
| } |
| // OPTIMIZATION: reuse the edge instead of marking it empty |
| reset(); |
| } |
| } |
| |
| #if DEBUG_DUMP |
| void dump() { |
| int i; |
| const char className[] = "InEdge"; |
| const int tab = 4; |
| SkDebugf("InEdge %p (edge=%d)\n", this, fID); |
| for (i = 0; i < fCached.count(); ++i) { |
| SkDebugf("%*s.fCached[%d]=0x%08x\n", tab + sizeof(className), |
| className, i, fCached[i]); |
| } |
| uint8_t* verbs = fVerbs.begin(); |
| SkPoint* pts = fPts.begin(); |
| for (i = 0; i < fIntercepts.count(); ++i) { |
| SkDebugf("%*s.fIntercepts[%d]:\n", tab + sizeof(className), |
| className, i); |
| fIntercepts[i].dump(pts, (SkPath::Verb) *verbs); |
| pts += *verbs++; |
| } |
| for (i = 0; i < fPts.count(); ++i) { |
| SkDebugf("%*s.fPts[%d]=(%1.9g,%1.9g)\n", tab + sizeof(className), |
| className, i, fPts[i].fX, fPts[i].fY); |
| } |
| for (i = 0; i < fVerbs.count(); ++i) { |
| SkDebugf("%*s.fVerbs[%d]=%d\n", tab + sizeof(className), |
| className, i, fVerbs[i]); |
| } |
| SkDebugf("%*s.fBounds=(%1.9g, %1.9g, %1.9g, %1.9g)\n", tab + sizeof(className), |
| className, fBounds.fLeft, fBounds.fTop, |
| fBounds.fRight, fBounds.fBottom); |
| SkDebugf("%*s.fWinding=%d\n", tab + sizeof(className), className, |
| fWinding); |
| SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), |
| className, fContainsIntercepts); |
| SkDebugf("%*s.fIntersected=%d\n", tab + sizeof(className), |
| className, fIntersected); |
| } |
| #endif |
| |
| // FIXME: temporary data : move this to a separate struct? |
| SkTDArray<const InEdge*> fCached; // list of edges already intercepted |
| SkTArray<Intercepts> fIntercepts; // one per verb |
| |
| // persistent data |
| SkTDArray<SkPoint> fPts; |
| SkTDArray<uint8_t> fVerbs; |
| Bounds fBounds; |
| int fID; |
| signed char fWinding; |
| bool fContainsIntercepts; |
| bool fIntersected; |
| }; |
| |
| class InEdgeBuilder { |
| public: |
| |
| InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges, |
| SkTDArray<HorizontalEdge>& horizontalEdges) |
| : fPath(path) |
| , fCurrentEdge(NULL) |
| , fEdges(edges) |
| , fHorizontalEdges(horizontalEdges) |
| , fIgnoreHorizontal(ignoreHorizontal) |
| , fContainsCurves(false) |
| { |
| walk(); |
| } |
| |
| bool containsCurves() const { |
| return fContainsCurves; |
| } |
| |
| protected: |
| |
| void addEdge() { |
| SkASSERT(fCurrentEdge); |
| fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]); |
| fPtOffset = 1; |
| *fCurrentEdge->fVerbs.append() = fVerb; |
| } |
| |
| bool complete() { |
| if (fCurrentEdge && fCurrentEdge->fVerbs.count()) { |
| fCurrentEdge->complete(fWinding); |
| fCurrentEdge = NULL; |
| return true; |
| } |
| return false; |
| } |
| |
| int direction(SkPath::Verb verb) { |
| fPtCount = verb + 1; |
| if (fIgnoreHorizontal && isHorizontal()) { |
| return 0; |
| } |
| return fPts[0].fY == fPts[verb].fY |
| ? fPts[0].fX == fPts[verb].fX ? 0 : fPts[0].fX < fPts[verb].fX |
| ? 1 : -1 : fPts[0].fY < fPts[verb].fY ? 1 : -1; |
| } |
| |
| bool isHorizontal() { |
| SkScalar y = fPts[0].fY; |
| for (int i = 1; i < fPtCount; ++i) { |
| if (fPts[i].fY != y) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void startEdge() { |
| if (!fCurrentEdge) { |
| fCurrentEdge = fEdges.push_back_n(1); |
| } |
| fWinding = 0; |
| fPtOffset = 0; |
| } |
| |
| void walk() { |
| SkPath::Iter iter(fPath, true); |
| int winding = 0; |
| while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) { |
| switch (fVerb) { |
| case SkPath::kMove_Verb: |
| startEdge(); |
| continue; |
| case SkPath::kLine_Verb: |
| winding = direction(SkPath::kLine_Verb); |
| break; |
| case SkPath::kQuad_Verb: |
| fVerb = QuadReduceOrder(fPts); |
| winding = direction(fVerb); |
| fContainsCurves |= fVerb == SkPath::kQuad_Verb; |
| break; |
| case SkPath::kCubic_Verb: |
| fVerb = CubicReduceOrder(fPts); |
| winding = direction(fVerb); |
| fContainsCurves |= fVerb >= SkPath::kQuad_Verb; |
| break; |
| case SkPath::kClose_Verb: |
| SkASSERT(fCurrentEdge); |
| complete(); |
| continue; |
| default: |
| SkDEBUGFAIL("bad verb"); |
| return; |
| } |
| if (winding == 0) { |
| HorizontalEdge* horizontalEdge = fHorizontalEdges.append(); |
| // FIXME: for degenerate quads and cubics, compute x extremes |
| horizontalEdge->fLeft = fPts[0].fX; |
| horizontalEdge->fRight = fPts[fVerb].fX; |
| horizontalEdge->fY = fPts[0].fY; |
| if (horizontalEdge->fLeft > horizontalEdge->fRight) { |
| SkTSwap<SkScalar>(horizontalEdge->fLeft, horizontalEdge->fRight); |
| } |
| if (complete()) { |
| startEdge(); |
| } |
| continue; |
| } |
| if (fWinding + winding == 0) { |
| // FIXME: if prior verb or this verb is a horizontal line, reverse |
| // it instead of starting a new edge |
| SkASSERT(fCurrentEdge); |
| if (complete()) { |
| startEdge(); |
| } |
| } |
| fWinding = winding; |
| addEdge(); |
| } |
| if (!complete()) { |
| if (fCurrentEdge) { |
| fEdges.pop_back(); |
| } |
| } |
| } |
| |
| private: |
| const SkPath& fPath; |
| InEdge* fCurrentEdge; |
| SkTArray<InEdge>& fEdges; |
| SkTDArray<HorizontalEdge>& fHorizontalEdges; |
| SkPoint fPts[4]; |
| SkPath::Verb fVerb; |
| int fPtCount; |
| int fPtOffset; |
| int8_t fWinding; |
| bool fIgnoreHorizontal; |
| bool fContainsCurves; |
| }; |
| |
| struct WorkEdge { |
| SkScalar bottom() const { |
| return fPts[verb()].fY; |
| } |
| |
| void init(const InEdge* edge) { |
| fEdge = edge; |
| fPts = edge->fPts.begin(); |
| fVerb = edge->fVerbs.begin(); |
| } |
| |
| bool advance() { |
| SkASSERT(fVerb < fEdge->fVerbs.end()); |
| fPts += *fVerb++; |
| return fVerb != fEdge->fVerbs.end(); |
| } |
| |
| const SkPoint* lastPoints() const { |
| SkASSERT(fPts >= fEdge->fPts.begin() + lastVerb()); |
| return &fPts[-lastVerb()]; |
| } |
| |
| SkPath::Verb lastVerb() const { |
| SkASSERT(fVerb > fEdge->fVerbs.begin()); |
| return (SkPath::Verb) fVerb[-1]; |
| } |
| |
| const SkPoint* points() const { |
| return fPts; |
| } |
| |
| SkPath::Verb verb() const { |
| return (SkPath::Verb) *fVerb; |
| } |
| |
| ptrdiff_t verbIndex() const { |
| return fVerb - fEdge->fVerbs.begin(); |
| } |
| |
| int winding() const { |
| return fEdge->fWinding; |
| } |
| |
| const InEdge* fEdge; |
| const SkPoint* fPts; |
| const uint8_t* fVerb; |
| }; |
| |
| // always constructed with SkTDArray because new edges are inserted |
| // this may be a inappropriate optimization, suggesting that a separate array of |
| // ActiveEdge* may be faster to insert and search |
| |
| // OPTIMIZATION: Brian suggests that global sorting should be unnecessary, since |
| // as active edges are introduced, only local sorting should be required |
| class ActiveEdge { |
| public: |
| // this logic must be kept in sync with tooCloseToCall |
| // callers expect this to only read fAbove, fTangent |
| bool operator<(const ActiveEdge& rh) const { |
| if (fVerb == rh.fVerb) { |
| // FIXME: don't know what to do if verb is quad, cubic |
| return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow); |
| } |
| // figure out which is quad, line |
| // if cached data says line did not intersect quad, use top/bottom |
| if (fVerb != SkPath::kLine_Verb ? noIntersect(rh) : rh.noIntersect(*this)) { |
| return abCompare(fAbove, fBelow, rh.fAbove, rh.fBelow); |
| } |
| // use whichever of top/tangent tangent/bottom overlaps more |
| // with line top/bot |
| // assumes quad/cubic can already be upconverted to cubic/cubic |
| const SkPoint* line[2]; |
| const SkPoint* curve[4]; |
| if (fVerb != SkPath::kLine_Verb) { |
| line[0] = &rh.fAbove; |
| line[1] = &rh.fBelow; |
| curve[0] = &fAbove; |
| curve[1] = &fTangent; |
| curve[2] = &fBelow; |
| } else { |
| line[0] = &fAbove; |
| line[1] = &fBelow; |
| curve[0] = &rh.fAbove; |
| curve[1] = &rh.fTangent; |
| curve[2] = &rh.fBelow; |
| } |
| // FIXME: code has been abandoned, incomplete.... |
| return false; |
| } |
| |
| bool abCompare(const SkPoint& a1, const SkPoint& a2, const SkPoint& b1, |
| const SkPoint& b2) const { |
| double topD = a1.fX - b1.fX; |
| if (b1.fY < a1.fY) { |
| topD = (b2.fY - b1.fY) * topD - (a1.fY - b1.fY) * (b2.fX - b1.fX); |
| } else if (b1.fY > a1.fY) { |
| topD = (a2.fY - a1.fY) * topD + (b1.fY - a1.fY) * (a2.fX - a1.fX); |
| } |
| double botD = a2.fX - b2.fX; |
| if (b2.fY > a2.fY) { |
| botD = (b2.fY - b1.fY) * botD - (a2.fY - b2.fY) * (b2.fX - b1.fX); |
| } else if (b2.fY < a2.fY) { |
| botD = (a2.fY - a1.fY) * botD + (b2.fY - a2.fY) * (a2.fX - a1.fX); |
| } |
| // return sign of greater absolute value |
| return (fabs(topD) > fabs(botD) ? topD : botD) < 0; |
| } |
| |
| // If a pair of edges are nearly coincident for some span, add a T in the |
| // edge so it can be shortened to match the other edge. Note that another |
| // approach is to trim the edge after it is added to the OutBuilder list -- |
| // FIXME: since this has no effect if the edge is already done (i.e., |
| // fYBottom >= y) maybe this can only be done by calling trimLine later. |
| void addTatYBelow(SkScalar y) { |
| if (fBelow.fY <= y || fYBottom >= y) { |
| return; |
| } |
| addTatYInner(y); |
| fFixBelow = true; |
| } |
| |
| void addTatYAbove(SkScalar y) { |
| if (fBelow.fY <= y) { |
| return; |
| } |
| addTatYInner(y); |
| } |
| |
| void addTatYInner(SkScalar y) { |
| if (fWorkEdge.fPts[0].fY > y) { |
| backup(y); |
| } |
| SkScalar left = fWorkEdge.fPts[0].fX; |
| SkScalar right = fWorkEdge.fPts[1].fX; |
| if (left > right) { |
| SkTSwap(left, right); |
| } |
| double ts[2]; |
| SkASSERT(fWorkEdge.fVerb[0] == SkPath::kLine_Verb); |
| int pts = LineIntersect(fWorkEdge.fPts, left, right, y, ts); |
| SkASSERT(pts == 1); |
| // An ActiveEdge or WorkEdge has no need to modify the T values computed |
| // in the InEdge, except in the following case. If a pair of edges are |
| // nearly coincident, this may not be detected when the edges are |
| // intersected. Later, when sorted, and this near-coincidence is found, |
| // an additional t value must be added, requiring the cast below. |
| InEdge* writable = const_cast<InEdge*>(fWorkEdge.fEdge); |
| int insertedAt = writable->add(ts, pts, fWorkEdge.verbIndex()); |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s edge=%d y=%1.9g t=%1.9g\n", __FUNCTION__, ID(), y, ts[0]); |
| #endif |
| if (insertedAt >= 0) { |
| if (insertedAt + 1 < fTIndex) { |
| SkASSERT(insertedAt + 2 == fTIndex); |
| --fTIndex; |
| } |
| } |
| } |
| |
| bool advanceT() { |
| SkASSERT(fTIndex <= fTs->count() - fExplicitTs); |
| return ++fTIndex <= fTs->count() - fExplicitTs; |
| } |
| |
| bool advance() { |
| // FIXME: flip sense of next |
| bool result = fWorkEdge.advance(); |
| fDone = !result; |
| initT(); |
| return result; |
| } |
| |
| void backup(SkScalar y) { |
| do { |
| SkASSERT(fWorkEdge.fEdge->fVerbs.begin() < fWorkEdge.fVerb); |
| fWorkEdge.fPts -= *--fWorkEdge.fVerb; |
| SkASSERT(fWorkEdge.fEdge->fPts.begin() <= fWorkEdge.fPts); |
| } while (fWorkEdge.fPts[0].fY >= y); |
| initT(); |
| SkASSERT(!fExplicitTs); |
| fTIndex = fTs->count() + 1; |
| } |
| |
| void calcAboveBelow(double tAbove, double tBelow) { |
| fVerb = fWorkEdge.verb(); |
| switch (fVerb) { |
| case SkPath::kLine_Verb: |
| LineXYAtT(fWorkEdge.fPts, tAbove, &fAbove); |
| LineXYAtT(fWorkEdge.fPts, tBelow, &fTangent); |
| fBelow = fTangent; |
| break; |
| case SkPath::kQuad_Verb: |
| // FIXME: put array in struct to avoid copy? |
| SkPoint quad[3]; |
| QuadSubDivide(fWorkEdge.fPts, tAbove, tBelow, quad); |
| fAbove = quad[0]; |
| fTangent = quad[0] != quad[1] ? quad[1] : quad[2]; |
| fBelow = quad[2]; |
| break; |
| case SkPath::kCubic_Verb: |
| SkPoint cubic[3]; |
| CubicSubDivide(fWorkEdge.fPts, tAbove, tBelow, cubic); |
| fAbove = cubic[0]; |
| // FIXME: can't see how quad logic for how tangent is used |
| // extends to cubic |
| fTangent = cubic[0] != cubic[1] ? cubic[1] |
| : cubic[0] != cubic[2] ? cubic[2] : cubic[3]; |
| fBelow = cubic[3]; |
| break; |
| default: |
| SkASSERT(0); |
| } |
| } |
| |
| void calcLeft(SkScalar y) { |
| // OPTIMIZE: put a kDone_Verb at the end of the verb list? |
| if (fDone || fBelow.fY > y) { |
| return; // nothing to do; use last |
| } |
| calcLeft(); |
| if (fAbove.fY == fBelow.fY) { |
| SkDebugf("%s edge=%d fAbove.fY != fBelow.fY %1.9g\n", __FUNCTION__, |
| ID(), fAbove.fY); |
| } |
| } |
| |
| void calcLeft() { |
| int add = (fTIndex <= fTs->count() - fExplicitTs) - 1; |
| double tAbove = t(fTIndex + add); |
| double tBelow = t(fTIndex - ~add); |
| // OPTIMIZATION: if fAbove, fBelow have already been computed |
| // for the fTIndex, don't do it again |
| calcAboveBelow(tAbove, tBelow); |
| // For identical x, this lets us know which edge is first. |
| // If both edges have T values < 1, check x at next T (fBelow). |
| SkASSERT(tAbove != tBelow); |
| // FIXME: this can loop forever |
| // need a break if we hit the end |
| // FIXME: in unit test, figure out how explicit Ts work as well |
| while (fAbove.fY == fBelow.fY) { |
| if (add < 0 || fTIndex == fTs->count()) { |
| add -= 1; |
| SkASSERT(fTIndex + add >= 0); |
| tAbove = t(fTIndex + add); |
| } else { |
| add += 1; |
| SkASSERT(fTIndex - ~add <= fTs->count() + 1); |
| tBelow = t(fTIndex - ~add); |
| } |
| calcAboveBelow(tAbove, tBelow); |
| } |
| fTAbove = tAbove; |
| fTBelow = tBelow; |
| } |
| |
| bool done(SkScalar bottom) const { |
| return fDone || fYBottom >= bottom; |
| } |
| |
| void fixBelow() { |
| if (fFixBelow) { |
| fTBelow = nextT(); |
| calcAboveBelow(fTAbove, fTBelow); |
| fFixBelow = false; |
| } |
| } |
| |
| void init(const InEdge* edge) { |
| fWorkEdge.init(edge); |
| fDone = false; |
| initT(); |
| fBelow.fY = SK_ScalarMin; |
| fYBottom = SK_ScalarMin; |
| } |
| |
| void initT() { |
| const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front(); |
| SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count()); |
| const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex(); |
| fTs = &interceptPtr->fTs; |
| fExplicitTs = interceptPtr->fExplicit; |
| // the above is conceptually the same as |
| // fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs; |
| // but templated arrays don't allow returning a pointer to the end() element |
| fTIndex = 0; |
| if (!fDone) { |
| fVerb = fWorkEdge.verb(); |
| } |
| SkASSERT(fVerb > SkPath::kMove_Verb); |
| } |
| |
| // OPTIMIZATION: record if two edges are coincident when the are intersected |
| // It's unclear how to do this -- seems more complicated than recording the |
| // t values, since the same t values could exist intersecting non-coincident |
| // edges. |
| bool isCoincidentWith(const ActiveEdge* edge) const { |
| if (fAbove != edge->fAbove || fBelow != edge->fBelow) { |
| return false; |
| } |
| if (fVerb != edge->fVerb) { |
| return false; |
| } |
| switch (fVerb) { |
| case SkPath::kLine_Verb: |
| return true; |
| default: |
| // FIXME: add support for quads, cubics |
| SkASSERT(0); |
| return false; |
| } |
| return false; |
| } |
| |
| bool isUnordered(const ActiveEdge* edge) const { |
| return fAbove == edge->fAbove && fBelow == edge->fBelow; |
| } |
| |
| // SkPath::Verb lastVerb() const { |
| // return fDone ? fWorkEdge.lastVerb() : fWorkEdge.verb(); |
| // } |
| |
| const SkPoint* lastPoints() const { |
| return fDone ? fWorkEdge.lastPoints() : fWorkEdge.points(); |
| } |
| |
| bool noIntersect(const ActiveEdge& ) const { |
| // incomplete |
| return false; |
| } |
| |
| // The shortest close call edge should be moved into a position where |
| // it contributes if the winding is transitioning to or from zero. |
| bool swapClose(const ActiveEdge* next, int prev, int wind, int mask) const { |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s edge=%d (%g) next=%d (%g) prev=%d wind=%d nextWind=%d\n", |
| __FUNCTION__, ID(), fBelow.fY, next->ID(), next->fBelow.fY, |
| prev, wind, wind + next->fWorkEdge.winding()); |
| #endif |
| if ((prev & mask) == 0 || (wind & mask) == 0) { |
| return next->fBelow.fY < fBelow.fY; |
| } |
| int nextWinding = wind + next->fWorkEdge.winding(); |
| if ((nextWinding & mask) == 0) { |
| return fBelow.fY < next->fBelow.fY; |
| } |
| return false; |
| } |
| |
| bool swapCoincident(const ActiveEdge* edge, SkScalar bottom) const { |
| if (fBelow.fY >= bottom || fDone || edge->fDone) { |
| return false; |
| } |
| ActiveEdge thisWork = *this; |
| ActiveEdge edgeWork = *edge; |
| while ((thisWork.advanceT() || thisWork.advance()) |
| && (edgeWork.advanceT() || edgeWork.advance())) { |
| thisWork.calcLeft(); |
| edgeWork.calcLeft(); |
| if (thisWork < edgeWork) { |
| return false; |
| } |
| if (edgeWork < thisWork) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const { |
| SkASSERT(fVerb != SkPath::kLine_Verb |
| || edge->fVerb != SkPath::kLine_Verb); |
| if (fDone || edge->fDone) { |
| return false; |
| } |
| ActiveEdge thisWork, edgeWork; |
| extractAboveBelow(thisWork); |
| edge->extractAboveBelow(edgeWork); |
| return edgeWork < thisWork; |
| } |
| |
| bool tooCloseToCall(const ActiveEdge* edge) const { |
| int ulps; |
| double t1, t2, b1, b2; |
| // This logic must be kept in sync with operator < |
| if (edge->fAbove.fY < fAbove.fY) { |
| t1 = (edge->fTangent.fY - edge->fAbove.fY) * (fAbove.fX - edge->fAbove.fX); |
| t2 = (fAbove.fY - edge->fAbove.fY) * (edge->fTangent.fX - edge->fAbove.fX); |
| } else if (edge->fAbove.fY > fAbove.fY) { |
| t1 = (fTangent.fY - fAbove.fY) * (fAbove.fX - edge->fAbove.fX); |
| t2 = (fAbove.fY - edge->fAbove.fY) * (fTangent.fX - fAbove.fX); |
| } else { |
| t1 = fAbove.fX; |
| t2 = edge->fAbove.fX; |
| } |
| if (edge->fTangent.fY > fTangent.fY) { |
| b1 = (edge->fTangent.fY - edge->fAbove.fY) * (fTangent.fX - edge->fTangent.fX); |
| b2 = (fTangent.fY - edge->fTangent.fY) * (edge->fTangent.fX - edge->fAbove.fX); |
| } else if (edge->fTangent.fY < fTangent.fY) { |
| b1 = (fTangent.fY - fAbove.fY) * (fTangent.fX - edge->fTangent.fX); |
| b2 = (fTangent.fY - edge->fTangent.fY) * (fTangent.fX - fAbove.fX); |
| } else { |
| b1 = fTangent.fX; |
| b2 = edge->fTangent.fX; |
| } |
| if (fabs(t1 - t2) > fabs(b1 - b2)) { |
| ulps = UlpsDiff((float) t1, (float) t2); |
| } else { |
| ulps = UlpsDiff((float) b1, (float) b2); |
| } |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s this=%d edge=%d ulps=%d\n", __FUNCTION__, ID(), edge->ID(), |
| ulps); |
| #endif |
| if (ulps < 0 || ulps > 32) { |
| return false; |
| } |
| if (fVerb == SkPath::kLine_Verb && edge->fVerb == SkPath::kLine_Verb) { |
| return true; |
| } |
| if (fVerb != SkPath::kLine_Verb && edge->fVerb != SkPath::kLine_Verb) { |
| return false; |
| } |
| |
| double ts[2]; |
| bool isLine = true; |
| bool curveQuad = true; |
| if (fVerb == SkPath::kCubic_Verb) { |
| ts[0] = (fTAbove * 2 + fTBelow) / 3; |
| ts[1] = (fTAbove + fTBelow * 2) / 3; |
| curveQuad = isLine = false; |
| } else if (edge->fVerb == SkPath::kCubic_Verb) { |
| ts[0] = (edge->fTAbove * 2 + edge->fTBelow) / 3; |
| ts[1] = (edge->fTAbove + edge->fTBelow * 2) / 3; |
| curveQuad = false; |
| } else if (fVerb == SkPath::kQuad_Verb) { |
| ts[0] = fTAbove; |
| ts[1] = (fTAbove + fTBelow) / 2; |
| isLine = false; |
| } else { |
| SkASSERT(edge->fVerb == SkPath::kQuad_Verb); |
| ts[0] = edge->fTAbove; |
| ts[1] = (edge->fTAbove + edge->fTBelow) / 2; |
| } |
| const SkPoint* curvePts = isLine ? edge->lastPoints() : lastPoints(); |
| const ActiveEdge* lineEdge = isLine ? this : edge; |
| SkPoint curveSample[2]; |
| for (int index = 0; index < 2; ++index) { |
| if (curveQuad) { |
| QuadXYAtT(curvePts, ts[index], &curveSample[index]); |
| } else { |
| CubicXYAtT(curvePts, ts[index], &curveSample[index]); |
| } |
| } |
| return IsCoincident(curveSample, lineEdge->fAbove, lineEdge->fBelow); |
| } |
| |
| double nextT() const { |
| SkASSERT(fTIndex <= fTs->count() - fExplicitTs); |
| return t(fTIndex + 1); |
| } |
| |
| double t() const { |
| return t(fTIndex); |
| } |
| |
| double t(int tIndex) const { |
| if (fExplicitTs) { |
| SkASSERT(tIndex < fTs->count()); |
| return (*fTs)[tIndex]; |
| } |
| if (tIndex == 0) { |
| return 0; |
| } |
| if (tIndex > fTs->count()) { |
| return 1; |
| } |
| return (*fTs)[tIndex - 1]; |
| } |
| |
| // FIXME: debugging only |
| int ID() const { |
| return fWorkEdge.fEdge->fID; |
| } |
| |
| private: |
| // utility used only by swapUnordered |
| void extractAboveBelow(ActiveEdge& extracted) const { |
| SkPoint curve[4]; |
| switch (fVerb) { |
| case SkPath::kLine_Verb: |
| extracted.fAbove = fAbove; |
| extracted.fTangent = fTangent; |
| return; |
| case SkPath::kQuad_Verb: |
| QuadSubDivide(lastPoints(), fTAbove, fTBelow, curve); |
| break; |
| case SkPath::kCubic_Verb: |
| CubicSubDivide(lastPoints(), fTAbove, fTBelow, curve); |
| break; |
| default: |
| SkASSERT(0); |
| } |
| extracted.fAbove = curve[0]; |
| extracted.fTangent = curve[1]; |
| } |
| |
| public: |
| WorkEdge fWorkEdge; |
| const SkTDArray<double>* fTs; |
| SkPoint fAbove; |
| SkPoint fTangent; |
| SkPoint fBelow; |
| double fTAbove; // OPTIMIZATION: only required if edge has quads or cubics |
| double fTBelow; |
| SkScalar fYBottom; |
| int fCoincident; |
| int fTIndex; |
| SkPath::Verb fVerb; |
| bool fSkip; // OPTIMIZATION: use bitfields? |
| bool fCloseCall; |
| bool fDone; |
| bool fFixBelow; |
| bool fExplicitTs; |
| }; |
| |
| static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) { |
| size_t count = activeEdges.count(); |
| for (size_t index = 0; index < count; ++index) { |
| if (edge == activeEdges[index].fWorkEdge.fEdge) { |
| return; |
| } |
| } |
| ActiveEdge* active = activeEdges.append(); |
| active->init(edge); |
| } |
| |
| // Find any intersections in the range of active edges. A pair of edges, on |
| // either side of another edge, may change the winding contribution for part of |
| // the edge. |
| // Keep horizontal edges just for |
| // the purpose of computing when edges change their winding contribution, since |
| // this is essentially computing the horizontal intersection. |
| static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, |
| HorizontalEdge** horizontal) { |
| InEdge** testPtr = currentPtr - 1; |
| HorizontalEdge* horzEdge = *horizontal; |
| SkScalar left = horzEdge->fLeft; |
| SkScalar bottom = horzEdge->fY; |
| while (++testPtr != lastPtr) { |
| InEdge* test = *testPtr; |
| if (test->fBounds.fBottom <= bottom || test->fBounds.fRight <= left) { |
| continue; |
| } |
| WorkEdge wt; |
| wt.init(test); |
| do { |
| HorizontalEdge** sorted = horizontal; |
| horzEdge = *sorted; |
| do { |
| double wtTs[4]; |
| int pts; |
| uint8_t verb = wt.verb(); |
| switch (verb) { |
| case SkPath::kLine_Verb: |
| pts = LineIntersect(wt.fPts, horzEdge->fLeft, |
| horzEdge->fRight, horzEdge->fY, wtTs); |
| break; |
| case SkPath::kQuad_Verb: |
| pts = QuadIntersect(wt.fPts, horzEdge->fLeft, |
| horzEdge->fRight, horzEdge->fY, wtTs); |
| break; |
| case SkPath::kCubic_Verb: |
| pts = CubicIntersect(wt.fPts, horzEdge->fLeft, |
| horzEdge->fRight, horzEdge->fY, wtTs); |
| break; |
| } |
| if (pts) { |
| #if DEBUG_ADD_BOTTOM_TS |
| for (int x = 0; x < pts; ++x) { |
| SkDebugf("%s y=%g wtTs[0]=%g (%g,%g", __FUNCTION__, |
| horzEdge->fY, wtTs[x], wt.fPts[0].fX, wt.fPts[0].fY); |
| for (int y = 0; y < verb; ++y) { |
| SkDebugf(" %g,%g", wt.fPts[y + 1].fX, wt.fPts[y + 1].fY)); |
| } |
| SkDebugf(")\n"); |
| } |
| if (pts > verb) { |
| SkASSERT(0); // FIXME ? should this work? |
| SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]); |
| } |
| #endif |
| test->add(wtTs, pts, wt.verbIndex()); |
| } |
| horzEdge = *++sorted; |
| } while (horzEdge->fY == bottom |
| && horzEdge->fLeft <= test->fBounds.fRight); |
| } while (wt.advance()); |
| } |
| } |
| |
| #if DEBUG_ADD_INTERSECTING_TS |
| static void debugShowLineIntersection(int pts, const WorkEdge& wt, |
| const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) { |
| if (!pts) { |
| return; |
| } |
| SkPoint wtOutPt, wnOutPt; |
| LineXYAtT(wt.fPts, wtTs[0], &wtOutPt); |
| LineXYAtT(wn.fPts, wnTs[0], &wnOutPt); |
| SkDebugf("%s wtTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| __FUNCTION__, |
| wtTs[0], wt.fPts[0].fX, wt.fPts[0].fY, |
| wt.fPts[1].fX, wt.fPts[1].fY, wtOutPt.fX, wtOutPt.fY); |
| if (pts == 2) { |
| SkDebugf("%s wtTs[1]=%g\n", __FUNCTION__, wtTs[1]); |
| } |
| SkDebugf("%s wnTs[0]=%g (%g,%g, %g,%g) (%g,%g)\n", |
| __FUNCTION__, |
| wnTs[0], wn.fPts[0].fX, wn.fPts[0].fY, |
| wn.fPts[1].fX, wn.fPts[1].fY, wnOutPt.fX, wnOutPt.fY); |
| if (pts == 2) { |
| SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]); |
| } |
| } |
| #else |
| static void debugShowLineIntersection(int , const WorkEdge& , |
| const WorkEdge& , const double [2], const double [2]) { |
| } |
| #endif |
| |
| static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) { |
| InEdge** testPtr = currentPtr - 1; |
| // FIXME: lastPtr should be past the point of interest, so |
| // test below should be lastPtr - 2 |
| // that breaks testSimplifyTriangle22, so further investigation is needed |
| while (++testPtr != lastPtr - 1) { |
| InEdge* test = *testPtr; |
| InEdge** nextPtr = testPtr; |
| do { |
| InEdge* next = *++nextPtr; |
| // FIXME: this compares against the sentinel sometimes |
| // OPTIMIZATION: this may never be needed since this gets called |
| // in two passes now. Verify that double hits are appropriate. |
| if (test->cached(next)) { |
| continue; |
| } |
| if (!Bounds::Intersects(test->fBounds, next->fBounds)) { |
| continue; |
| } |
| WorkEdge wt, wn; |
| wt.init(test); |
| wn.init(next); |
| do { |
| int pts; |
| Intersections ts; |
| bool swap = false; |
| switch (wt.verb()) { |
| case SkPath::kLine_Verb: |
| switch (wn.verb()) { |
| case SkPath::kLine_Verb: { |
| pts = LineIntersect(wt.fPts, wn.fPts, ts); |
| debugShowLineIntersection(pts, wt, wn, |
| ts.fT[0], ts.fT[1]); |
| break; |
| } |
| case SkPath::kQuad_Verb: { |
| swap = true; |
| pts = QuadLineIntersect(wn.fPts, wt.fPts, ts); |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| swap = true; |
| pts = CubicLineIntersect(wn.fPts, wt.fPts, ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| case SkPath::kQuad_Verb: |
| switch (wn.verb()) { |
| case SkPath::kLine_Verb: { |
| pts = QuadLineIntersect(wt.fPts, wn.fPts, ts); |
| break; |
| } |
| case SkPath::kQuad_Verb: { |
| pts = QuadIntersect(wt.fPts, wn.fPts, ts); |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| // FIXME: promote quad to cubic |
| pts = CubicIntersect(wt.fPts, wn.fPts, ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| case SkPath::kCubic_Verb: |
| switch (wn.verb()) { |
| case SkPath::kLine_Verb: { |
| pts = CubicLineIntersect(wt.fPts, wn.fPts, ts); |
| break; |
| } |
| case SkPath::kQuad_Verb: { |
| // FIXME: promote quad to cubic |
| pts = CubicIntersect(wt.fPts, wn.fPts, ts); |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| pts = CubicIntersect(wt.fPts, wn.fPts, ts); |
| break; |
| } |
| default: |
| SkASSERT(0); |
| } |
| break; |
| default: |
| SkASSERT(0); |
| } |
| test->add(ts.fT[swap], pts, wt.verbIndex()); |
| next->add(ts.fT[!swap], pts, wn.verbIndex()); |
| } while (wt.bottom() <= wn.bottom() ? wt.advance() : wn.advance()); |
| } while (nextPtr != lastPtr); |
| } |
| } |
| |
| static InEdge** advanceEdges(SkTDArray<ActiveEdge>* activeEdges, |
| InEdge** currentPtr, InEdge** lastPtr, SkScalar y) { |
| InEdge** testPtr = currentPtr - 1; |
| while (++testPtr != lastPtr) { |
| if ((*testPtr)->fBounds.fBottom > y) { |
| continue; |
| } |
| if (activeEdges) { |
| InEdge* test = *testPtr; |
| ActiveEdge* activePtr = activeEdges->begin() - 1; |
| ActiveEdge* lastActive = activeEdges->end(); |
| while (++activePtr != lastActive) { |
| if (activePtr->fWorkEdge.fEdge == test) { |
| activeEdges->remove(activePtr - activeEdges->begin()); |
| break; |
| } |
| } |
| } |
| if (testPtr == currentPtr) { |
| ++currentPtr; |
| } |
| } |
| return currentPtr; |
| } |
| |
| // OPTIMIZE: inline? |
| static HorizontalEdge** advanceHorizontal(HorizontalEdge** edge, SkScalar y) { |
| while ((*edge)->fY < y) { |
| ++edge; |
| } |
| return edge; |
| } |
| |
| // compute bottom taking into account any intersected edges |
| static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges, |
| SkScalar y, SkScalar bottom) { |
| ActiveEdge* activePtr = activeEdges.begin() - 1; |
| ActiveEdge* lastActive = activeEdges.end(); |
| while (++activePtr != lastActive) { |
| const InEdge* test = activePtr->fWorkEdge.fEdge; |
| if (!test->fContainsIntercepts) { |
| continue; |
| } |
| WorkEdge wt; |
| wt.init(test); |
| do { |
| const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()]; |
| if (intercepts.fTopIntercepts > 1) { |
| SkScalar yTop = wt.fPts[0].fY; |
| if (yTop > y && bottom > yTop) { |
| bottom = yTop; |
| } |
| } |
| if (intercepts.fBottomIntercepts > 1) { |
| SkScalar yBottom = wt.fPts[wt.verb()].fY; |
| if (yBottom > y && bottom > yBottom) { |
| bottom = yBottom; |
| } |
| } |
| const SkTDArray<double>& fTs = intercepts.fTs; |
| size_t count = fTs.count(); |
| for (size_t index = 0; index < count; ++index) { |
| SkScalar yIntercept; |
| switch (wt.verb()) { |
| case SkPath::kLine_Verb: { |
| yIntercept = LineYAtT(wt.fPts, fTs[index]); |
| break; |
| } |
| case SkPath::kQuad_Verb: { |
| yIntercept = QuadYAtT(wt.fPts, fTs[index]); |
| break; |
| } |
| case SkPath::kCubic_Verb: { |
| yIntercept = CubicYAtT(wt.fPts, fTs[index]); |
| break; |
| } |
| default: |
| SkASSERT(0); // should never get here |
| } |
| if (yIntercept > y && bottom > yIntercept) { |
| bottom = yIntercept; |
| } |
| } |
| } while (wt.advance()); |
| } |
| #if DEBUG_BOTTOM |
| SkDebugf("%s bottom=%1.9g\n", __FUNCTION__, bottom); |
| #endif |
| return bottom; |
| } |
| |
| static SkScalar findBottom(InEdge** currentPtr, |
| InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y, |
| bool /*asFill*/, InEdge**& testPtr) { |
| InEdge* current = *currentPtr; |
| SkScalar bottom = current->fBounds.fBottom; |
| |
| // find the list of edges that cross y |
| InEdge* test = *testPtr; |
| while (testPtr != edgeListEnd) { |
| SkScalar testTop = test->fBounds.fTop; |
| if (bottom <= testTop) { |
| break; |
| } |
| SkScalar testBottom = test->fBounds.fBottom; |
| // OPTIMIZATION: Shortening the bottom is only interesting when filling |
| // and when the edge is to the left of a longer edge. If it's a framing |
| // edge, or part of the right, it won't effect the longer edges. |
| if (testTop > y) { |
| bottom = testTop; |
| break; |
| } |
| if (y < testBottom) { |
| if (bottom > testBottom) { |
| bottom = testBottom; |
| } |
| if (activeEdges) { |
| addToActive(*activeEdges, test); |
| } |
| } |
| test = *++testPtr; |
| } |
| #if DEBUG_BOTTOM |
| SkDebugf("%s %d bottom=%1.9g\n", __FUNCTION__, activeEdges ? 2 : 1, bottom); |
| #endif |
| return bottom; |
| } |
| |
| static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel, |
| SkTDArray<InEdge*>& edgeList) { |
| size_t edgeCount = edges.count(); |
| if (edgeCount == 0) { |
| return; |
| } |
| int id = 0; |
| for (size_t index = 0; index < edgeCount; ++index) { |
| InEdge& edge = edges[index]; |
| if (!edge.fWinding) { |
| continue; |
| } |
| edge.fID = ++id; |
| *edgeList.append() = &edge; |
| } |
| *edgeList.append() = &edgeSentinel; |
| QSort<InEdge>(edgeList.begin(), edgeList.end() - 1); |
| } |
| |
| static void makeHorizontalList(SkTDArray<HorizontalEdge>& edges, |
| HorizontalEdge& edgeSentinel, SkTDArray<HorizontalEdge*>& edgeList) { |
| size_t edgeCount = edges.count(); |
| if (edgeCount == 0) { |
| return; |
| } |
| for (size_t index = 0; index < edgeCount; ++index) { |
| *edgeList.append() = &edges[index]; |
| } |
| edgeSentinel.fLeft = edgeSentinel.fRight = edgeSentinel.fY = SK_ScalarMax; |
| *edgeList.append() = &edgeSentinel; |
| QSort<HorizontalEdge>(edgeList.begin(), edgeList.end() - 1); |
| } |
| |
| static void skipCoincidence(int lastWinding, int winding, int windingMask, |
| ActiveEdge* activePtr, ActiveEdge* firstCoincident) { |
| if (((lastWinding & windingMask) == 0) ^ ((winding & windingMask) != 0)) { |
| return; |
| } |
| // FIXME: ? shouldn't this be if (lastWinding & windingMask) ? |
| if (lastWinding) { |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s edge=%d 1 set skip=false\n", __FUNCTION__, activePtr->ID()); |
| #endif |
| activePtr->fSkip = false; |
| } else { |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s edge=%d 2 set skip=false\n", __FUNCTION__, firstCoincident->ID()); |
| #endif |
| firstCoincident->fSkip = false; |
| } |
| } |
| |
| static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges, |
| SkTDArray<ActiveEdge*>& edgeList, SkScalar y) { |
| size_t edgeCount = activeEdges.count(); |
| if (edgeCount == 0) { |
| return; |
| } |
| #if DEBUG_SORT_HORIZONTAL |
| const int tab = 3; // FIXME: debugging only |
| SkDebugf("%s y=%1.9g\n", __FUNCTION__, y); |
| #endif |
| size_t index; |
| for (index = 0; index < edgeCount; ++index) { |
| ActiveEdge& activeEdge = activeEdges[index]; |
| do { |
| activeEdge.calcLeft(y); |
| // skip segments that don't span y |
| if (activeEdge.fAbove != activeEdge.fBelow) { |
| break; |
| } |
| if (activeEdge.fDone) { |
| #if DEBUG_SORT_HORIZONTAL |
| SkDebugf("%*s edge=%d done\n", tab, "", activeEdge.ID()); |
| #endif |
| goto nextEdge; |
| } |
| #if DEBUG_SORT_HORIZONTAL |
| SkDebugf("%*s edge=%d above==below\n", tab, "", activeEdge.ID()); |
| #endif |
| } while (activeEdge.advanceT() || activeEdge.advance()); |
| #if DEBUG_SORT_HORIZONTAL |
| SkDebugf("%*s edge=%d above=(%1.9g,%1.9g) (%1.9g) below=(%1.9g,%1.9g)" |
| " (%1.9g)\n", tab, "", activeEdge.ID(), |
| activeEdge.fAbove.fX, activeEdge.fAbove.fY, activeEdge.fTAbove, |
| activeEdge.fBelow.fX, activeEdge.fBelow.fY, activeEdge.fTBelow); |
| #endif |
| activeEdge.fSkip = activeEdge.fCloseCall = activeEdge.fFixBelow = false; |
| *edgeList.append() = &activeEdge; |
| nextEdge: |
| ; |
| } |
| QSort<ActiveEdge>(edgeList.begin(), edgeList.end() - 1); |
| } |
| |
| // remove coincident edges |
| // OPTIMIZE: remove edges? This is tricky because the current logic expects |
| // the winding count to be maintained while skipping coincident edges. In |
| // addition to removing the coincident edges, the remaining edges would need |
| // to have a different winding value, possibly different per intercept span. |
| static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList, |
| int windingMask, SkScalar y, SkScalar bottom, OutEdgeBuilder& outBuilder) |
| { |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom); |
| #endif |
| size_t edgeCount = edgeList.count(); |
| if (edgeCount == 0) { |
| return bottom; |
| } |
| ActiveEdge* activePtr, * nextPtr = edgeList[0]; |
| size_t index; |
| bool foundCoincident = false; |
| size_t firstIndex = 0; |
| for (index = 1; index < edgeCount; ++index) { |
| activePtr = nextPtr; |
| nextPtr = edgeList[index]; |
| if (firstIndex != index - 1 && activePtr->fVerb > SkPath::kLine_Verb |
| && nextPtr->fVerb == SkPath::kLine_Verb |
| && activePtr->isUnordered(nextPtr)) { |
| // swap the line with the curve |
| // back up to the previous edge and retest |
| SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]); |
| SkASSERT(index > 1); |
| index -= 2; |
| nextPtr = edgeList[index]; |
| continue; |
| } |
| bool closeCall = false; |
| activePtr->fCoincident = firstIndex; |
| if (activePtr->isCoincidentWith(nextPtr) |
| || (closeCall = activePtr->tooCloseToCall(nextPtr))) { |
| activePtr->fSkip = nextPtr->fSkip = foundCoincident = true; |
| activePtr->fCloseCall = nextPtr->fCloseCall = closeCall; |
| } else if (activePtr->isUnordered(nextPtr)) { |
| foundCoincident = true; |
| } else { |
| firstIndex = index; |
| } |
| } |
| nextPtr->fCoincident = firstIndex; |
| if (!foundCoincident) { |
| return bottom; |
| } |
| int winding = 0; |
| nextPtr = edgeList[0]; |
| for (index = 1; index < edgeCount; ++index) { |
| int priorWinding = winding; |
| winding += activePtr->fWorkEdge.winding(); |
| activePtr = nextPtr; |
| nextPtr = edgeList[index]; |
| SkASSERT(activePtr == edgeList[index - 1]); |
| SkASSERT(nextPtr == edgeList[index]); |
| if (activePtr->fCoincident != nextPtr->fCoincident) { |
| continue; |
| } |
| // the coincident edges may not have been sorted above -- advance |
| // the edges and resort if needed |
| // OPTIMIZE: if sorting is done incrementally as new edges are added |
| // and not all at once as is done here, fold this test into the |
| // current less than test. |
| while ((!activePtr->fSkip || !nextPtr->fSkip) |
| && activePtr->fCoincident == nextPtr->fCoincident) { |
| if (activePtr->swapUnordered(nextPtr, bottom)) { |
| winding -= activePtr->fWorkEdge.winding(); |
| SkASSERT(activePtr == edgeList[index - 1]); |
| SkASSERT(nextPtr == edgeList[index]); |
| SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]); |
| if (--index == 0) { |
| winding += activePtr->fWorkEdge.winding(); |
| break; |
| } |
| // back up one |
| activePtr = edgeList[index - 1]; |
| continue; |
| } |
| SkASSERT(activePtr == edgeList[index - 1]); |
| SkASSERT(nextPtr == edgeList[index]); |
| break; |
| } |
| if (activePtr->fSkip && nextPtr->fSkip) { |
| if (activePtr->fCloseCall ? activePtr->swapClose(nextPtr, |
| priorWinding, winding, windingMask) |
| : activePtr->swapCoincident(nextPtr, bottom)) { |
| winding -= activePtr->fWorkEdge.winding(); |
| SkASSERT(activePtr == edgeList[index - 1]); |
| SkASSERT(nextPtr == edgeList[index]); |
| SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]); |
| SkTSwap<ActiveEdge*>(activePtr, nextPtr); |
| winding += activePtr->fWorkEdge.winding(); |
| SkASSERT(activePtr == edgeList[index - 1]); |
| SkASSERT(nextPtr == edgeList[index]); |
| } |
| } |
| } |
| int firstCoincidentWinding = 0; |
| ActiveEdge* firstCoincident = NULL; |
| winding = 0; |
| activePtr = edgeList[0]; |
| for (index = 1; index < edgeCount; ++index) { |
| int priorWinding = winding; |
| winding += activePtr->fWorkEdge.winding(); |
| nextPtr = edgeList[index]; |
| if (activePtr->fSkip && nextPtr->fSkip |
| && activePtr->fCoincident == nextPtr->fCoincident) { |
| if (!firstCoincident) { |
| firstCoincident = activePtr; |
| firstCoincidentWinding = priorWinding; |
| } |
| if (activePtr->fCloseCall) { |
| // If one of the edges has already been added to out as a non |
| // coincident edge, trim it back to the top of this span |
| if (outBuilder.trimLine(y, activePtr->ID())) { |
| activePtr->addTatYAbove(y); |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s 1 edge=%d y=%1.9g (was fYBottom=%1.9g)\n", |
| __FUNCTION__, activePtr->ID(), y, activePtr->fYBottom); |
| #endif |
| activePtr->fYBottom = y; |
| } |
| if (outBuilder.trimLine(y, nextPtr->ID())) { |
| nextPtr->addTatYAbove(y); |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s 2 edge=%d y=%1.9g (was fYBottom=%1.9g)\n", |
| __FUNCTION__, nextPtr->ID(), y, nextPtr->fYBottom); |
| #endif |
| nextPtr->fYBottom = y; |
| } |
| // add missing t values so edges can be the same length |
| SkScalar testY = activePtr->fBelow.fY; |
| nextPtr->addTatYBelow(testY); |
| if (bottom > testY && testY > y) { |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s 3 edge=%d bottom=%1.9g (was bottom=%1.9g)\n", |
| __FUNCTION__, activePtr->ID(), testY, bottom); |
| #endif |
| bottom = testY; |
| } |
| testY = nextPtr->fBelow.fY; |
| activePtr->addTatYBelow(testY); |
| if (bottom > testY && testY > y) { |
| #if DEBUG_ADJUST_COINCIDENT |
| SkDebugf("%s 4 edge=%d bottom=%1.9g (was bottom=%1.9g)\n", |
| __FUNCTION__, nextPtr->ID(), testY, bottom); |
| #endif |
| bottom = testY; |
| } |
| } |
| } else if (firstCoincident) { |
| skipCoincidence(firstCoincidentWinding, winding, windingMask, |
| activePtr, firstCoincident); |
| firstCoincident = NULL; |
| } |
| activePtr = nextPtr; |
| } |
| if (firstCoincident) { |
| winding += activePtr->fWorkEdge.winding(); |
| skipCoincidence(firstCoincidentWinding, winding, windingMask, activePtr, |
| firstCoincident); |
| } |
| // fix up the bottom for close call edges. OPTIMIZATION: maybe this could |
| // be in the loop above, but moved here since loop above reads fBelow and |
| // it felt unsafe to write it in that loop |
| for (index = 0; index < edgeCount; ++index) { |
| (edgeList[index])->fixBelow(); |
| } |
| return bottom; |
| } |
| |
| // stitch edge and t range that satisfies operation |
| static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar |
| #if DEBUG_STITCH_EDGE |
| y |
| #endif |
| , |
| SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) { |
| int winding = 0; |
| ActiveEdge** activeHandle = edgeList.begin() - 1; |
| ActiveEdge** lastActive = edgeList.end(); |
| #if DEBUG_STITCH_EDGE |
| const int tab = 7; // FIXME: debugging only |
| SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom); |
| #endif |
| while (++activeHandle != lastActive) { |
| ActiveEdge* activePtr = *activeHandle; |
| const WorkEdge& wt = activePtr->fWorkEdge; |
| int lastWinding = winding; |
| winding += wt.winding(); |
| #if DEBUG_STITCH_EDGE |
| SkDebugf("%*s edge=%d lastWinding=%d winding=%d skip=%d close=%d" |
| " above=%1.9g below=%1.9g\n", |
| tab-4, "", activePtr->ID(), lastWinding, |
| winding, activePtr->fSkip, activePtr->fCloseCall, |
| activePtr->fTAbove, activePtr->fTBelow); |
| #endif |
| if (activePtr->done(bottom)) { |
| #if DEBUG_STITCH_EDGE |
| SkDebugf("%*s fDone=%d || fYBottom=%1.9g >= bottom\n", tab, "", |
| activePtr->fDone, activePtr->fYBottom); |
| #endif |
| continue; |
| } |
| int opener = (lastWinding & windingMask) == 0; |
| bool closer = (winding & windingMask) == 0; |
| SkASSERT(!opener | !closer); |
| bool inWinding = opener | closer; |
| SkPoint clippedPts[4]; |
| const SkPoint* clipped = NULL; |
| bool moreToDo, aboveBottom; |
| do { |
| double currentT = activePtr->t(); |
| const SkPoint* points = wt.fPts; |
| double nextT; |
| SkPath::Verb verb = activePtr->fVerb; |
| do { |
| nextT = activePtr->nextT(); |
| // FIXME: obtuse: want efficient way to say |
| // !currentT && currentT != 1 || !nextT && nextT != 1 |
| if (currentT * nextT != 0 || currentT + nextT != 1) { |
| // OPTIMIZATION: if !inWinding, we only need |
| // clipped[1].fY |
| switch (verb) { |
| case SkPath::kLine_Verb: |
| LineSubDivide(points, currentT, nextT, clippedPts); |
| break; |
| case SkPath::kQuad_Verb: |
| QuadSubDivide(points, currentT, nextT, clippedPts); |
| break; |
| case SkPath::kCubic_Verb: |
| CubicSubDivide(points, currentT, nextT, clippedPts); |
| break; |
| default: |
| SkASSERT(0); |
| break; |
| } |
| clipped = clippedPts; |
| } else { |
| clipped = points; |
| } |
| if (inWinding && !activePtr->fSkip && (fill ? clipped[0].fY |
| != clipped[verb].fY : clipped[0] != clipped[verb])) { |
| #if DEBUG_STITCH_EDGE |
| SkDebugf("%*s add%s %1.9g,%1.9g %1.9g,%1.9g edge=%d" |
| " v=%d t=(%1.9g,%1.9g)\n", tab, "", |
| kUVerbStr[verb], clipped[0].fX, clipped[0].fY, |
| clipped[verb].fX, clipped[verb].fY, |
| activePtr->ID(), |
| activePtr->fWorkEdge.fVerb |
| - activePtr->fWorkEdge.fEdge->fVerbs.begin(), |
| currentT, nextT); |
| #endif |
| outBuilder.addCurve(clipped, (SkPath::Verb) verb, |
| activePtr->fWorkEdge.fEdge->fID, |
| activePtr->fCloseCall); |
| } else { |
| #if DEBUG_STITCH_EDGE |
| SkDebugf("%*s skip%s %1.9g,%1.9g %1.9g,%1.9g" |
| " edge=%d v=%d t=(%1.9g,%1.9g)\n", tab, "", |
| kUVerbStr[verb], clipped[0].fX, clipped[0].fY, |
| clipped[verb].fX, clipped[verb].fY, |
| activePtr->ID(), |
| activePtr->fWorkEdge.fVerb |
| - activePtr->fWorkEdge.fEdge->fVerbs.begin(), |
| currentT, nextT); |
| #endif |
| } |
| // by advancing fAbove/fBelow, the next call to sortHorizontal |
| // will use these values if they're still valid instead of |
| // recomputing |
| if (clipped[verb].fY > activePtr->fBelow.fY |
| && bottom >= activePtr->fBelow.fY |
| && verb == SkPath::kLine_Verb) { |
| activePtr->fAbove = activePtr->fBelow; |
| activePtr->fBelow = activePtr->fTangent = clipped[verb]; |
| activePtr->fTAbove = activePtr->fTBelow < 1 |
| ? activePtr->fTBelow : 0; |
| activePtr->fTBelow = nextT; |
| } |
| currentT = nextT; |
| moreToDo = activePtr->advanceT(); |
| activePtr->fYBottom = clipped[verb].fY; // was activePtr->fCloseCall ? bottom : |
| |
| // clearing the fSkip/fCloseCall bit here means that trailing edges |
| // fall out of sync, if one edge is long and another is a series of short pieces |
| // if fSkip/fCloseCall is set, need to recompute coincidence/too-close-to-call |
| // after advancing |
| // another approach would be to restrict bottom to smaller part of close call |
| // maybe this is already happening with coincidence when intersection is computed, |
| // and needs to be added to the close call computation as well |
| // this is hard to do because that the bottom is important is not known when |
| // the lines are intersected; only when the computation for edge sorting is done |
| // does the need for new bottoms become apparent. |
| // maybe this is good incentive to scrap the current sort and do an insertion |
| // sort that can take this into consideration when the x value is computed |
| |
| // FIXME: initialized in sortHorizontal, cleared here as well so |
| // that next edge is not skipped -- but should skipped edges ever |
| // continue? (probably not) |
| aboveBottom = clipped[verb].fY < bottom; |
| if (clipped[0].fY != clipped[verb].fY) { |
| activePtr->fSkip = false; |
| activePtr->fCloseCall = false; |
| aboveBottom &= !activePtr->fCloseCall; |
| } |
| #if DEBUG_STITCH_EDGE |
| else { |
| if (activePtr->fSkip || activePtr->fCloseCall) { |
| SkDebugf("%s skip or close == %1.9g\n", __FUNCTION__, |
| clippedPts[0].fY); |
| } |
| } |
| #endif |
| } while (moreToDo & aboveBottom); |
| } while ((moreToDo || activePtr->advance()) & aboveBottom); |
| } |
| } |
| |
| #if DEBUG_DUMP |
| static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList, |
| const InEdge& edgeSentinel) { |
| InEdge** debugPtr = edgeList.begin(); |
| do { |
| (*debugPtr++)->dump(); |
| } while (*debugPtr != &edgeSentinel); |
| } |
| #else |
| static void dumpEdgeList(const SkTDArray<InEdge*>& , |
| const InEdge& ) { |
| } |
| #endif |
| |
| void simplify(const SkPath& path, bool asFill, SkPath& simple) { |
| // returns 1 for evenodd, -1 for winding, regardless of inverse-ness |
| int windingMask = (path.getFillType() & 1) ? 1 : -1; |
| simple.reset(); |
| simple.setFillType(SkPath::kEvenOdd_FillType); |
| // turn path into list of edges increasing in y |
| // if an edge is a quad or a cubic with a y extrema, note it, but leave it |
| // unbroken. Once we have a list, sort it, then walk the list (walk edges |
| // twice that have y extrema's on top) and detect crossings -- look for raw |
| // bounds that cross over, then tight bounds that cross |
| SkTArray<InEdge> edges; |
| SkTDArray<HorizontalEdge> horizontalEdges; |
| InEdgeBuilder builder(path, asFill, edges, horizontalEdges); |
| SkTDArray<InEdge*> edgeList; |
| InEdge edgeSentinel; |
| edgeSentinel.reset(); |
| makeEdgeList(edges, edgeSentinel, edgeList); |
| SkTDArray<HorizontalEdge*> horizontalList; |
| HorizontalEdge horizontalSentinel; |
| makeHorizontalList(horizontalEdges, horizontalSentinel, horizontalList); |
| InEdge** currentPtr = edgeList.begin(); |
| if (!currentPtr) { |
| return; |
| } |
| // find all intersections between edges |
| // beyond looking for horizontal intercepts, we need to know if any active edges |
| // intersect edges below 'bottom', but above the active edge segment. |
| // maybe it makes more sense to compute all intercepts before doing anything |
| // else, since the intercept list is long-lived, at least in the current design. |
| SkScalar y = (*currentPtr)->fBounds.fTop; |
| HorizontalEdge** currentHorizontal = horizontalList.begin(); |
| do { |
| InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set |
| SkScalar bottom = findBottom(currentPtr, edgeList.end(), |
| NULL, y, asFill, lastPtr); |
| if (lastPtr > currentPtr) { |
| if (currentHorizontal) { |
| if ((*currentHorizontal)->fY < SK_ScalarMax) { |
| addBottomT(currentPtr, lastPtr, currentHorizontal); |
| } |
| currentHorizontal = advanceHorizontal(currentHorizontal, bottom); |
| } |
| addIntersectingTs(currentPtr, lastPtr); |
| } |
| y = bottom; |
| currentPtr = advanceEdges(NULL, currentPtr, lastPtr, y); |
| } while (*currentPtr != &edgeSentinel); |
| // if a quadratic or cubic now has an intermediate T value, see if the Ts |
| // on either side cause the Y values to monotonically increase. If not, split |
| // the curve at the new T. |
| |
| // try an alternate approach which does not split curves or stitch edges |
| // (may still need adjustCoincident, though) |
| // the idea is to output non-intersecting contours, then figure out their |
| // respective winding contribution |
| // each contour will need to know whether it is CW or CCW, and then whether |
| // a ray from that contour hits any a contour that contains it. The ray can |
| // move to the left and then arbitrarily move up or down (as long as it never |
| // moves to the right) to find a reference sibling contour or containing |
| // contour. If the contour is part of an intersection, the companion contour |
| // that is part of the intersection can determine the containership. |
| if (builder.containsCurves()) { |
| currentPtr = edgeList.begin(); |
| SkTArray<InEdge> splits; |
| do { |
| (*currentPtr)->splitInflectionPts(splits); |
| } while (*++currentPtr != &edgeSentinel); |
| if (splits.count()) { |
| for (int index = 0; index < splits.count(); ++index) { |
| edges.push_back(splits[index]); |
| } |
| edgeList.reset(); |
| makeEdgeList(edges, edgeSentinel, edgeList); |
| } |
| } |
| dumpEdgeList(edgeList, edgeSentinel); |
| // walk the sorted edges from top to bottom, computing accumulated winding |
| SkTDArray<ActiveEdge> activeEdges; |
| OutEdgeBuilder outBuilder(asFill); |
| currentPtr = edgeList.begin(); |
| y = (*currentPtr)->fBounds.fTop; |
| do { |
| InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set |
| SkScalar bottom = findBottom(currentPtr, edgeList.end(), |
| &activeEdges, y, asFill, lastPtr); |
| if (lastPtr > currentPtr) { |
| bottom = computeInterceptBottom(activeEdges, y, bottom); |
| SkTDArray<ActiveEdge*> activeEdgeList; |
| sortHorizontal(activeEdges, activeEdgeList, y); |
| bottom = adjustCoincident(activeEdgeList, windingMask, y, bottom, |
| outBuilder); |
| stitchEdge(activeEdgeList, y, bottom, windingMask, asFill, outBuilder); |
| } |
| y = bottom; |
| // OPTIMIZATION: as edges expire, InEdge allocations could be released |
| currentPtr = advanceEdges(&activeEdges, currentPtr, lastPtr, y); |
| } while (*currentPtr != &edgeSentinel); |
| // assemble output path from string of pts, verbs |
| outBuilder.bridge(); |
| outBuilder.assemble(simple); |
| } |