CCPR: Rename GrCCPR* -> GrCC*

Also runs clang-format on the files that don't have special shader
builder styling.

Bug: skia:
Change-Id: I4a67569a7c8472acfb9200644c913844a92e3b2d
Reviewed-on: https://skia-review.googlesource.com/92083
Commit-Queue: Chris Dalton <csmartdalton@google.com>
Reviewed-by: Greg Daniel <egdaniel@google.com>
diff --git a/src/gpu/ccpr/GrCCPathProcessor.cpp b/src/gpu/ccpr/GrCCPathProcessor.cpp
new file mode 100644
index 0000000..66005f1
--- /dev/null
+++ b/src/gpu/ccpr/GrCCPathProcessor.cpp
@@ -0,0 +1,210 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrCCPathProcessor.h"
+
+#include "GrOnFlushResourceProvider.h"
+#include "GrTexture.h"
+#include "glsl/GrGLSLFragmentShaderBuilder.h"
+#include "glsl/GrGLSLGeometryProcessor.h"
+#include "glsl/GrGLSLProgramBuilder.h"
+#include "glsl/GrGLSLVarying.h"
+
+// Slightly undershoot an AA bloat radius of 0.5 so vertices that fall on integer boundaries don't
+// accidentally reach into neighboring path masks within the atlas.
+constexpr float kAABloatRadius = 0.491111f;
+
+// Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge
+// from the path's bounding box and one edge from its 45-degree bounding box. The below inputs
+// define a vertex by the two edges that need to be intersected. Normals point out of the octagon,
+// and the bounding boxes are sent in as instance attribs.
+static constexpr float kOctoEdgeNorms[8 * 4] = {
+    // bbox   // bbox45
+    -1, 0,    -1,+1,
+    -1, 0,    -1,-1,
+     0,-1,    -1,-1,
+     0,-1,    +1,-1,
+    +1, 0,    +1,-1,
+    +1, 0,    +1,+1,
+     0,+1,    +1,+1,
+     0,+1,    -1,+1,
+};
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey);
+
+sk_sp<const GrBuffer> GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) {
+    GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey);
+    return onFlushRP->findOrMakeStaticBuffer(kVertex_GrBufferType, sizeof(kOctoEdgeNorms),
+                                             kOctoEdgeNorms, gVertexBufferKey);
+}
+
+// Index buffer for the octagon defined above.
+static uint16_t kOctoIndices[GrCCPathProcessor::kPerInstanceIndexCount] = {
+    0, 4, 2,
+    0, 6, 4,
+    0, 2, 1,
+    2, 4, 3,
+    4, 6, 5,
+    6, 0, 7,
+};
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
+
+sk_sp<const GrBuffer> GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) {
+    GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
+    return onFlushRP->findOrMakeStaticBuffer(kIndex_GrBufferType, sizeof(kOctoIndices),
+                                             kOctoIndices, gIndexBufferKey);
+}
+
+GrCCPathProcessor::GrCCPathProcessor(GrResourceProvider* rp, sk_sp<GrTextureProxy> atlas,
+                                     SkPath::FillType fillType, const GrShaderCaps& shaderCaps)
+        : INHERITED(kGrCCPathProcessor_ClassID)
+        , fFillType(fillType)
+        , fAtlasAccess(std::move(atlas), GrSamplerState::Filter::kNearest,
+                       GrSamplerState::WrapMode::kClamp, kFragment_GrShaderFlag) {
+    this->addInstanceAttrib("devbounds", kFloat4_GrVertexAttribType);
+    this->addInstanceAttrib("devbounds45", kFloat4_GrVertexAttribType);
+    this->addInstanceAttrib("view_matrix", kFloat4_GrVertexAttribType);
+    this->addInstanceAttrib("view_translate", kFloat2_GrVertexAttribType);
+    this->addInstanceAttrib("atlas_offset", kShort2_GrVertexAttribType);
+    this->addInstanceAttrib("color", kUByte4_norm_GrVertexAttribType);
+
+    SkASSERT(offsetof(Instance, fDevBounds) ==
+             this->getInstanceAttrib(InstanceAttribs::kDevBounds).fOffsetInRecord);
+    SkASSERT(offsetof(Instance, fDevBounds45) ==
+             this->getInstanceAttrib(InstanceAttribs::kDevBounds45).fOffsetInRecord);
+    SkASSERT(offsetof(Instance, fViewMatrix) ==
+             this->getInstanceAttrib(InstanceAttribs::kViewMatrix).fOffsetInRecord);
+    SkASSERT(offsetof(Instance, fViewTranslate) ==
+             this->getInstanceAttrib(InstanceAttribs::kViewTranslate).fOffsetInRecord);
+    SkASSERT(offsetof(Instance, fAtlasOffset) ==
+             this->getInstanceAttrib(InstanceAttribs::kAtlasOffset).fOffsetInRecord);
+    SkASSERT(offsetof(Instance, fColor) ==
+             this->getInstanceAttrib(InstanceAttribs::kColor).fOffsetInRecord);
+    SkASSERT(sizeof(Instance) == this->getInstanceStride());
+
+    GR_STATIC_ASSERT(6 == kNumInstanceAttribs);
+
+    this->addVertexAttrib("edge_norms", kFloat4_GrVertexAttribType);
+
+    fAtlasAccess.instantiate(rp);
+    this->addTextureSampler(&fAtlasAccess);
+}
+
+void GrCCPathProcessor::getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const {
+    b->add32((fFillType << 16) | this->atlasProxy()->origin());
+}
+
+class GLSLPathProcessor : public GrGLSLGeometryProcessor {
+public:
+    void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
+
+private:
+    void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc,
+                 FPCoordTransformIter&& transformIter) override {
+        const GrCCPathProcessor& proc = primProc.cast<GrCCPathProcessor>();
+        pdman.set2f(fAtlasAdjustUniform, 1.0f / proc.atlas()->width(),
+                    1.0f / proc.atlas()->height());
+        this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
+    }
+
+    GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform;
+
+    typedef GrGLSLGeometryProcessor INHERITED;
+};
+
+GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const {
+    return new GLSLPathProcessor();
+}
+
+void GLSLPathProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
+    using InstanceAttribs = GrCCPathProcessor::InstanceAttribs;
+    const GrCCPathProcessor& proc = args.fGP.cast<GrCCPathProcessor>();
+    GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
+    GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
+
+    const char* atlasAdjust;
+    fAtlasAdjustUniform = uniHandler->addUniform(
+            kVertex_GrShaderFlag,
+            kFloat2_GrSLType, "atlas_adjust", &atlasAdjust);
+
+    varyingHandler->emitAttributes(proc);
+
+    GrGLSLVarying texcoord(kFloat2_GrSLType);
+    GrGLSLVarying color(kHalf4_GrSLType);
+    varyingHandler->addVarying("texcoord", &texcoord);
+    varyingHandler->addFlatPassThroughAttribute(&proc.getInstanceAttrib(InstanceAttribs::kColor),
+                                                args.fOutputColor);
+
+    // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to
+    // find an octagon that circumscribes the (bloated) path.
+    GrGLSLVertexBuilder* v = args.fVertBuilder;
+
+    // Each vertex is the intersection of one edge from devBounds and one from devBounds45.
+    // 'N' holds the normals to these edges as column vectors.
+    //
+    // NOTE: "float2x2(float4)" is valid and equivalent to "float2x2(float4.xy, float4.zw)",
+    // however Intel compilers crash when we use the former syntax in this shader.
+    v->codeAppendf("float2x2 N = float2x2(%s.xy, %s.zw);",
+                   proc.getEdgeNormsAttrib().fName, proc.getEdgeNormsAttrib().fName);
+
+    // N[0] is the normal for the edge we are intersecting from the regular bounding box, pointing
+    // out of the octagon.
+    v->codeAppendf("float2 refpt = (min(N[0].x, N[0].y) < 0) ? %s.xy : %s.zw;",
+                   proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName,
+                   proc.getInstanceAttrib(InstanceAttribs::kDevBounds).fName);
+    v->codeAppendf("refpt += N[0] * %f;", kAABloatRadius); // bloat for AA.
+
+    // N[1] is the normal for the edge we are intersecting from the 45-degree bounding box, pointing
+    // out of the octagon.
+    v->codeAppendf("float2 refpt45 = (N[1].x < 0) ? %s.xy : %s.zw;",
+                   proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName,
+                   proc.getInstanceAttrib(InstanceAttribs::kDevBounds45).fName);
+    v->codeAppendf("refpt45 *= float2x2(.5,.5,-.5,.5);"); // transform back to device space.
+    v->codeAppendf("refpt45 += N[1] * %f;", kAABloatRadius); // bloat for AA.
+
+    v->codeAppend ("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));");
+    v->codeAppendf("float2 octocoord = K * inverse(N);");
+
+    gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord");
+
+    // Convert to atlas coordinates in order to do our texture lookup.
+    v->codeAppendf("float2 atlascoord = octocoord + float2(%s);",
+                   proc.getInstanceAttrib(InstanceAttribs::kAtlasOffset).fName);
+    if (kTopLeft_GrSurfaceOrigin == proc.atlasProxy()->origin()) {
+        v->codeAppendf("%s = atlascoord * %s;", texcoord.vsOut(), atlasAdjust);
+    } else {
+        SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.atlasProxy()->origin());
+        v->codeAppendf("%s = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);",
+                       texcoord.vsOut(), atlasAdjust, atlasAdjust);
+    }
+
+    // Convert to path/local cordinates.
+    v->codeAppendf("float2x2 viewmatrix = float2x2(%s.xy, %s.zw);", // float2x2(float4) busts Intel.
+                   proc.getInstanceAttrib(InstanceAttribs::kViewMatrix).fName,
+                   proc.getInstanceAttrib(InstanceAttribs::kViewMatrix).fName);
+    v->codeAppendf("float2 pathcoord = inverse(viewmatrix) * (octocoord - %s);",
+                   proc.getInstanceAttrib(InstanceAttribs::kViewTranslate).fName);
+
+    this->emitTransforms(v, varyingHandler, uniHandler, GrShaderVar("pathcoord", kFloat2_GrSLType),
+                         args.fFPCoordTransformHandler);
+
+    // Fragment shader.
+    GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
+
+    f->codeAppend ("half coverage_count = ");
+    f->appendTextureLookup(args.fTexSamplers[0], texcoord.fsIn(), kFloat2_GrSLType);
+    f->codeAppend (".a;");
+
+    if (SkPath::kWinding_FillType == proc.fillType()) {
+        f->codeAppendf("%s = half4(min(abs(coverage_count), 1));", args.fOutputCoverage);
+    } else {
+        SkASSERT(SkPath::kEvenOdd_FillType == proc.fillType());
+        f->codeAppend ("half t = mod(abs(coverage_count), 2);");
+        f->codeAppendf("%s = half4(1 - abs(t - 1));", args.fOutputCoverage);
+    }
+}