| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrGLGpu.h" |
| #include "GrGLGLSL.h" |
| #include "GrGLStencilAttachment.h" |
| #include "GrGLTextureRenderTarget.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrPipeline.h" |
| #include "GrRenderTargetPriv.h" |
| #include "GrSurfacePriv.h" |
| #include "GrTexturePriv.h" |
| #include "GrTypes.h" |
| #include "GrVertices.h" |
| #include "builders/GrGLShaderStringBuilder.h" |
| #include "glsl/GrGLSLCaps.h" |
| #include "SkStrokeRec.h" |
| #include "SkTemplates.h" |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| #define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X) |
| |
| #define SKIP_CACHE_CHECK true |
| |
| #if GR_GL_CHECK_ALLOC_WITH_GET_ERROR |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface) |
| #else |
| #define CLEAR_ERROR_BEFORE_ALLOC(iface) |
| #define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call) |
| #define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR |
| #endif |
| |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| static const GrGLenum gXfermodeEquation2Blend[] = { |
| // Basic OpenGL blend equations. |
| GR_GL_FUNC_ADD, |
| GR_GL_FUNC_SUBTRACT, |
| GR_GL_FUNC_REVERSE_SUBTRACT, |
| |
| // GL_KHR_blend_equation_advanced. |
| GR_GL_SCREEN, |
| GR_GL_OVERLAY, |
| GR_GL_DARKEN, |
| GR_GL_LIGHTEN, |
| GR_GL_COLORDODGE, |
| GR_GL_COLORBURN, |
| GR_GL_HARDLIGHT, |
| GR_GL_SOFTLIGHT, |
| GR_GL_DIFFERENCE, |
| GR_GL_EXCLUSION, |
| GR_GL_MULTIPLY, |
| GR_GL_HSL_HUE, |
| GR_GL_HSL_SATURATION, |
| GR_GL_HSL_COLOR, |
| GR_GL_HSL_LUMINOSITY |
| }; |
| GR_STATIC_ASSERT(0 == kAdd_GrBlendEquation); |
| GR_STATIC_ASSERT(1 == kSubtract_GrBlendEquation); |
| GR_STATIC_ASSERT(2 == kReverseSubtract_GrBlendEquation); |
| GR_STATIC_ASSERT(3 == kScreen_GrBlendEquation); |
| GR_STATIC_ASSERT(4 == kOverlay_GrBlendEquation); |
| GR_STATIC_ASSERT(5 == kDarken_GrBlendEquation); |
| GR_STATIC_ASSERT(6 == kLighten_GrBlendEquation); |
| GR_STATIC_ASSERT(7 == kColorDodge_GrBlendEquation); |
| GR_STATIC_ASSERT(8 == kColorBurn_GrBlendEquation); |
| GR_STATIC_ASSERT(9 == kHardLight_GrBlendEquation); |
| GR_STATIC_ASSERT(10 == kSoftLight_GrBlendEquation); |
| GR_STATIC_ASSERT(11 == kDifference_GrBlendEquation); |
| GR_STATIC_ASSERT(12 == kExclusion_GrBlendEquation); |
| GR_STATIC_ASSERT(13 == kMultiply_GrBlendEquation); |
| GR_STATIC_ASSERT(14 == kHSLHue_GrBlendEquation); |
| GR_STATIC_ASSERT(15 == kHSLSaturation_GrBlendEquation); |
| GR_STATIC_ASSERT(16 == kHSLColor_GrBlendEquation); |
| GR_STATIC_ASSERT(17 == kHSLLuminosity_GrBlendEquation); |
| GR_STATIC_ASSERT(SK_ARRAY_COUNT(gXfermodeEquation2Blend) == kGrBlendEquationCnt); |
| |
| static const GrGLenum gXfermodeCoeff2Blend[] = { |
| GR_GL_ZERO, |
| GR_GL_ONE, |
| GR_GL_SRC_COLOR, |
| GR_GL_ONE_MINUS_SRC_COLOR, |
| GR_GL_DST_COLOR, |
| GR_GL_ONE_MINUS_DST_COLOR, |
| GR_GL_SRC_ALPHA, |
| GR_GL_ONE_MINUS_SRC_ALPHA, |
| GR_GL_DST_ALPHA, |
| GR_GL_ONE_MINUS_DST_ALPHA, |
| GR_GL_CONSTANT_COLOR, |
| GR_GL_ONE_MINUS_CONSTANT_COLOR, |
| GR_GL_CONSTANT_ALPHA, |
| GR_GL_ONE_MINUS_CONSTANT_ALPHA, |
| |
| // extended blend coeffs |
| GR_GL_SRC1_COLOR, |
| GR_GL_ONE_MINUS_SRC1_COLOR, |
| GR_GL_SRC1_ALPHA, |
| GR_GL_ONE_MINUS_SRC1_ALPHA, |
| }; |
| |
| bool GrGLGpu::BlendCoeffReferencesConstant(GrBlendCoeff coeff) { |
| static const bool gCoeffReferencesBlendConst[] = { |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| false, |
| true, |
| true, |
| true, |
| true, |
| |
| // extended blend coeffs |
| false, |
| false, |
| false, |
| false, |
| }; |
| return gCoeffReferencesBlendConst[coeff]; |
| GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gCoeffReferencesBlendConst)); |
| |
| GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff); |
| GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff); |
| GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff); |
| GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff); |
| GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff); |
| GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff); |
| GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff); |
| GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff); |
| GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff); |
| GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff); |
| GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff); |
| |
| GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff); |
| GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff); |
| GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff); |
| |
| // assertion for gXfermodeCoeff2Blend have to be in GrGpu scope |
| GR_STATIC_ASSERT(kGrBlendCoeffCnt == SK_ARRAY_COUNT(gXfermodeCoeff2Blend)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrGpu* GrGLGpu::Create(GrBackendContext backendContext, const GrContextOptions& options, |
| GrContext* context) { |
| SkAutoTUnref<const GrGLInterface> glInterface( |
| reinterpret_cast<const GrGLInterface*>(backendContext)); |
| if (!glInterface) { |
| glInterface.reset(GrGLDefaultInterface()); |
| } else { |
| glInterface->ref(); |
| } |
| if (!glInterface) { |
| return NULL; |
| } |
| GrGLContext* glContext = GrGLContext::Create(glInterface, options); |
| if (glContext) { |
| return new GrGLGpu(glContext, context); |
| } |
| return NULL; |
| } |
| |
| static bool gPrintStartupSpew; |
| |
| GrGLGpu::GrGLGpu(GrGLContext* ctx, GrContext* context) |
| : GrGpu(context) |
| , fGLContext(ctx) { |
| SkASSERT(ctx); |
| fCaps.reset(SkRef(ctx->caps())); |
| |
| fHWBoundTextureUniqueIDs.reset(this->glCaps().maxFragmentTextureUnits()); |
| |
| GrGLClearErr(this->glInterface()); |
| if (gPrintStartupSpew) { |
| const GrGLubyte* vendor; |
| const GrGLubyte* renderer; |
| const GrGLubyte* version; |
| GL_CALL_RET(vendor, GetString(GR_GL_VENDOR)); |
| GL_CALL_RET(renderer, GetString(GR_GL_RENDERER)); |
| GL_CALL_RET(version, GetString(GR_GL_VERSION)); |
| SkDebugf("------------------------- create GrGLGpu %p --------------\n", |
| this); |
| SkDebugf("------ VENDOR %s\n", vendor); |
| SkDebugf("------ RENDERER %s\n", renderer); |
| SkDebugf("------ VERSION %s\n", version); |
| SkDebugf("------ EXTENSIONS\n"); |
| this->glContext().extensions().print(); |
| SkDebugf("\n"); |
| SkDebugf("%s", this->glCaps().dump().c_str()); |
| } |
| |
| fProgramCache = new ProgramCache(this); |
| |
| SkASSERT(this->glCaps().maxVertexAttributes() >= GrGeometryProcessor::kMaxVertexAttribs); |
| |
| fLastSuccessfulStencilFmtIdx = 0; |
| fHWProgramID = 0; |
| fTempSrcFBOID = 0; |
| fTempDstFBOID = 0; |
| fStencilClearFBOID = 0; |
| |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| fPathRendering.reset(new GrGLPathRendering(this)); |
| } |
| |
| this->createCopyProgram(); |
| } |
| |
| GrGLGpu::~GrGLGpu() { |
| if (0 != fHWProgramID) { |
| // detach the current program so there is no confusion on OpenGL's part |
| // that we want it to be deleted |
| GL_CALL(UseProgram(0)); |
| } |
| |
| if (0 != fTempSrcFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fTempSrcFBOID)); |
| } |
| if (0 != fTempDstFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fTempDstFBOID)); |
| } |
| if (0 != fStencilClearFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &fStencilClearFBOID)); |
| } |
| |
| if (0 != fCopyProgram.fArrayBuffer) { |
| GL_CALL(DeleteBuffers(1, &fCopyProgram.fArrayBuffer)); |
| } |
| |
| if (0 != fCopyProgram.fProgram) { |
| GL_CALL(DeleteProgram(fCopyProgram.fProgram)); |
| } |
| |
| delete fProgramCache; |
| } |
| |
| void GrGLGpu::contextAbandoned() { |
| INHERITED::contextAbandoned(); |
| fProgramCache->abandon(); |
| fHWProgramID = 0; |
| fTempSrcFBOID = 0; |
| fTempDstFBOID = 0; |
| fStencilClearFBOID = 0; |
| fCopyProgram.fArrayBuffer = 0; |
| fCopyProgram.fProgram = 0; |
| if (this->glCaps().shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->abandonGpuResources(); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGLGpu::onResetContext(uint32_t resetBits) { |
| // we don't use the zb at all |
| if (resetBits & kMisc_GrGLBackendState) { |
| GL_CALL(Disable(GR_GL_DEPTH_TEST)); |
| GL_CALL(DepthMask(GR_GL_FALSE)); |
| |
| fHWDrawFace = GrPipelineBuilder::kInvalid_DrawFace; |
| fHWDitherEnabled = kUnknown_TriState; |
| |
| if (kGL_GrGLStandard == this->glStandard()) { |
| // Desktop-only state that we never change |
| if (!this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_POINT_SMOOTH)); |
| GL_CALL(Disable(GR_GL_LINE_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_SMOOTH)); |
| GL_CALL(Disable(GR_GL_POLYGON_STIPPLE)); |
| GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP)); |
| GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP)); |
| } |
| // The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a |
| // core profile. This seems like a bug since the core spec removes any mention of |
| // GL_ARB_imaging. |
| if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) { |
| GL_CALL(Disable(GR_GL_COLOR_TABLE)); |
| } |
| GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL)); |
| // Since ES doesn't support glPointSize at all we always use the VS to |
| // set the point size |
| GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE)); |
| |
| // We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't |
| // currently part of our gl interface. There are probably others as |
| // well. |
| } |
| |
| if (kGLES_GrGLStandard == this->glStandard() && |
| this->hasExtension("GL_ARM_shader_framebuffer_fetch")) { |
| // The arm extension requires specifically enabling MSAA fetching per sample. |
| // On some devices this may have a perf hit. Also multiple render targets are disabled |
| GL_CALL(Enable(GR_GL_FETCH_PER_SAMPLE_ARM)); |
| } |
| fHWWriteToColor = kUnknown_TriState; |
| // we only ever use lines in hairline mode |
| GL_CALL(LineWidth(1)); |
| } |
| |
| if (resetBits & kMSAAEnable_GrGLBackendState) { |
| fMSAAEnabled = kUnknown_TriState; |
| |
| // In mixed samples mode coverage modulation allows the coverage to be converted to |
| // "opacity", which can then be blended into the color buffer to accomplish antialiasing. |
| // Enable coverage modulation suitable for premultiplied alpha colors. |
| // This state has no effect when not rendering to a mixed sampled target. |
| if (this->glCaps().shaderCaps()->mixedSamplesSupport()) { |
| GL_CALL(CoverageModulation(GR_GL_RGBA)); |
| } |
| } |
| |
| fHWActiveTextureUnitIdx = -1; // invalid |
| |
| if (resetBits & kTextureBinding_GrGLBackendState) { |
| for (int s = 0; s < fHWBoundTextureUniqueIDs.count(); ++s) { |
| fHWBoundTextureUniqueIDs[s] = SK_InvalidUniqueID; |
| } |
| } |
| |
| if (resetBits & kBlend_GrGLBackendState) { |
| fHWBlendState.invalidate(); |
| } |
| |
| if (resetBits & kView_GrGLBackendState) { |
| fHWScissorSettings.invalidate(); |
| fHWViewport.invalidate(); |
| } |
| |
| if (resetBits & kStencil_GrGLBackendState) { |
| fHWStencilSettings.invalidate(); |
| fHWStencilTestEnabled = kUnknown_TriState; |
| } |
| |
| // Vertex |
| if (resetBits & kVertex_GrGLBackendState) { |
| fHWGeometryState.invalidate(); |
| } |
| |
| if (resetBits & kRenderTarget_GrGLBackendState) { |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| fHWSRGBFramebuffer = kUnknown_TriState; |
| } |
| |
| if (resetBits & kPathRendering_GrGLBackendState) { |
| if (this->caps()->shaderCaps()->pathRenderingSupport()) { |
| this->glPathRendering()->resetContext(); |
| } |
| } |
| |
| // we assume these values |
| if (resetBits & kPixelStore_GrGLBackendState) { |
| if (this->glCaps().unpackRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().packRowLengthSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (this->glCaps().unpackFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| if (this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE)); |
| } |
| } |
| |
| if (resetBits & kProgram_GrGLBackendState) { |
| fHWProgramID = 0; |
| } |
| } |
| |
| static GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) { |
| // By default, GrRenderTargets are GL's normal orientation so that they |
| // can be drawn to by the outside world without the client having |
| // to render upside down. |
| if (kDefault_GrSurfaceOrigin == origin) { |
| return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin; |
| } else { |
| return origin; |
| } |
| } |
| |
| GrTexture* GrGLGpu::onWrapBackendTexture(const GrBackendTextureDesc& desc, |
| GrWrapOwnership ownership) { |
| if (!this->configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) { |
| return NULL; |
| } |
| |
| if (0 == desc.fTextureHandle) { |
| return NULL; |
| } |
| |
| int maxSize = this->caps()->maxTextureSize(); |
| if (desc.fWidth > maxSize || desc.fHeight > maxSize) { |
| return NULL; |
| } |
| |
| GrGLTexture::IDDesc idDesc; |
| GrSurfaceDesc surfDesc; |
| |
| idDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle); |
| |
| switch (ownership) { |
| case kAdopt_GrWrapOwnership: |
| idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle; |
| break; |
| case kBorrow_GrWrapOwnership: |
| idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle; |
| break; |
| } |
| |
| // next line relies on GrBackendTextureDesc's flags matching GrTexture's |
| surfDesc.fFlags = (GrSurfaceFlags) desc.fFlags; |
| surfDesc.fWidth = desc.fWidth; |
| surfDesc.fHeight = desc.fHeight; |
| surfDesc.fConfig = desc.fConfig; |
| surfDesc.fSampleCnt = SkTMin(desc.fSampleCnt, this->caps()->maxSampleCount()); |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag); |
| // FIXME: this should be calling resolve_origin(), but Chrome code is currently |
| // assuming the old behaviour, which is that backend textures are always |
| // BottomLeft, even for non-RT's. Once Chrome is fixed, change this to: |
| // glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget); |
| if (kDefault_GrSurfaceOrigin == desc.fOrigin) { |
| surfDesc.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| } else { |
| surfDesc.fOrigin = desc.fOrigin; |
| } |
| |
| GrGLTexture* texture = NULL; |
| if (renderTarget) { |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| if (!this->createRenderTargetObjects(surfDesc, GrGpuResource::kUncached_LifeCycle, |
| idDesc.fTextureID, &rtIDDesc)) { |
| return NULL; |
| } |
| texture = new GrGLTextureRenderTarget(this, surfDesc, idDesc, rtIDDesc); |
| } else { |
| texture = new GrGLTexture(this, surfDesc, idDesc); |
| } |
| if (NULL == texture) { |
| return NULL; |
| } |
| |
| return texture; |
| } |
| |
| GrRenderTarget* GrGLGpu::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& wrapDesc, |
| GrWrapOwnership ownership) { |
| GrGLRenderTarget::IDDesc idDesc; |
| idDesc.fRTFBOID = static_cast<GrGLuint>(wrapDesc.fRenderTargetHandle); |
| idDesc.fMSColorRenderbufferID = 0; |
| idDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID; |
| switch (ownership) { |
| case kAdopt_GrWrapOwnership: |
| idDesc.fLifeCycle = GrGpuResource::kAdopted_LifeCycle; |
| break; |
| case kBorrow_GrWrapOwnership: |
| idDesc.fLifeCycle = GrGpuResource::kBorrowed_LifeCycle; |
| break; |
| } |
| idDesc.fSampleConfig = GrRenderTarget::kUnified_SampleConfig; |
| |
| GrSurfaceDesc desc; |
| desc.fConfig = wrapDesc.fConfig; |
| desc.fFlags = kCheckAllocation_GrSurfaceFlag | kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = wrapDesc.fWidth; |
| desc.fHeight = wrapDesc.fHeight; |
| desc.fSampleCnt = SkTMin(wrapDesc.fSampleCnt, this->caps()->maxSampleCount()); |
| desc.fOrigin = resolve_origin(wrapDesc.fOrigin, true); |
| |
| GrRenderTarget* tgt = new GrGLRenderTarget(this, desc, idDesc); |
| if (wrapDesc.fStencilBits) { |
| GrGLStencilAttachment::IDDesc sbDesc; |
| GrGLStencilAttachment::Format format; |
| format.fInternalFormat = GrGLStencilAttachment::kUnknownInternalFormat; |
| format.fPacked = false; |
| format.fStencilBits = wrapDesc.fStencilBits; |
| format.fTotalBits = wrapDesc.fStencilBits; |
| GrGLStencilAttachment* sb = new GrGLStencilAttachment( |
| this, sbDesc, desc.fWidth, desc.fHeight, desc.fSampleCnt, format); |
| tgt->renderTargetPriv().didAttachStencilAttachment(sb); |
| sb->unref(); |
| } |
| return tgt; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| bool GrGLGpu::onGetWritePixelsInfo(GrSurface* dstSurface, int width, int height, |
| size_t rowBytes, GrPixelConfig srcConfig, |
| DrawPreference* drawPreference, |
| WritePixelTempDrawInfo* tempDrawInfo) { |
| if (kIndex_8_GrPixelConfig == srcConfig || GrPixelConfigIsCompressed(dstSurface->config())) { |
| return false; |
| } |
| |
| // This subclass only allows writes to textures. If the dst is not a texture we have to draw |
| // into it. We could use glDrawPixels on GLs that have it, but we don't today. |
| if (!dstSurface->asTexture()) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| |
| if (GrPixelConfigIsSRGB(dstSurface->config()) != GrPixelConfigIsSRGB(srcConfig)) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| |
| tempDrawInfo->fSwapRAndB = false; |
| |
| // These settings we will always want if a temp draw is performed. Initially set the config |
| // to srcConfig, though that may be modified if we decide to do a R/G swap. |
| tempDrawInfo->fTempSurfaceDesc.fFlags = kNone_GrSurfaceFlags; |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; |
| tempDrawInfo->fTempSurfaceDesc.fWidth = width; |
| tempDrawInfo->fTempSurfaceDesc.fHeight = height; |
| tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; |
| tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. |
| |
| bool configsAreRBSwaps = GrPixelConfigSwapRAndB(srcConfig) == dstSurface->config(); |
| |
| if (configsAreRBSwaps) { |
| if (!this->caps()->isConfigTexturable(srcConfig)) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwapRAndB = true; |
| } else if (this->glCaps().rgba8888PixelsOpsAreSlow() && |
| kRGBA_8888_GrPixelConfig == srcConfig) { |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwapRAndB = true; |
| } else if (kGLES_GrGLStandard == this->glStandard() && |
| this->glCaps().bgraIsInternalFormat()) { |
| // The internal format and external formats must match texture uploads so we can't |
| // swizzle while uploading when BGRA is a distinct internal format. |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = dstSurface->config(); |
| tempDrawInfo->fSwapRAndB = true; |
| } |
| } |
| |
| if (!this->glCaps().unpackFlipYSupport() && |
| kBottomLeft_GrSurfaceOrigin == dstSurface->origin()) { |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onWritePixels(GrSurface* surface, |
| int left, int top, int width, int height, |
| GrPixelConfig config, const void* buffer, |
| size_t rowBytes) { |
| if (NULL == buffer) { |
| return false; |
| } |
| |
| GrGLTexture* glTex = static_cast<GrGLTexture*>(surface->asTexture()); |
| if (!glTex) { |
| return false; |
| } |
| |
| // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. |
| if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { |
| return false; |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID())); |
| |
| bool success = false; |
| if (GrPixelConfigIsCompressed(glTex->desc().fConfig)) { |
| // We check that config == desc.fConfig in GrGLGpu::canWriteTexturePixels() |
| SkASSERT(config == glTex->desc().fConfig); |
| success = this->uploadCompressedTexData(glTex->desc(), buffer, false, left, top, width, |
| height); |
| } else { |
| success = this->uploadTexData(glTex->desc(), false, left, top, width, height, config, |
| buffer, rowBytes); |
| } |
| |
| if (success) { |
| glTex->texturePriv().dirtyMipMaps(true); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline GrGLenum check_alloc_error(const GrSurfaceDesc& desc, |
| const GrGLInterface* interface) { |
| if (SkToBool(desc.fFlags & kCheckAllocation_GrSurfaceFlag)) { |
| return GR_GL_GET_ERROR(interface); |
| } else { |
| return CHECK_ALLOC_ERROR(interface); |
| } |
| } |
| |
| bool GrGLGpu::uploadTexData(const GrSurfaceDesc& desc, |
| bool isNewTexture, |
| int left, int top, int width, int height, |
| GrPixelConfig dataConfig, |
| const void* data, |
| size_t rowBytes) { |
| SkASSERT(data || isNewTexture); |
| |
| // If we're uploading compressed data then we should be using uploadCompressedTexData |
| SkASSERT(!GrPixelConfigIsCompressed(dataConfig)); |
| |
| size_t bpp = GrBytesPerPixel(dataConfig); |
| if (!GrSurfacePriv::AdjustWritePixelParams(desc.fWidth, desc.fHeight, bpp, &left, &top, |
| &width, &height, &data, &rowBytes)) { |
| return false; |
| } |
| size_t trimRowBytes = width * bpp; |
| |
| // in case we need a temporary, trimmed copy of the src pixels |
| SkAutoSMalloc<128 * 128> tempStorage; |
| |
| // We currently lazily create MIPMAPs when the we see a draw with |
| // GrTextureParams::kMipMap_FilterMode. Using texture storage requires that the |
| // MIP levels are all created when the texture is created. So for now we don't use |
| // texture storage. |
| bool useTexStorage = false && |
| isNewTexture && |
| this->glCaps().texStorageSupport(); |
| |
| if (useTexStorage && kGL_GrGLStandard == this->glStandard()) { |
| // 565 is not a sized internal format on desktop GL. So on desktop with |
| // 565 we always use an unsized internal format to let the system pick |
| // the best sized format to convert the 565 data to. Since TexStorage |
| // only allows sized internal formats we will instead use TexImage2D. |
| useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig; |
| } |
| |
| GrGLenum internalFormat = 0x0; // suppress warning |
| GrGLenum externalFormat = 0x0; // suppress warning |
| GrGLenum externalType = 0x0; // suppress warning |
| |
| // glTexStorage requires sized internal formats on both desktop and ES. ES2 requires an unsized |
| // format for glTexImage, unlike ES3 and desktop. |
| bool useSizedFormat = useTexStorage; |
| if (kGL_GrGLStandard == this->glStandard() || |
| (this->glVersion() >= GR_GL_VER(3, 0) && |
| // ES3 only works with sized BGRA8 format if "GL_APPLE_texture_format_BGRA8888" enabled |
| (kBGRA_8888_GrPixelConfig != dataConfig || !this->glCaps().bgraIsInternalFormat()))) { |
| useSizedFormat = true; |
| } |
| |
| if (!this->configToGLFormats(dataConfig, useSizedFormat, &internalFormat, |
| &externalFormat, &externalType)) { |
| return false; |
| } |
| |
| /* |
| * check whether to allocate a temporary buffer for flipping y or |
| * because our srcData has extra bytes past each row. If so, we need |
| * to trim those off here, since GL ES may not let us specify |
| * GL_UNPACK_ROW_LENGTH. |
| */ |
| bool restoreGLRowLength = false; |
| bool swFlipY = false; |
| bool glFlipY = false; |
| if (data) { |
| if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { |
| if (this->glCaps().unpackFlipYSupport()) { |
| glFlipY = true; |
| } else { |
| swFlipY = true; |
| } |
| } |
| if (this->glCaps().unpackRowLengthSupport() && !swFlipY) { |
| // can't use this for flipping, only non-neg values allowed. :( |
| if (rowBytes != trimRowBytes) { |
| GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength)); |
| restoreGLRowLength = true; |
| } |
| } else { |
| if (trimRowBytes != rowBytes || swFlipY) { |
| // copy data into our new storage, skipping the trailing bytes |
| size_t trimSize = height * trimRowBytes; |
| const char* src = (const char*)data; |
| if (swFlipY) { |
| src += (height - 1) * rowBytes; |
| } |
| char* dst = (char*)tempStorage.reset(trimSize); |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, trimRowBytes); |
| if (swFlipY) { |
| src -= rowBytes; |
| } else { |
| src += rowBytes; |
| } |
| dst += trimRowBytes; |
| } |
| // now point data to our copied version |
| data = tempStorage.get(); |
| } |
| } |
| if (glFlipY) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE)); |
| } |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, |
| static_cast<GrGLint>(GrUnpackAlignment(dataConfig)))); |
| } |
| bool succeeded = true; |
| if (isNewTexture && |
| 0 == left && 0 == top && |
| desc.fWidth == width && desc.fHeight == height) { |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| if (useTexStorage) { |
| // We never resize or change formats of textures. |
| GL_ALLOC_CALL(this->glInterface(), |
| TexStorage2D(GR_GL_TEXTURE_2D, |
| 1, // levels |
| internalFormat, |
| desc.fWidth, desc.fHeight)); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), |
| TexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| desc.fWidth, desc.fHeight, |
| 0, // border |
| externalFormat, externalType, |
| data)); |
| } |
| GrGLenum error = check_alloc_error(desc, this->glInterface()); |
| if (error != GR_GL_NO_ERROR) { |
| succeeded = false; |
| } else { |
| // if we have data and we used TexStorage to create the texture, we |
| // now upload with TexSubImage. |
| if (data && useTexStorage) { |
| GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| externalFormat, externalType, |
| data)); |
| } |
| } |
| } else { |
| if (swFlipY || glFlipY) { |
| top = desc.fHeight - (top + height); |
| } |
| GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| externalFormat, externalType, data)); |
| } |
| |
| if (restoreGLRowLength) { |
| SkASSERT(this->glCaps().unpackRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0)); |
| } |
| if (glFlipY) { |
| GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE)); |
| } |
| return succeeded; |
| } |
| |
| // TODO: This function is using a lot of wonky semantics like, if width == -1 |
| // then set width = desc.fWdith ... blah. A better way to do it might be to |
| // create a CompressedTexData struct that takes a desc/ptr and figures out |
| // the proper upload semantics. Then users can construct this function how they |
| // see fit if they want to go against the "standard" way to do it. |
| bool GrGLGpu::uploadCompressedTexData(const GrSurfaceDesc& desc, |
| const void* data, |
| bool isNewTexture, |
| int left, int top, int width, int height) { |
| SkASSERT(data || isNewTexture); |
| |
| // No support for software flip y, yet... |
| SkASSERT(kBottomLeft_GrSurfaceOrigin != desc.fOrigin); |
| |
| if (-1 == width) { |
| width = desc.fWidth; |
| } |
| #ifdef SK_DEBUG |
| else { |
| SkASSERT(width <= desc.fWidth); |
| } |
| #endif |
| |
| if (-1 == height) { |
| height = desc.fHeight; |
| } |
| #ifdef SK_DEBUG |
| else { |
| SkASSERT(height <= desc.fHeight); |
| } |
| #endif |
| |
| // Make sure that the width and height that we pass to OpenGL |
| // is a multiple of the block size. |
| size_t dataSize = GrCompressedFormatDataSize(desc.fConfig, width, height); |
| |
| // We only need the internal format for compressed 2D textures. |
| GrGLenum internalFormat = 0; |
| if (!this->configToGLFormats(desc.fConfig, false, &internalFormat, NULL, NULL)) { |
| return false; |
| } |
| |
| if (isNewTexture) { |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| GL_ALLOC_CALL(this->glInterface(), |
| CompressedTexImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| internalFormat, |
| width, height, |
| 0, // border |
| SkToInt(dataSize), |
| data)); |
| GrGLenum error = check_alloc_error(desc, this->glInterface()); |
| if (error != GR_GL_NO_ERROR) { |
| return false; |
| } |
| } else { |
| // Paletted textures can't be updated. |
| if (GR_GL_PALETTE8_RGBA8 == internalFormat) { |
| return false; |
| } |
| GL_CALL(CompressedTexSubImage2D(GR_GL_TEXTURE_2D, |
| 0, // level |
| left, top, |
| width, height, |
| internalFormat, |
| SkToInt(dataSize), |
| data)); |
| } |
| |
| return true; |
| } |
| |
| static bool renderbuffer_storage_msaa(const GrGLContext& ctx, |
| int sampleCount, |
| GrGLenum format, |
| int width, int height) { |
| CLEAR_ERROR_BEFORE_ALLOC(ctx.interface()); |
| SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.caps()->msFBOType()); |
| switch (ctx.caps()->msFBOType()) { |
| case GrGLCaps::kDesktop_ARB_MSFBOType: |
| case GrGLCaps::kDesktop_EXT_MSFBOType: |
| case GrGLCaps::kMixedSamples_MSFBOType: |
| case GrGLCaps::kES_3_0_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisample(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_Apple_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kES_EXT_MsToTexture_MSFBOType: |
| case GrGLCaps::kES_IMG_MsToTexture_MSFBOType: |
| GL_ALLOC_CALL(ctx.interface(), |
| RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER, |
| sampleCount, |
| format, |
| width, height)); |
| break; |
| case GrGLCaps::kNone_MSFBOType: |
| SkFAIL("Shouldn't be here if we don't support multisampled renderbuffers."); |
| break; |
| } |
| return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface())); |
| } |
| |
| bool GrGLGpu::createRenderTargetObjects(const GrSurfaceDesc& desc, |
| GrGpuResource::LifeCycle lifeCycle, |
| GrGLuint texID, |
| GrGLRenderTarget::IDDesc* idDesc) { |
| idDesc->fMSColorRenderbufferID = 0; |
| idDesc->fRTFBOID = 0; |
| idDesc->fTexFBOID = 0; |
| idDesc->fLifeCycle = lifeCycle; |
| idDesc->fSampleConfig = (GrGLCaps::kMixedSamples_MSFBOType == this->glCaps().msFBOType() && |
| desc.fSampleCnt > 0) ? GrRenderTarget::kStencil_SampleConfig : |
| GrRenderTarget::kUnified_SampleConfig; |
| |
| GrGLenum status; |
| |
| GrGLenum msColorFormat = 0; // suppress warning |
| |
| if (desc.fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) { |
| goto FAILED; |
| } |
| |
| GL_CALL(GenFramebuffers(1, &idDesc->fTexFBOID)); |
| if (!idDesc->fTexFBOID) { |
| goto FAILED; |
| } |
| |
| |
| // If we are using multisampling we will create two FBOS. We render to one and then resolve to |
| // the texture bound to the other. The exception is the IMG multisample extension. With this |
| // extension the texture is multisampled when rendered to and then auto-resolves it when it is |
| // rendered from. |
| if (desc.fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) { |
| GL_CALL(GenFramebuffers(1, &idDesc->fRTFBOID)); |
| GL_CALL(GenRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); |
| if (!idDesc->fRTFBOID || |
| !idDesc->fMSColorRenderbufferID || |
| !this->configToGLFormats(desc.fConfig, |
| // ES2 and ES3 require sized internal formats for rb storage. |
| kGLES_GrGLStandard == this->glStandard(), |
| &msColorFormat, |
| NULL, |
| NULL)) { |
| goto FAILED; |
| } |
| } else { |
| idDesc->fRTFBOID = idDesc->fTexFBOID; |
| } |
| |
| // below here we may bind the FBO |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| if (idDesc->fRTFBOID != idDesc->fTexFBOID) { |
| SkASSERT(desc.fSampleCnt > 0); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, idDesc->fMSColorRenderbufferID)); |
| if (!renderbuffer_storage_msaa(*fGLContext, |
| desc.fSampleCnt, |
| msColorFormat, |
| desc.fWidth, desc.fHeight)) { |
| goto FAILED; |
| } |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fRTFBOID)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, |
| idDesc->fMSColorRenderbufferID)); |
| if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || |
| !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); |
| } |
| } |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, idDesc->fTexFBOID)); |
| |
| if (this->glCaps().usesImplicitMSAAResolve() && desc.fSampleCnt > 0) { |
| GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, 0, desc.fSampleCnt)); |
| } else { |
| GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, 0)); |
| } |
| if ((desc.fFlags & kCheckAllocation_GrSurfaceFlag) || |
| !this->glCaps().isConfigVerifiedColorAttachment(desc.fConfig)) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| goto FAILED; |
| } |
| fGLContext->caps()->markConfigAsValidColorAttachment(desc.fConfig); |
| } |
| |
| return true; |
| |
| FAILED: |
| if (idDesc->fMSColorRenderbufferID) { |
| GL_CALL(DeleteRenderbuffers(1, &idDesc->fMSColorRenderbufferID)); |
| } |
| if (idDesc->fRTFBOID != idDesc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &idDesc->fRTFBOID)); |
| } |
| if (idDesc->fTexFBOID) { |
| GL_CALL(DeleteFramebuffers(1, &idDesc->fTexFBOID)); |
| } |
| return false; |
| } |
| |
| // good to set a break-point here to know when createTexture fails |
| static GrTexture* return_null_texture() { |
| // SkDEBUGFAIL("null texture"); |
| return NULL; |
| } |
| |
| #if 0 && defined(SK_DEBUG) |
| static size_t as_size_t(int x) { |
| return x; |
| } |
| #endif |
| |
| GrTexture* GrGLGpu::onCreateTexture(const GrSurfaceDesc& desc, |
| GrGpuResource::LifeCycle lifeCycle, |
| const void* srcData, size_t rowBytes) { |
| // We fail if the MSAA was requested and is not available. |
| if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) { |
| //SkDebugf("MSAA RT requested but not supported on this platform."); |
| return return_null_texture(); |
| } |
| |
| bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrSurfaceFlag); |
| |
| GrGLTexture::IDDesc idDesc; |
| GL_CALL(GenTextures(1, &idDesc.fTextureID)); |
| idDesc.fLifeCycle = lifeCycle; |
| |
| if (!idDesc.fTextureID) { |
| return return_null_texture(); |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, idDesc.fTextureID)); |
| |
| if (renderTarget && this->glCaps().textureUsageSupport()) { |
| // provides a hint about how this texture will be used |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_USAGE, |
| GR_GL_FRAMEBUFFER_ATTACHMENT)); |
| } |
| |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTexture::TexParams initialTexParams; |
| // we only set a subset here so invalidate first |
| initialTexParams.invalidate(); |
| initialTexParams.fMinFilter = GR_GL_NEAREST; |
| initialTexParams.fMagFilter = GR_GL_NEAREST; |
| initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| initialTexParams.fMagFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| initialTexParams.fMinFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| initialTexParams.fWrapS)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| initialTexParams.fWrapT)); |
| if (!this->uploadTexData(desc, true, 0, 0, |
| desc.fWidth, desc.fHeight, |
| desc.fConfig, srcData, rowBytes)) { |
| GL_CALL(DeleteTextures(1, &idDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| if (renderTarget) { |
| // unbind the texture from the texture unit before binding it to the frame buffer |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0)); |
| GrGLRenderTarget::IDDesc rtIDDesc; |
| |
| if (!this->createRenderTargetObjects(desc, lifeCycle, idDesc.fTextureID, &rtIDDesc)) { |
| GL_CALL(DeleteTextures(1, &idDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| tex = new GrGLTextureRenderTarget(this, desc, idDesc, rtIDDesc); |
| } else { |
| tex = new GrGLTexture(this, desc, idDesc); |
| } |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| SkDebugf("--- new texture [%d] size=(%d %d) config=%d\n", |
| glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| GrTexture* GrGLGpu::onCreateCompressedTexture(const GrSurfaceDesc& desc, |
| GrGpuResource::LifeCycle lifeCycle, |
| const void* srcData) { |
| // Make sure that we're not flipping Y. |
| if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) { |
| return return_null_texture(); |
| } |
| |
| GrGLTexture::IDDesc idDesc; |
| GL_CALL(GenTextures(1, &idDesc.fTextureID)); |
| idDesc.fLifeCycle = lifeCycle; |
| |
| if (!idDesc.fTextureID) { |
| return return_null_texture(); |
| } |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, idDesc.fTextureID)); |
| |
| // Some drivers like to know filter/wrap before seeing glTexImage2D. Some |
| // drivers have a bug where an FBO won't be complete if it includes a |
| // texture that is not mipmap complete (considering the filter in use). |
| GrGLTexture::TexParams initialTexParams; |
| // we only set a subset here so invalidate first |
| initialTexParams.invalidate(); |
| initialTexParams.fMinFilter = GR_GL_NEAREST; |
| initialTexParams.fMagFilter = GR_GL_NEAREST; |
| initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE; |
| initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| initialTexParams.fMagFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| initialTexParams.fMinFilter)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| initialTexParams.fWrapS)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| initialTexParams.fWrapT)); |
| |
| if (!this->uploadCompressedTexData(desc, srcData)) { |
| GL_CALL(DeleteTextures(1, &idDesc.fTextureID)); |
| return return_null_texture(); |
| } |
| |
| GrGLTexture* tex; |
| tex = new GrGLTexture(this, desc, idDesc); |
| tex->setCachedTexParams(initialTexParams, this->getResetTimestamp()); |
| #ifdef TRACE_TEXTURE_CREATION |
| SkDebugf("--- new compressed texture [%d] size=(%d %d) config=%d\n", |
| glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig); |
| #endif |
| return tex; |
| } |
| |
| namespace { |
| |
| const GrGLuint kUnknownBitCount = GrGLStencilAttachment::kUnknownBitCount; |
| |
| void inline get_stencil_rb_sizes(const GrGLInterface* gl, |
| GrGLStencilAttachment::Format* format) { |
| |
| // we shouldn't ever know one size and not the other |
| SkASSERT((kUnknownBitCount == format->fStencilBits) == |
| (kUnknownBitCount == format->fTotalBits)); |
| if (kUnknownBitCount == format->fStencilBits) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_STENCIL_SIZE, |
| (GrGLint*)&format->fStencilBits); |
| if (format->fPacked) { |
| GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER, |
| GR_GL_RENDERBUFFER_DEPTH_SIZE, |
| (GrGLint*)&format->fTotalBits); |
| format->fTotalBits += format->fStencilBits; |
| } else { |
| format->fTotalBits = format->fStencilBits; |
| } |
| } |
| } |
| } |
| |
| bool GrGLGpu::createStencilAttachmentForRenderTarget(GrRenderTarget* rt, int width, int height) { |
| // All internally created RTs are also textures. We don't create |
| // SBs for a client's standalone RT (that is a RT that isn't also a texture). |
| SkASSERT(rt->asTexture()); |
| SkASSERT(width >= rt->width()); |
| SkASSERT(height >= rt->height()); |
| |
| int samples = rt->numStencilSamples(); |
| GrGLStencilAttachment::IDDesc sbDesc; |
| |
| int stencilFmtCnt = this->glCaps().stencilFormats().count(); |
| for (int i = 0; i < stencilFmtCnt; ++i) { |
| if (!sbDesc.fRenderbufferID) { |
| GL_CALL(GenRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| } |
| if (!sbDesc.fRenderbufferID) { |
| return false; |
| } |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); |
| // we start with the last stencil format that succeeded in hopes |
| // that we won't go through this loop more than once after the |
| // first (painful) stencil creation. |
| int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt; |
| const GrGLCaps::StencilFormat& sFmt = this->glCaps().stencilFormats()[sIdx]; |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // we do this "if" so that we don't call the multisample |
| // version on a GL that doesn't have an MSAA extension. |
| bool created; |
| if (samples > 0) { |
| created = renderbuffer_storage_msaa(*fGLContext, |
| samples, |
| sFmt.fInternalFormat, |
| width, height); |
| } else { |
| GL_ALLOC_CALL(this->glInterface(), RenderbufferStorage(GR_GL_RENDERBUFFER, |
| sFmt.fInternalFormat, |
| width, height)); |
| created = (GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface())); |
| } |
| if (created) { |
| fStats.incStencilAttachmentCreates(); |
| // After sized formats we attempt an unsized format and take |
| // whatever sizes GL gives us. In that case we query for the size. |
| GrGLStencilAttachment::Format format = sFmt; |
| get_stencil_rb_sizes(this->glInterface(), &format); |
| SkAutoTUnref<GrGLStencilAttachment> sb( |
| new GrGLStencilAttachment(this, sbDesc, width, height, samples, format)); |
| if (this->attachStencilAttachmentToRenderTarget(sb, rt)) { |
| fLastSuccessfulStencilFmtIdx = sIdx; |
| rt->renderTargetPriv().didAttachStencilAttachment(sb); |
| // This work around is currently breaking on windows 7 hd2000 bot when we bind a color buffer |
| #if 0 |
| // Clear the stencil buffer. We use a special purpose FBO for this so that the |
| // entire stencil buffer is cleared, even if it is attached to an FBO with a |
| // smaller color target. |
| if (0 == fStencilClearFBOID) { |
| GL_CALL(GenFramebuffers(1, &fStencilClearFBOID)); |
| } |
| |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fStencilClearFBOID)); |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| fStats.incRenderTargetBinds(); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); |
| if (sFmt.fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, sbDesc.fRenderbufferID)); |
| } |
| |
| GL_CALL(ClearStencil(0)); |
| // Many GL implementations seem to have trouble with clearing an FBO with only |
| // a stencil buffer. |
| GrGLuint tempRB; |
| GL_CALL(GenRenderbuffers(1, &tempRB)); |
| GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, tempRB)); |
| if (samples > 0) { |
| renderbuffer_storage_msaa(fGLContext, samples, GR_GL_RGBA8, width, height); |
| } else { |
| GL_CALL(RenderbufferStorage(GR_GL_RENDERBUFFER, GR_GL_RGBA8, width, height)); |
| } |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, tempRB)); |
| |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(DeleteRenderbuffers(1, &tempRB)); |
| |
| // Unbind the SB from the FBO so that we don't keep it alive. |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (sFmt.fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| #endif |
| return true; |
| } |
| // Remove the scratch key from this resource so we don't grab it from the cache ever |
| // again. |
| sb->resourcePriv().removeScratchKey(); |
| // Set this to 0 since we handed the valid ID off to the failed stencil buffer resource. |
| sbDesc.fRenderbufferID = 0; |
| } |
| } |
| GL_CALL(DeleteRenderbuffers(1, &sbDesc.fRenderbufferID)); |
| return false; |
| } |
| |
| bool GrGLGpu::attachStencilAttachmentToRenderTarget(GrStencilAttachment* sb, GrRenderTarget* rt) { |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt); |
| |
| GrGLuint fbo = glrt->renderFBOID(); |
| |
| if (NULL == sb) { |
| if (rt->renderTargetPriv().getStencilAttachment()) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| #ifdef SK_DEBUG |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| SkASSERT(GR_GL_FRAMEBUFFER_COMPLETE == status); |
| #endif |
| } |
| return true; |
| } else { |
| GrGLStencilAttachment* glsb = static_cast<GrGLStencilAttachment*>(sb); |
| GrGLuint rb = glsb->renderbufferID(); |
| |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo)); |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, rb)); |
| if (glsb->format().fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, rb)); |
| } else { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| |
| GrGLenum status; |
| if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) { |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_STENCIL_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| if (glsb->format().fPacked) { |
| GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER, |
| GR_GL_DEPTH_ATTACHMENT, |
| GR_GL_RENDERBUFFER, 0)); |
| } |
| return false; |
| } else { |
| fGLContext->caps()->markColorConfigAndStencilFormatAsVerified( |
| rt->config(), |
| glsb->format()); |
| } |
| } |
| return true; |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrVertexBuffer* GrGLGpu::onCreateVertexBuffer(size_t size, bool dynamic) { |
| GrGLVertexBuffer::Desc desc; |
| desc.fDynamic = dynamic; |
| desc.fSizeInBytes = size; |
| |
| if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { |
| desc.fID = 0; |
| GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, desc); |
| return vertexBuffer; |
| } else { |
| GL_CALL(GenBuffers(1, &desc.fID)); |
| if (desc.fID) { |
| fHWGeometryState.setVertexBufferID(this, desc.fID); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // make sure driver can allocate memory for this buffer |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ARRAY_BUFFER, |
| (GrGLsizeiptr) desc.fSizeInBytes, |
| NULL, // data ptr |
| desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); |
| if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteBuffers(1, &desc.fID)); |
| this->notifyVertexBufferDelete(desc.fID); |
| return NULL; |
| } |
| GrGLVertexBuffer* vertexBuffer = new GrGLVertexBuffer(this, desc); |
| return vertexBuffer; |
| } |
| return NULL; |
| } |
| } |
| |
| GrIndexBuffer* GrGLGpu::onCreateIndexBuffer(size_t size, bool dynamic) { |
| GrGLIndexBuffer::Desc desc; |
| desc.fDynamic = dynamic; |
| desc.fSizeInBytes = size; |
| |
| if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) { |
| desc.fID = 0; |
| GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, desc); |
| return indexBuffer; |
| } else { |
| GL_CALL(GenBuffers(1, &desc.fID)); |
| if (desc.fID) { |
| fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID); |
| CLEAR_ERROR_BEFORE_ALLOC(this->glInterface()); |
| // make sure driver can allocate memory for this buffer |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ELEMENT_ARRAY_BUFFER, |
| (GrGLsizeiptr) desc.fSizeInBytes, |
| NULL, // data ptr |
| desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW)); |
| if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) { |
| GL_CALL(DeleteBuffers(1, &desc.fID)); |
| this->notifyIndexBufferDelete(desc.fID); |
| return NULL; |
| } |
| GrIndexBuffer* indexBuffer = new GrGLIndexBuffer(this, desc); |
| return indexBuffer; |
| } |
| return NULL; |
| } |
| } |
| |
| void GrGLGpu::flushScissor(const GrScissorState& scissorState, |
| const GrGLIRect& rtViewport, |
| GrSurfaceOrigin rtOrigin) { |
| if (scissorState.enabled()) { |
| GrGLIRect scissor; |
| scissor.setRelativeTo(rtViewport, |
| scissorState.rect().fLeft, |
| scissorState.rect().fTop, |
| scissorState.rect().width(), |
| scissorState.rect().height(), |
| rtOrigin); |
| // if the scissor fully contains the viewport then we fall through and |
| // disable the scissor test. |
| if (!scissor.contains(rtViewport)) { |
| if (fHWScissorSettings.fRect != scissor) { |
| scissor.pushToGLScissor(this->glInterface()); |
| fHWScissorSettings.fRect = scissor; |
| } |
| if (kYes_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Enable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kYes_TriState; |
| } |
| return; |
| } |
| } |
| |
| // See fall through note above |
| this->disableScissor(); |
| } |
| |
| bool GrGLGpu::flushGLState(const DrawArgs& args) { |
| GrXferProcessor::BlendInfo blendInfo; |
| const GrPipeline& pipeline = *args.fPipeline; |
| args.fPipeline->getXferProcessor()->getBlendInfo(&blendInfo); |
| |
| this->flushDither(pipeline.isDitherState()); |
| this->flushColorWrite(blendInfo.fWriteColor); |
| this->flushDrawFace(pipeline.getDrawFace()); |
| |
| SkAutoTUnref<GrGLProgram> program(fProgramCache->refProgram(args)); |
| if (!program) { |
| GrCapsDebugf(this->caps(), "Failed to create program!\n"); |
| return false; |
| } |
| |
| GrGLuint programID = program->programID(); |
| if (fHWProgramID != programID) { |
| GL_CALL(UseProgram(programID)); |
| fHWProgramID = programID; |
| } |
| |
| if (blendInfo.fWriteColor) { |
| this->flushBlend(blendInfo); |
| } |
| |
| SkSTArray<8, const GrTextureAccess*> textureAccesses; |
| program->setData(*args.fPrimitiveProcessor, pipeline, *args.fBatchTracker, &textureAccesses); |
| |
| int numTextureAccesses = textureAccesses.count(); |
| for (int i = 0; i < numTextureAccesses; i++) { |
| this->bindTexture(i, textureAccesses[i]->getParams(), |
| static_cast<GrGLTexture*>(textureAccesses[i]->getTexture())); |
| } |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(pipeline.getRenderTarget()); |
| this->flushStencil(pipeline.getStencil()); |
| this->flushScissor(pipeline.getScissorState(), glRT->getViewport(), glRT->origin()); |
| this->flushHWAAState(glRT, pipeline.isHWAntialiasState()); |
| |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(glRT, NULL); |
| |
| return true; |
| } |
| |
| void GrGLGpu::setupGeometry(const GrPrimitiveProcessor& primProc, |
| const GrNonInstancedVertices& vertices, |
| size_t* indexOffsetInBytes) { |
| GrGLVertexBuffer* vbuf; |
| vbuf = (GrGLVertexBuffer*) vertices.vertexBuffer(); |
| |
| SkASSERT(vbuf); |
| SkASSERT(!vbuf->isMapped()); |
| |
| GrGLIndexBuffer* ibuf = NULL; |
| if (vertices.isIndexed()) { |
| SkASSERT(indexOffsetInBytes); |
| |
| *indexOffsetInBytes = 0; |
| ibuf = (GrGLIndexBuffer*)vertices.indexBuffer(); |
| |
| SkASSERT(ibuf); |
| SkASSERT(!ibuf->isMapped()); |
| *indexOffsetInBytes += ibuf->baseOffset(); |
| } |
| GrGLAttribArrayState* attribState = |
| fHWGeometryState.bindArrayAndBuffersToDraw(this, vbuf, ibuf); |
| |
| int vaCount = primProc.numAttribs(); |
| if (vaCount > 0) { |
| |
| GrGLsizei stride = static_cast<GrGLsizei>(primProc.getVertexStride()); |
| |
| size_t vertexOffsetInBytes = stride * vertices.startVertex(); |
| |
| vertexOffsetInBytes += vbuf->baseOffset(); |
| |
| uint32_t usedAttribArraysMask = 0; |
| size_t offset = 0; |
| |
| for (int attribIndex = 0; attribIndex < vaCount; attribIndex++) { |
| const GrGeometryProcessor::Attribute& attrib = primProc.getAttrib(attribIndex); |
| usedAttribArraysMask |= (1 << attribIndex); |
| GrVertexAttribType attribType = attrib.fType; |
| attribState->set(this, |
| attribIndex, |
| vbuf->bufferID(), |
| GrGLAttribTypeToLayout(attribType).fCount, |
| GrGLAttribTypeToLayout(attribType).fType, |
| GrGLAttribTypeToLayout(attribType).fNormalized, |
| stride, |
| reinterpret_cast<GrGLvoid*>(vertexOffsetInBytes + offset)); |
| offset += attrib.fOffset; |
| } |
| attribState->disableUnusedArrays(this, usedAttribArraysMask); |
| } |
| } |
| |
| void GrGLGpu::buildProgramDesc(GrProgramDesc* desc, |
| const GrPrimitiveProcessor& primProc, |
| const GrPipeline& pipeline, |
| const GrBatchTracker& batchTracker) const { |
| if (!GrGLProgramDescBuilder::Build(desc, primProc, pipeline, this, batchTracker)) { |
| SkDEBUGFAIL("Failed to generate GL program descriptor"); |
| } |
| } |
| |
| void GrGLGpu::disableScissor() { |
| if (kNo_TriState != fHWScissorSettings.fEnabled) { |
| GL_CALL(Disable(GR_GL_SCISSOR_TEST)); |
| fHWScissorSettings.fEnabled = kNo_TriState; |
| return; |
| } |
| } |
| |
| void GrGLGpu::onClear(GrRenderTarget* target, const SkIRect& rect, GrColor color) { |
| // parent class should never let us get here with no RT |
| SkASSERT(target); |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| |
| this->flushRenderTarget(glRT, &rect); |
| GrScissorState scissorState; |
| scissorState.set(rect); |
| this->flushScissor(scissorState, glRT->getViewport(), glRT->origin()); |
| |
| GrGLfloat r, g, b, a; |
| static const GrGLfloat scale255 = 1.f / 255.f; |
| a = GrColorUnpackA(color) * scale255; |
| GrGLfloat scaleRGB = scale255; |
| r = GrColorUnpackR(color) * scaleRGB; |
| g = GrColorUnpackG(color) * scaleRGB; |
| b = GrColorUnpackB(color) * scaleRGB; |
| |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| GL_CALL(ClearColor(r, g, b, a)); |
| GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT)); |
| } |
| |
| void GrGLGpu::discard(GrRenderTarget* renderTarget) { |
| SkASSERT(renderTarget); |
| if (!this->caps()->discardRenderTargetSupport()) { |
| return; |
| } |
| |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(renderTarget); |
| if (renderTarget->getUniqueID() != fHWBoundRenderTargetUniqueID) { |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, glRT->renderFBOID())); |
| } |
| switch (this->glCaps().invalidateFBType()) { |
| case GrGLCaps::kNone_InvalidateFBType: |
| SkFAIL("Should never get here."); |
| break; |
| case GrGLCaps::kInvalidate_InvalidateFBType: |
| if (0 == glRT->renderFBOID()) { |
| // When rendering to the default framebuffer the legal values for attachments |
| // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment |
| // types. |
| static const GrGLenum attachments[] = { GR_GL_COLOR }; |
| GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } else { |
| static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; |
| GL_CALL(InvalidateFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } |
| break; |
| case GrGLCaps::kDiscard_InvalidateFBType: { |
| if (0 == glRT->renderFBOID()) { |
| // When rendering to the default framebuffer the legal values for attachments |
| // are GL_COLOR, GL_DEPTH, GL_STENCIL, ... rather than the various FBO attachment |
| // types. See glDiscardFramebuffer() spec. |
| static const GrGLenum attachments[] = { GR_GL_COLOR }; |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } else { |
| static const GrGLenum attachments[] = { GR_GL_COLOR_ATTACHMENT0 }; |
| GL_CALL(DiscardFramebuffer(GR_GL_FRAMEBUFFER, SK_ARRAY_COUNT(attachments), |
| attachments)); |
| } |
| break; |
| } |
| } |
| renderTarget->flagAsResolved(); |
| } |
| |
| void GrGLGpu::clearStencil(GrRenderTarget* target) { |
| if (NULL == target) { |
| return; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); |
| |
| this->disableScissor(); |
| |
| GL_CALL(StencilMask(0xffffffff)); |
| GL_CALL(ClearStencil(0)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| void GrGLGpu::onClearStencilClip(GrRenderTarget* target, const SkIRect& rect, bool insideClip) { |
| SkASSERT(target); |
| |
| GrStencilAttachment* sb = target->renderTargetPriv().getStencilAttachment(); |
| // this should only be called internally when we know we have a |
| // stencil buffer. |
| SkASSERT(sb); |
| GrGLint stencilBitCount = sb->bits(); |
| #if 0 |
| SkASSERT(stencilBitCount > 0); |
| GrGLint clipStencilMask = (1 << (stencilBitCount - 1)); |
| #else |
| // we could just clear the clip bit but when we go through |
| // ANGLE a partial stencil mask will cause clears to be |
| // turned into draws. Our contract on GrDrawTarget says that |
| // changing the clip between stencil passes may or may not |
| // zero the client's clip bits. So we just clear the whole thing. |
| static const GrGLint clipStencilMask = ~0; |
| #endif |
| GrGLint value; |
| if (insideClip) { |
| value = (1 << (stencilBitCount - 1)); |
| } else { |
| value = 0; |
| } |
| GrGLRenderTarget* glRT = static_cast<GrGLRenderTarget*>(target); |
| this->flushRenderTarget(glRT, &SkIRect::EmptyIRect()); |
| |
| GrScissorState scissorState; |
| scissorState.set(rect); |
| this->flushScissor(scissorState, glRT->getViewport(), glRT->origin()); |
| |
| GL_CALL(StencilMask((uint32_t) clipStencilMask)); |
| GL_CALL(ClearStencil(value)); |
| GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT)); |
| fHWStencilSettings.invalidate(); |
| } |
| |
| static bool read_pixels_pays_for_y_flip(GrRenderTarget* renderTarget, const GrGLCaps& caps, |
| int width, int height, GrPixelConfig config, |
| size_t rowBytes) { |
| // If this render target is already TopLeft, we don't need to flip. |
| if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) { |
| return false; |
| } |
| |
| // If the read is really small or smaller than the min texture size, don't force a draw. |
| int minSize = SkTMax(32, caps.minTextureSize()); |
| if (width < minSize || height < minSize) { |
| return false; |
| } |
| |
| // if GL can do the flip then we'll never pay for it. |
| if (caps.packFlipYSupport()) { |
| return false; |
| } |
| |
| // If we have to do memcpy to handle non-trim rowBytes then we |
| // get the flip for free. Otherwise it costs. |
| // Note that we're assuming that 0 rowBytes has already been handled and that the width has been |
| // clipped. |
| return caps.packRowLengthSupport() || GrBytesPerPixel(config) * width == rowBytes; |
| } |
| |
| bool GrGLGpu::onGetReadPixelsInfo(GrSurface* srcSurface, int width, int height, size_t rowBytes, |
| GrPixelConfig readConfig, DrawPreference* drawPreference, |
| ReadPixelTempDrawInfo* tempDrawInfo) { |
| // This subclass can only read pixels from a render target. We could use glTexSubImage2D on |
| // GL versions that support it but we don't today. |
| if (!srcSurface->asRenderTarget()) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| |
| if (GrPixelConfigIsSRGB(srcSurface->config()) != GrPixelConfigIsSRGB(readConfig)) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| |
| tempDrawInfo->fSwapRAndB = false; |
| |
| // These settings we will always want if a temp draw is performed. The config is set below |
| // depending on whether we want to do a R/B swap or not. |
| tempDrawInfo->fTempSurfaceDesc.fFlags = kRenderTarget_GrSurfaceFlag; |
| tempDrawInfo->fTempSurfaceDesc.fWidth = width; |
| tempDrawInfo->fTempSurfaceDesc.fHeight = height; |
| tempDrawInfo->fTempSurfaceDesc.fSampleCnt = 0; |
| tempDrawInfo->fTempSurfaceDesc.fOrigin = kTopLeft_GrSurfaceOrigin; // no CPU y-flip for TL. |
| tempDrawInfo->fUseExactScratch = this->glCaps().partialFBOReadIsSlow() && |
| width >= this->caps()->minTextureSize() && |
| height >= this->caps()->minTextureSize(); |
| |
| // Start off assuming that any temp draw should be to the readConfig, then check if that will |
| // be inefficient. |
| GrPixelConfig srcConfig = srcSurface->config(); |
| tempDrawInfo->fTempSurfaceDesc.fConfig = readConfig; |
| |
| if (this->glCaps().rgba8888PixelsOpsAreSlow() && kRGBA_8888_GrPixelConfig == readConfig) { |
| tempDrawInfo->fTempSurfaceDesc.fConfig = kBGRA_8888_GrPixelConfig; |
| tempDrawInfo->fSwapRAndB = true; |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } else if (kMesa_GrGLDriver == this->glContext().driver() && |
| GrBytesPerPixel(readConfig) == 4 && |
| GrPixelConfigSwapRAndB(readConfig) == srcConfig) { |
| // Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa. |
| // Better to do a draw with a R/B swap and then read as the original config. |
| tempDrawInfo->fTempSurfaceDesc.fConfig = srcConfig; |
| tempDrawInfo->fSwapRAndB = true; |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } else if (readConfig == kBGRA_8888_GrPixelConfig && |
| !this->glCaps().readPixelsSupported(this->glInterface(), GR_GL_BGRA, |
| GR_GL_UNSIGNED_BYTE, srcConfig)) { |
| tempDrawInfo->fTempSurfaceDesc.fConfig = kRGBA_8888_GrPixelConfig; |
| tempDrawInfo->fSwapRAndB = true; |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } |
| |
| GrRenderTarget* srcAsRT = srcSurface->asRenderTarget(); |
| if (!srcAsRT) { |
| ElevateDrawPreference(drawPreference, kRequireDraw_DrawPreference); |
| } else if (read_pixels_pays_for_y_flip(srcAsRT, this->glCaps(), width, height, readConfig, |
| rowBytes)) { |
| ElevateDrawPreference(drawPreference, kGpuPrefersDraw_DrawPreference); |
| } |
| |
| return true; |
| } |
| |
| bool GrGLGpu::onReadPixels(GrSurface* surface, |
| int left, int top, |
| int width, int height, |
| GrPixelConfig config, |
| void* buffer, |
| size_t rowBytes) { |
| SkASSERT(surface); |
| |
| GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (!tgt) { |
| return false; |
| } |
| |
| // OpenGL doesn't do sRGB <-> linear conversions when reading and writing pixels. |
| if (GrPixelConfigIsSRGB(surface->config()) != GrPixelConfigIsSRGB(config)) { |
| return false; |
| } |
| |
| GrGLenum format = 0; |
| GrGLenum type = 0; |
| bool flipY = kBottomLeft_GrSurfaceOrigin == surface->origin(); |
| if (!this->configToGLFormats(config, false, NULL, &format, &type)) { |
| return false; |
| } |
| |
| // glReadPixels does not allow GL_SRGB_ALPHA. Instead use GL_RGBA. This will not trigger a |
| // conversion when the src is srgb. |
| if (GR_GL_SRGB_ALPHA == format) { |
| format = GR_GL_RGBA; |
| } |
| |
| // resolve the render target if necessary |
| switch (tgt->getResolveType()) { |
| case GrGLRenderTarget::kCantResolve_ResolveType: |
| return false; |
| case GrGLRenderTarget::kAutoResolves_ResolveType: |
| this->flushRenderTarget(tgt, &SkIRect::EmptyIRect()); |
| break; |
| case GrGLRenderTarget::kCanResolve_ResolveType: |
| this->onResolveRenderTarget(tgt); |
| // we don't track the state of the READ FBO ID. |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, |
| tgt->textureFBOID())); |
| break; |
| default: |
| SkFAIL("Unknown resolve type"); |
| } |
| |
| const GrGLIRect& glvp = tgt->getViewport(); |
| |
| // the read rect is viewport-relative |
| GrGLIRect readRect; |
| readRect.setRelativeTo(glvp, left, top, width, height, tgt->origin()); |
| |
| size_t tightRowBytes = GrBytesPerPixel(config) * width; |
| |
| size_t readDstRowBytes = tightRowBytes; |
| void* readDst = buffer; |
| |
| // determine if GL can read using the passed rowBytes or if we need |
| // a scratch buffer. |
| SkAutoSMalloc<32 * sizeof(GrColor)> scratch; |
| if (rowBytes != tightRowBytes) { |
| if (this->glCaps().packRowLengthSupport()) { |
| SkASSERT(!(rowBytes % sizeof(GrColor))); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, |
| static_cast<GrGLint>(rowBytes / sizeof(GrColor)))); |
| readDstRowBytes = rowBytes; |
| } else { |
| scratch.reset(tightRowBytes * height); |
| readDst = scratch.get(); |
| } |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1)); |
| } |
| GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom, |
| readRect.fWidth, readRect.fHeight, |
| format, type, readDst)); |
| if (readDstRowBytes != tightRowBytes) { |
| SkASSERT(this->glCaps().packRowLengthSupport()); |
| GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0)); |
| } |
| if (flipY && this->glCaps().packFlipYSupport()) { |
| GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0)); |
| flipY = false; |
| } |
| |
| // now reverse the order of the rows, since GL's are bottom-to-top, but our |
| // API presents top-to-bottom. We must preserve the padding contents. Note |
| // that the above readPixels did not overwrite the padding. |
| if (readDst == buffer) { |
| SkASSERT(rowBytes == readDstRowBytes); |
| if (flipY) { |
| scratch.reset(tightRowBytes); |
| void* tmpRow = scratch.get(); |
| // flip y in-place by rows |
| const int halfY = height >> 1; |
| char* top = reinterpret_cast<char*>(buffer); |
| char* bottom = top + (height - 1) * rowBytes; |
| for (int y = 0; y < halfY; y++) { |
| memcpy(tmpRow, top, tightRowBytes); |
| memcpy(top, bottom, tightRowBytes); |
| memcpy(bottom, tmpRow, tightRowBytes); |
| top += rowBytes; |
| bottom -= rowBytes; |
| } |
| } |
| } else { |
| SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes); |
| // copy from readDst to buffer while flipping y |
| // const int halfY = height >> 1; |
| const char* src = reinterpret_cast<const char*>(readDst); |
| char* dst = reinterpret_cast<char*>(buffer); |
| if (flipY) { |
| dst += (height-1) * rowBytes; |
| } |
| for (int y = 0; y < height; y++) { |
| memcpy(dst, src, tightRowBytes); |
| src += readDstRowBytes; |
| if (!flipY) { |
| dst += rowBytes; |
| } else { |
| dst -= rowBytes; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void GrGLGpu::flushRenderTarget(GrGLRenderTarget* target, const SkIRect* bound) { |
| |
| SkASSERT(target); |
| |
| uint32_t rtID = target->getUniqueID(); |
| if (fHWBoundRenderTargetUniqueID != rtID) { |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, target->renderFBOID())); |
| #ifdef SK_DEBUG |
| // don't do this check in Chromium -- this is causing |
| // lots of repeated command buffer flushes when the compositor is |
| // rendering with Ganesh, which is really slow; even too slow for |
| // Debug mode. |
| if (kChromium_GrGLDriver != this->glContext().driver()) { |
| GrGLenum status; |
| GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER)); |
| if (status != GR_GL_FRAMEBUFFER_COMPLETE) { |
| SkDebugf("GrGLGpu::flushRenderTarget glCheckFramebufferStatus %x\n", status); |
| } |
| } |
| #endif |
| fHWBoundRenderTargetUniqueID = rtID; |
| const GrGLIRect& vp = target->getViewport(); |
| if (fHWViewport != vp) { |
| vp.pushToGLViewport(this->glInterface()); |
| fHWViewport = vp; |
| } |
| if (this->glCaps().srgbWriteControl()) { |
| bool enableSRGBWrite = GrPixelConfigIsSRGB(target->config()); |
| if (enableSRGBWrite && kYes_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Enable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kYes_TriState; |
| } else if (!enableSRGBWrite && kNo_TriState != fHWSRGBFramebuffer) { |
| GL_CALL(Disable(GR_GL_FRAMEBUFFER_SRGB)); |
| fHWSRGBFramebuffer = kNo_TriState; |
| } |
| } |
| } |
| if (NULL == bound || !bound->isEmpty()) { |
| target->flagAsNeedingResolve(bound); |
| } |
| |
| GrTexture *texture = target->asTexture(); |
| if (texture) { |
| texture->texturePriv().dirtyMipMaps(true); |
| } |
| } |
| |
| GrGLenum gPrimitiveType2GLMode[] = { |
| GR_GL_TRIANGLES, |
| GR_GL_TRIANGLE_STRIP, |
| GR_GL_TRIANGLE_FAN, |
| GR_GL_POINTS, |
| GR_GL_LINES, |
| GR_GL_LINE_STRIP |
| }; |
| |
| #define SWAP_PER_DRAW 0 |
| |
| #if SWAP_PER_DRAW |
| #if defined(SK_BUILD_FOR_MAC) |
| #include <AGL/agl.h> |
| #elif defined(SK_BUILD_FOR_WIN32) |
| #include <gl/GL.h> |
| void SwapBuf() { |
| DWORD procID = GetCurrentProcessId(); |
| HWND hwnd = GetTopWindow(GetDesktopWindow()); |
| while(hwnd) { |
| DWORD wndProcID = 0; |
| GetWindowThreadProcessId(hwnd, &wndProcID); |
| if(wndProcID == procID) { |
| SwapBuffers(GetDC(hwnd)); |
| } |
| hwnd = GetNextWindow(hwnd, GW_HWNDNEXT); |
| } |
| } |
| #endif |
| #endif |
| |
| void GrGLGpu::onDraw(const DrawArgs& args, const GrNonInstancedVertices& vertices) { |
| if (!this->flushGLState(args)) { |
| return; |
| } |
| |
| size_t indexOffsetInBytes = 0; |
| this->setupGeometry(*args.fPrimitiveProcessor, vertices, &indexOffsetInBytes); |
| |
| SkASSERT((size_t)vertices.primitiveType() < SK_ARRAY_COUNT(gPrimitiveType2GLMode)); |
| |
| if (vertices.isIndexed()) { |
| GrGLvoid* indices = |
| reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + sizeof(uint16_t) * |
| vertices.startIndex()); |
| // info.startVertex() was accounted for by setupGeometry. |
| GL_CALL(DrawElements(gPrimitiveType2GLMode[vertices.primitiveType()], |
| vertices.indexCount(), |
| GR_GL_UNSIGNED_SHORT, |
| indices)); |
| } else { |
| // Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for |
| // startVertex in the DrawElements case. So we always rely on setupGeometry to have |
| // accounted for startVertex. |
| GL_CALL(DrawArrays(gPrimitiveType2GLMode[vertices.primitiveType()], 0, |
| vertices.vertexCount())); |
| } |
| #if SWAP_PER_DRAW |
| glFlush(); |
| #if defined(SK_BUILD_FOR_MAC) |
| aglSwapBuffers(aglGetCurrentContext()); |
| int set_a_break_pt_here = 9; |
| aglSwapBuffers(aglGetCurrentContext()); |
| #elif defined(SK_BUILD_FOR_WIN32) |
| SwapBuf(); |
| int set_a_break_pt_here = 9; |
| SwapBuf(); |
| #endif |
| #endif |
| } |
| |
| void GrGLGpu::onResolveRenderTarget(GrRenderTarget* target) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target); |
| if (rt->needsResolve()) { |
| // Some extensions automatically resolves the texture when it is read. |
| if (this->glCaps().usesMSAARenderBuffers()) { |
| SkASSERT(rt->textureFBOID() != rt->renderFBOID()); |
| fStats.incRenderTargetBinds(); |
| fStats.incRenderTargetBinds(); |
| GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID())); |
| GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID())); |
| // make sure we go through flushRenderTarget() since we've modified |
| // the bound DRAW FBO ID. |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| const GrGLIRect& vp = rt->getViewport(); |
| const SkIRect dirtyRect = rt->getResolveRect(); |
| |
| if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) { |
| // Apple's extension uses the scissor as the blit bounds. |
| GrScissorState scissorState; |
| scissorState.set(dirtyRect); |
| this->flushScissor(scissorState, vp, rt->origin()); |
| GL_CALL(ResolveMultisampleFramebuffer()); |
| } else { |
| GrGLIRect r; |
| r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop, |
| dirtyRect.width(), dirtyRect.height(), target->origin()); |
| |
| int right = r.fLeft + r.fWidth; |
| int top = r.fBottom + r.fHeight; |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->disableScissor(); |
| GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top, |
| r.fLeft, r.fBottom, right, top, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| } |
| } |
| rt->flagAsResolved(); |
| } |
| } |
| |
| namespace { |
| |
| |
| GrGLenum gr_to_gl_stencil_op(GrStencilOp op) { |
| static const GrGLenum gTable[] = { |
| GR_GL_KEEP, // kKeep_StencilOp |
| GR_GL_REPLACE, // kReplace_StencilOp |
| GR_GL_INCR_WRAP, // kIncWrap_StencilOp |
| GR_GL_INCR, // kIncClamp_StencilOp |
| GR_GL_DECR_WRAP, // kDecWrap_StencilOp |
| GR_GL_DECR, // kDecClamp_StencilOp |
| GR_GL_ZERO, // kZero_StencilOp |
| GR_GL_INVERT, // kInvert_StencilOp |
| }; |
| GR_STATIC_ASSERT(SK_ARRAY_COUNT(gTable) == kStencilOpCount); |
| GR_STATIC_ASSERT(0 == kKeep_StencilOp); |
| GR_STATIC_ASSERT(1 == kReplace_StencilOp); |
| GR_STATIC_ASSERT(2 == kIncWrap_StencilOp); |
| GR_STATIC_ASSERT(3 == kIncClamp_StencilOp); |
| GR_STATIC_ASSERT(4 == kDecWrap_StencilOp); |
| GR_STATIC_ASSERT(5 == kDecClamp_StencilOp); |
| GR_STATIC_ASSERT(6 == kZero_StencilOp); |
| GR_STATIC_ASSERT(7 == kInvert_StencilOp); |
| SkASSERT((unsigned) op < kStencilOpCount); |
| return gTable[op]; |
| } |
| |
| void set_gl_stencil(const GrGLInterface* gl, |
| const GrStencilSettings& settings, |
| GrGLenum glFace, |
| GrStencilSettings::Face grFace) { |
| GrGLenum glFunc = GrToGLStencilFunc(settings.func(grFace)); |
| GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace)); |
| GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace)); |
| |
| GrGLint ref = settings.funcRef(grFace); |
| GrGLint mask = settings.funcMask(grFace); |
| GrGLint writeMask = settings.writeMask(grFace); |
| |
| if (GR_GL_FRONT_AND_BACK == glFace) { |
| // we call the combined func just in case separate stencil is not |
| // supported. |
| GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMask(writeMask)); |
| GR_GL_CALL(gl, StencilOp(glFailOp, GR_GL_KEEP, glPassOp)); |
| } else { |
| GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask)); |
| GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask)); |
| GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, GR_GL_KEEP, glPassOp)); |
| } |
| } |
| } |
| |
| void GrGLGpu::flushStencil(const GrStencilSettings& stencilSettings) { |
| if (fHWStencilSettings != stencilSettings) { |
| if (stencilSettings.isDisabled()) { |
| if (kNo_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Disable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWStencilTestEnabled) { |
| GL_CALL(Enable(GR_GL_STENCIL_TEST)); |
| fHWStencilTestEnabled = kYes_TriState; |
| } |
| } |
| if (!stencilSettings.isDisabled()) { |
| if (this->caps()->twoSidedStencilSupport()) { |
| set_gl_stencil(this->glInterface(), |
| stencilSettings, |
| GR_GL_FRONT, |
| GrStencilSettings::kFront_Face); |
| set_gl_stencil(this->glInterface(), |
| stencilSettings, |
| GR_GL_BACK, |
| GrStencilSettings::kBack_Face); |
| } else { |
| set_gl_stencil(this->glInterface(), |
| stencilSettings, |
| GR_GL_FRONT_AND_BACK, |
| GrStencilSettings::kFront_Face); |
| } |
| } |
| fHWStencilSettings = stencilSettings; |
| } |
| } |
| |
| void GrGLGpu::flushHWAAState(GrRenderTarget* rt, bool useHWAA) { |
| SkASSERT(!useHWAA || rt->isStencilBufferMultisampled()); |
| |
| if (this->glCaps().multisampleDisableSupport()) { |
| if (useHWAA) { |
| if (kYes_TriState != fMSAAEnabled) { |
| GL_CALL(Enable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fMSAAEnabled) { |
| GL_CALL(Disable(GR_GL_MULTISAMPLE)); |
| fMSAAEnabled = kNo_TriState; |
| } |
| } |
| } |
| } |
| |
| void GrGLGpu::flushBlend(const GrXferProcessor::BlendInfo& blendInfo) { |
| // Any optimization to disable blending should have already been applied and |
| // tweaked the equation to "add" or "subtract", and the coeffs to (1, 0). |
| |
| GrBlendEquation equation = blendInfo.fEquation; |
| GrBlendCoeff srcCoeff = blendInfo.fSrcBlend; |
| GrBlendCoeff dstCoeff = blendInfo.fDstBlend; |
| bool blendOff = (kAdd_GrBlendEquation == equation || kSubtract_GrBlendEquation == equation) && |
| kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff; |
| if (blendOff) { |
| if (kNo_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Disable(GR_GL_BLEND)); |
| |
| // Workaround for the ARM KHR_blend_equation_advanced blacklist issue |
| // https://code.google.com/p/skia/issues/detail?id=3943 |
| if (kARM_GrGLVendor == this->ctxInfo().vendor() && |
| GrBlendEquationIsAdvanced(fHWBlendState.fEquation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Set to any basic blending equation. |
| GrBlendEquation blend_equation = kAdd_GrBlendEquation; |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[blend_equation])); |
| fHWBlendState.fEquation = blend_equation; |
| } |
| |
| fHWBlendState.fEnabled = kNo_TriState; |
| } |
| return; |
| } |
| |
| if (kYes_TriState != fHWBlendState.fEnabled) { |
| GL_CALL(Enable(GR_GL_BLEND)); |
| fHWBlendState.fEnabled = kYes_TriState; |
| } |
| |
| if (fHWBlendState.fEquation != equation) { |
| GL_CALL(BlendEquation(gXfermodeEquation2Blend[equation])); |
| fHWBlendState.fEquation = equation; |
| } |
| |
| if (GrBlendEquationIsAdvanced(equation)) { |
| SkASSERT(this->caps()->advancedBlendEquationSupport()); |
| // Advanced equations have no other blend state. |
| return; |
| } |
| |
| if (fHWBlendState.fSrcCoeff != srcCoeff || |
| fHWBlendState.fDstCoeff != dstCoeff) { |
| GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff], |
| gXfermodeCoeff2Blend[dstCoeff])); |
| fHWBlendState.fSrcCoeff = srcCoeff; |
| fHWBlendState.fDstCoeff = dstCoeff; |
| } |
| |
| GrColor blendConst = blendInfo.fBlendConstant; |
| if ((BlendCoeffReferencesConstant(srcCoeff) || |
| BlendCoeffReferencesConstant(dstCoeff)) && |
| (!fHWBlendState.fConstColorValid || |
| fHWBlendState.fConstColor != blendConst)) { |
| GrGLfloat c[4]; |
| GrColorToRGBAFloat(blendConst, c); |
| GL_CALL(BlendColor(c[0], c[1], c[2], c[3])); |
| fHWBlendState.fConstColor = blendConst; |
| fHWBlendState.fConstColorValid = true; |
| } |
| } |
| |
| static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) { |
| static const GrGLenum gWrapModes[] = { |
| GR_GL_CLAMP_TO_EDGE, |
| GR_GL_REPEAT, |
| GR_GL_MIRRORED_REPEAT |
| }; |
| GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes)); |
| GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode); |
| GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode); |
| GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode); |
| return gWrapModes[tm]; |
| } |
| |
| void GrGLGpu::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) { |
| SkASSERT(texture); |
| |
| // If we created a rt/tex and rendered to it without using a texture and now we're texturing |
| // from the rt it will still be the last bound texture, but it needs resolving. So keep this |
| // out of the "last != next" check. |
| GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget()); |
| if (texRT) { |
| this->onResolveRenderTarget(texRT); |
| } |
| |
| uint32_t textureID = texture->getUniqueID(); |
| if (fHWBoundTextureUniqueIDs[unitIdx] != textureID) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID())); |
| fHWBoundTextureUniqueIDs[unitIdx] = textureID; |
| } |
| |
| ResetTimestamp timestamp; |
| const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp); |
| bool setAll = timestamp < this->getResetTimestamp(); |
| GrGLTexture::TexParams newTexParams; |
| |
| static GrGLenum glMinFilterModes[] = { |
| GR_GL_NEAREST, |
| GR_GL_LINEAR, |
| GR_GL_LINEAR_MIPMAP_LINEAR |
| }; |
| static GrGLenum glMagFilterModes[] = { |
| GR_GL_NEAREST, |
| GR_GL_LINEAR, |
| GR_GL_LINEAR |
| }; |
| GrTextureParams::FilterMode filterMode = params.filterMode(); |
| |
| if (GrTextureParams::kMipMap_FilterMode == filterMode) { |
| if (!this->caps()->mipMapSupport() || GrPixelConfigIsCompressed(texture->config())) { |
| filterMode = GrTextureParams::kBilerp_FilterMode; |
| } |
| } |
| |
| newTexParams.fMinFilter = glMinFilterModes[filterMode]; |
| newTexParams.fMagFilter = glMagFilterModes[filterMode]; |
| |
| if (GrTextureParams::kMipMap_FilterMode == filterMode && |
| texture->texturePriv().mipMapsAreDirty()) { |
| GL_CALL(GenerateMipmap(GR_GL_TEXTURE_2D)); |
| texture->texturePriv().dirtyMipMaps(false); |
| } |
| |
| newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX()); |
| newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY()); |
| memcpy(newTexParams.fSwizzleRGBA, |
| GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()), |
| sizeof(newTexParams.fSwizzleRGBA)); |
| if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MAG_FILTER, |
| newTexParams.fMagFilter)); |
| } |
| if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_MIN_FILTER, |
| newTexParams.fMinFilter)); |
| } |
| if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_S, |
| newTexParams.fWrapS)); |
| } |
| if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) { |
| this->setTextureUnit(unitIdx); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, |
| GR_GL_TEXTURE_WRAP_T, |
| newTexParams.fWrapT)); |
| } |
| if (this->glCaps().textureSwizzleSupport() && |
| (setAll || memcmp(newTexParams.fSwizzleRGBA, |
| oldTexParams.fSwizzleRGBA, |
| sizeof(newTexParams.fSwizzleRGBA)))) { |
| this->setTextureUnit(unitIdx); |
| if (this->glStandard() == kGLES_GrGLStandard) { |
| // ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA. |
| const GrGLenum* swizzle = newTexParams.fSwizzleRGBA; |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0])); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1])); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2])); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3])); |
| } else { |
| GR_STATIC_ASSERT(sizeof(newTexParams.fSwizzleRGBA[0]) == sizeof(GrGLint)); |
| const GrGLint* swizzle = reinterpret_cast<const GrGLint*>(newTexParams.fSwizzleRGBA); |
| GL_CALL(TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, swizzle)); |
| } |
| } |
| texture->setCachedTexParams(newTexParams, this->getResetTimestamp()); |
| } |
| |
| void GrGLGpu::flushDither(bool dither) { |
| if (dither) { |
| if (kYes_TriState != fHWDitherEnabled) { |
| GL_CALL(Enable(GR_GL_DITHER)); |
| fHWDitherEnabled = kYes_TriState; |
| } |
| } else { |
| if (kNo_TriState != fHWDitherEnabled) { |
| GL_CALL(Disable(GR_GL_DITHER)); |
| fHWDitherEnabled = kNo_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::flushColorWrite(bool writeColor) { |
| if (!writeColor) { |
| if (kNo_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE, |
| GR_GL_FALSE, GR_GL_FALSE)); |
| fHWWriteToColor = kNo_TriState; |
| } |
| } else { |
| if (kYes_TriState != fHWWriteToColor) { |
| GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE)); |
| fHWWriteToColor = kYes_TriState; |
| } |
| } |
| } |
| |
| void GrGLGpu::flushDrawFace(GrPipelineBuilder::DrawFace face) { |
| if (fHWDrawFace != face) { |
| switch (face) { |
| case GrPipelineBuilder::kCCW_DrawFace: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_BACK)); |
| break; |
| case GrPipelineBuilder::kCW_DrawFace: |
| GL_CALL(Enable(GR_GL_CULL_FACE)); |
| GL_CALL(CullFace(GR_GL_FRONT)); |
| break; |
| case GrPipelineBuilder::kBoth_DrawFace: |
| GL_CALL(Disable(GR_GL_CULL_FACE)); |
| break; |
| default: |
| SkFAIL("Unknown draw face."); |
| } |
| fHWDrawFace = face; |
| } |
| } |
| |
| bool GrGLGpu::configToGLFormats(GrPixelConfig config, |
| bool getSizedInternalFormat, |
| GrGLenum* internalFormat, |
| GrGLenum* externalFormat, |
| GrGLenum* externalType) const { |
| GrGLenum dontCare; |
| if (NULL == internalFormat) { |
| internalFormat = &dontCare; |
| } |
| if (NULL == externalFormat) { |
| externalFormat = &dontCare; |
| } |
| if (NULL == externalType) { |
| externalType = &dontCare; |
| } |
| |
| if(!this->glCaps().isConfigTexturable(config)) { |
| return false; |
| } |
| |
| switch (config) { |
| case kRGBA_8888_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA; |
| *externalFormat = GR_GL_RGBA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA8; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kBGRA_8888_GrPixelConfig: |
| if (this->glCaps().bgraIsInternalFormat()) { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_BGRA8; |
| } else { |
| *internalFormat = GR_GL_BGRA; |
| } |
| } else { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA8; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| } |
| *externalFormat = GR_GL_BGRA; |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kSRGBA_8888_GrPixelConfig: |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_SRGB8_ALPHA8; |
| } else { |
| *internalFormat = GR_GL_SRGB_ALPHA; |
| } |
| // OpenGL ES 2.0 + GL_EXT_sRGB allows GL_SRGB_ALPHA to be specified as the <format> |
| // param to Tex(Sub)Image2D. ES 2.0 requires the internalFormat and format to match. |
| // Thus, on ES 2.0 we will use GL_SRGB_ALPHA as the externalFormat. However, |
| // onReadPixels needs code to override that because GL_SRGB_ALPHA is not allowed as a |
| // glReadPixels format. |
| // On OpenGL and ES 3.0 GL_SRGB_ALPHA does not work for the <format> param to |
| // glReadPixels nor does it work with Tex(Sub)Image2D So we always set the externalFormat |
| // return to GL_RGBA. |
| if (this->glStandard() == kGLES_GrGLStandard && |
| this->glVersion() == GR_GL_VER(2,0)) { |
| *externalFormat = GR_GL_SRGB_ALPHA; |
| } else { |
| *externalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| break; |
| case kRGB_565_GrPixelConfig: |
| *internalFormat = GR_GL_RGB; |
| *externalFormat = GR_GL_RGB; |
| if (getSizedInternalFormat) { |
| if (!this->glCaps().ES2CompatibilitySupport()) { |
| *internalFormat = GR_GL_RGB5; |
| } else { |
| *internalFormat = GR_GL_RGB565; |
| } |
| } else { |
| *internalFormat = GR_GL_RGB; |
| } |
| *externalType = GR_GL_UNSIGNED_SHORT_5_6_5; |
| break; |
| case kRGBA_4444_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA; |
| *externalFormat = GR_GL_RGBA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_RGBA4; |
| } else { |
| *internalFormat = GR_GL_RGBA; |
| } |
| *externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4; |
| break; |
| case kIndex_8_GrPixelConfig: |
| // no sized/unsized internal format distinction here |
| *internalFormat = GR_GL_PALETTE8_RGBA8; |
| break; |
| case kAlpha_8_GrPixelConfig: |
| if (this->glCaps().textureRedSupport()) { |
| *internalFormat = GR_GL_RED; |
| *externalFormat = GR_GL_RED; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_R8; |
| } else { |
| *internalFormat = GR_GL_RED; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| *externalFormat = GR_GL_ALPHA; |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_ALPHA8; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| } |
| *externalType = GR_GL_UNSIGNED_BYTE; |
| } |
| break; |
| case kETC1_GrPixelConfig: |
| *internalFormat = GR_GL_COMPRESSED_ETC1_RGB8; |
| break; |
| case kLATC_GrPixelConfig: |
| switch(this->glCaps().latcAlias()) { |
| case GrGLCaps::kLATC_LATCAlias: |
| *internalFormat = GR_GL_COMPRESSED_LUMINANCE_LATC1; |
| break; |
| case GrGLCaps::kRGTC_LATCAlias: |
| *internalFormat = GR_GL_COMPRESSED_RED_RGTC1; |
| break; |
| case GrGLCaps::k3DC_LATCAlias: |
| *internalFormat = GR_GL_COMPRESSED_3DC_X; |
| break; |
| } |
| break; |
| case kR11_EAC_GrPixelConfig: |
| *internalFormat = GR_GL_COMPRESSED_R11_EAC; |
| break; |
| |
| case kASTC_12x12_GrPixelConfig: |
| *internalFormat = GR_GL_COMPRESSED_RGBA_ASTC_12x12_KHR; |
| break; |
| |
| case kRGBA_float_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA32F; |
| *externalFormat = GR_GL_RGBA; |
| *externalType = GR_GL_FLOAT; |
| break; |
| |
| case kAlpha_half_GrPixelConfig: |
| if (this->glCaps().textureRedSupport()) { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_R16F; |
| } else { |
| *internalFormat = GR_GL_RED; |
| } |
| *externalFormat = GR_GL_RED; |
| } else { |
| if (getSizedInternalFormat) { |
| *internalFormat = GR_GL_ALPHA16F; |
| } else { |
| *internalFormat = GR_GL_ALPHA; |
| } |
| *externalFormat = GR_GL_ALPHA; |
| } |
| if (kGL_GrGLStandard == this->glStandard() || this->glVersion() >= GR_GL_VER(3, 0)) { |
| *externalType = GR_GL_HALF_FLOAT; |
| } else { |
| *externalType = GR_GL_HALF_FLOAT_OES; |
| } |
| break; |
| |
| case kRGBA_half_GrPixelConfig: |
| *internalFormat = GR_GL_RGBA16F; |
| *externalFormat = GR_GL_RGBA; |
| if (kGL_GrGLStandard == this->glStandard() || this->glVersion() >= GR_GL_VER(3, 0)) { |
| *externalType = GR_GL_HALF_FLOAT; |
| } else { |
| *externalType = GR_GL_HALF_FLOAT_OES; |
| } |
| break; |
| |
| default: |
| return false; |
| } |
| return true; |
| } |
| |
| void GrGLGpu::setTextureUnit(int unit) { |
| SkASSERT(unit >= 0 && unit < fHWBoundTextureUniqueIDs.count()); |
| if (unit != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit)); |
| fHWActiveTextureUnitIdx = unit; |
| } |
| } |
| |
| void GrGLGpu::setScratchTextureUnit() { |
| // Bind the last texture unit since it is the least likely to be used by GrGLProgram. |
| int lastUnitIdx = fHWBoundTextureUniqueIDs.count() - 1; |
| if (lastUnitIdx != fHWActiveTextureUnitIdx) { |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx)); |
| fHWActiveTextureUnitIdx = lastUnitIdx; |
| } |
| // clear out the this field so that if a program does use this unit it will rebind the correct |
| // texture. |
| fHWBoundTextureUniqueIDs[lastUnitIdx] = SK_InvalidUniqueID; |
| } |
| |
| namespace { |
| // Determines whether glBlitFramebuffer could be used between src and dst. |
| inline bool can_blit_framebuffer(const GrSurface* dst, |
| const GrSurface* src, |
| const GrGLGpu* gpu) { |
| if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) && |
| gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && |
| gpu->glCaps().usesMSAARenderBuffers()) { |
| // ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match |
| // or the rects are not the same (not just the same size but have the same edges). |
| if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() && |
| (src->desc().fSampleCnt > 0 || src->config() != dst->config())) { |
| return false; |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| inline bool can_copy_texsubimage(const GrSurface* dst, |
| const GrSurface* src, |
| const GrGLGpu* gpu) { |
| // Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage |
| // and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps |
| // many drivers would allow it to work, but ANGLE does not. |
| if (kGLES_GrGLStandard == gpu->glStandard() && gpu->glCaps().bgraIsInternalFormat() && |
| (kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) { |
| return false; |
| } |
| const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget()); |
| // If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer) |
| // then we don't want to copy to the texture but to the MSAA buffer. |
| if (dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) { |
| return false; |
| } |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| // If the src is multisampled (and uses an extension where there is a separate MSAA |
| // renderbuffer) then it is an invalid operation to call CopyTexSubImage |
| if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { |
| return false; |
| } |
| if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) && |
| dst->asTexture() && |
| dst->origin() == src->origin() && |
| !GrPixelConfigIsCompressed(src->config())) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| } |
| |
| // If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is |
| // relative to is output. |
| GrGLuint GrGLGpu::bindSurfaceAsFBO(GrSurface* surface, GrGLenum fboTarget, GrGLIRect* viewport, |
| TempFBOTarget tempFBOTarget) { |
| GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget()); |
| if (NULL == rt) { |
| SkASSERT(surface->asTexture()); |
| GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID(); |
| GrGLuint* tempFBOID; |
| tempFBOID = kSrc_TempFBOTarget == tempFBOTarget ? &fTempSrcFBOID : &fTempDstFBOID; |
| |
| if (0 == *tempFBOID) { |
| GR_GL_CALL(this->glInterface(), GenFramebuffers(1, tempFBOID)); |
| } |
| |
| fStats.incRenderTargetBinds(); |
| GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, *tempFBOID)); |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| texID, |
| 0)); |
| viewport->fLeft = 0; |
| viewport->fBottom = 0; |
| viewport->fWidth = surface->width(); |
| viewport->fHeight = surface->height(); |
| return *tempFBOID; |
| } else { |
| GrGLuint tempFBOID = 0; |
| fStats.incRenderTargetBinds(); |
| GR_GL_CALL(this->glInterface(), BindFramebuffer(fboTarget, rt->renderFBOID())); |
| *viewport = rt->getViewport(); |
| return tempFBOID; |
| } |
| } |
| |
| void GrGLGpu::unbindTextureFromFBO(GrGLenum fboTarget) { |
| GR_GL_CALL(this->glInterface(), FramebufferTexture2D(fboTarget, |
| GR_GL_COLOR_ATTACHMENT0, |
| GR_GL_TEXTURE_2D, |
| 0, |
| 0)); |
| } |
| |
| bool GrGLGpu::initCopySurfaceDstDesc(const GrSurface* src, GrSurfaceDesc* desc) const { |
| // If the src is a texture, we can implement the blit as a draw assuming the config is |
| // renderable. |
| if (src->asTexture() && this->caps()->isConfigRenderable(src->config(), false)) { |
| desc->fOrigin = kDefault_GrSurfaceOrigin; |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| desc->fConfig = src->config(); |
| return true; |
| } |
| |
| // We look for opportunities to use CopyTexSubImage, or fbo blit. If neither are |
| // possible and we return false to fallback to creating a render target dst for render-to- |
| // texture. This code prefers CopyTexSubImage to fbo blit and avoids triggering temporary fbo |
| // creation. It isn't clear that avoiding temporary fbo creation is actually optimal. |
| |
| // Check for format issues with glCopyTexSubImage2D |
| if (kGLES_GrGLStandard == this->glStandard() && this->glCaps().bgraIsInternalFormat() && |
| kBGRA_8888_GrPixelConfig == src->config()) { |
| // glCopyTexSubImage2D doesn't work with this config. If the bgra can be used with fbo blit |
| // then we set up for that, otherwise fail. |
| if (this->caps()->isConfigRenderable(kBGRA_8888_GrPixelConfig, false)) { |
| desc->fOrigin = kDefault_GrSurfaceOrigin; |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| desc->fConfig = kBGRA_8888_GrPixelConfig; |
| return true; |
| } |
| return false; |
| } else if (NULL == src->asRenderTarget()) { |
| // CopyTexSubImage2D or fbo blit would require creating a temp fbo for the src. |
| return false; |
| } |
| |
| const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget()); |
| if (srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) { |
| // It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer. Set up for FBO blit or |
| // fail. |
| if (this->caps()->isConfigRenderable(src->config(), false)) { |
| desc->fOrigin = kDefault_GrSurfaceOrigin; |
| desc->fFlags = kRenderTarget_GrSurfaceFlag; |
| desc->fConfig = src->config(); |
| return true; |
| } |
| return false; |
| } |
| |
| // We'll do a CopyTexSubImage. Make the dst a plain old texture. |
| desc->fConfig = src->config(); |
| desc->fOrigin = src->origin(); |
| desc->fFlags = kNone_GrSurfaceFlags; |
| return true; |
| } |
| |
| bool GrGLGpu::onCopySurface(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| if (src->asTexture() && dst->asRenderTarget()) { |
| this->copySurfaceAsDraw(dst, src, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (can_copy_texsubimage(dst, src, this)) { |
| this->copySurfaceAsCopyTexSubImage(dst, src, srcRect, dstPoint); |
| return true; |
| } |
| |
| if (can_blit_framebuffer(dst, src, this)) { |
| return this->copySurfaceAsBlitFramebuffer(dst, src, srcRect, dstPoint); |
| } |
| |
| return false; |
| } |
| |
| |
| void GrGLGpu::createCopyProgram() { |
| const char* version = GrGLGetGLSLVersionDecl(this->ctxInfo()); |
| |
| GrGLShaderVar aVertex("a_vertex", kVec2f_GrSLType, GrShaderVar::kAttribute_TypeModifier); |
| GrGLShaderVar uTexCoordXform("u_texCoordXform", kVec4f_GrSLType, |
| GrShaderVar::kUniform_TypeModifier); |
| GrGLShaderVar uPosXform("u_posXform", kVec4f_GrSLType, GrShaderVar::kUniform_TypeModifier); |
| GrGLShaderVar uTexture("u_texture", kSampler2D_GrSLType, GrShaderVar::kUniform_TypeModifier); |
| GrGLShaderVar vTexCoord("v_texCoord", kVec2f_GrSLType, GrShaderVar::kVaryingOut_TypeModifier); |
| GrGLShaderVar oFragColor("o_FragColor", kVec4f_GrSLType, GrShaderVar::kOut_TypeModifier); |
| |
| SkString vshaderTxt(version); |
| aVertex.appendDecl(this->ctxInfo(), &vshaderTxt); |
| vshaderTxt.append(";"); |
| uTexCoordXform.appendDecl(this->ctxInfo(), &vshaderTxt); |
| vshaderTxt.append(";"); |
| uPosXform.appendDecl(this->ctxInfo(), &vshaderTxt); |
| vshaderTxt.append(";"); |
| vTexCoord.appendDecl(this->ctxInfo(), &vshaderTxt); |
| vshaderTxt.append(";"); |
| |
| vshaderTxt.append( |
| "// Copy Program VS\n" |
| "void main() {" |
| " v_texCoord = a_vertex.xy * u_texCoordXform.xy + u_texCoordXform.zw;" |
| " gl_Position.xy = a_vertex * u_posXform.xy + u_posXform.zw;" |
| " gl_Position.zw = vec2(0, 1);" |
| "}" |
| ); |
| |
| SkString fshaderTxt(version); |
| GrGLAppendGLSLDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, this->glStandard(), |
| &fshaderTxt); |
| vTexCoord.setTypeModifier(GrShaderVar::kVaryingIn_TypeModifier); |
| vTexCoord.appendDecl(this->ctxInfo(), &fshaderTxt); |
| fshaderTxt.append(";"); |
| uTexture.appendDecl(this->ctxInfo(), &fshaderTxt); |
| fshaderTxt.append(";"); |
| const char* fsOutName; |
| if (this->glCaps().glslCaps()->mustDeclareFragmentShaderOutput()) { |
| oFragColor.appendDecl(this->ctxInfo(), &fshaderTxt); |
| fshaderTxt.append(";"); |
| fsOutName = oFragColor.c_str(); |
| } else { |
| fsOutName = "gl_FragColor"; |
| } |
| fshaderTxt.appendf( |
| "// Copy Program FS\n" |
| "void main() {" |
| " %s = %s(u_texture, v_texCoord);" |
| "}", |
| fsOutName, |
| GrGLSLTexture2DFunctionName(kVec2f_GrSLType, this->glslGeneration()) |
| ); |
| |
| GL_CALL_RET(fCopyProgram.fProgram, CreateProgram()); |
| const char* str; |
| GrGLint length; |
| |
| str = vshaderTxt.c_str(); |
| length = SkToInt(vshaderTxt.size()); |
| GrGLuint vshader = GrGLCompileAndAttachShader(*fGLContext, fCopyProgram.fProgram, |
| GR_GL_VERTEX_SHADER, &str, &length, 1, &fStats); |
| |
| str = fshaderTxt.c_str(); |
| length = SkToInt(fshaderTxt.size()); |
| GrGLuint fshader = GrGLCompileAndAttachShader(*fGLContext, fCopyProgram.fProgram, |
| GR_GL_FRAGMENT_SHADER, &str, &length, 1, &fStats); |
| |
| GL_CALL(LinkProgram(fCopyProgram.fProgram)); |
| |
| GL_CALL_RET(fCopyProgram.fTextureUniform, GetUniformLocation(fCopyProgram.fProgram, |
| "u_texture")); |
| GL_CALL_RET(fCopyProgram.fPosXformUniform, GetUniformLocation(fCopyProgram.fProgram, |
| "u_posXform")); |
| GL_CALL_RET(fCopyProgram.fTexCoordXformUniform, GetUniformLocation(fCopyProgram.fProgram, |
| "u_texCoordXform")); |
| |
| GL_CALL(BindAttribLocation(fCopyProgram.fProgram, 0, "a_vertex")); |
| |
| GL_CALL(DeleteShader(vshader)); |
| GL_CALL(DeleteShader(fshader)); |
| |
| GL_CALL(GenBuffers(1, &fCopyProgram.fArrayBuffer)); |
| fHWGeometryState.setVertexBufferID(this, fCopyProgram.fArrayBuffer); |
| static const GrGLfloat vdata[] = { |
| 0, 0, |
| 0, 1, |
| 1, 0, |
| 1, 1 |
| }; |
| GL_ALLOC_CALL(this->glInterface(), |
| BufferData(GR_GL_ARRAY_BUFFER, |
| (GrGLsizeiptr) sizeof(vdata), |
| vdata, // data ptr |
| GR_GL_STATIC_DRAW)); |
| } |
| |
| void GrGLGpu::copySurfaceAsDraw(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| int w = srcRect.width(); |
| int h = srcRect.height(); |
| |
| GrGLTexture* srcTex = static_cast<GrGLTexture*>(src->asTexture()); |
| GrTextureParams params(SkShader::kClamp_TileMode, GrTextureParams::kNone_FilterMode); |
| this->bindTexture(0, params, srcTex); |
| |
| GrGLRenderTarget* dstRT = static_cast<GrGLRenderTarget*>(dst->asRenderTarget()); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, w, h); |
| this->flushRenderTarget(dstRT, &dstRect); |
| |
| GL_CALL(UseProgram(fCopyProgram.fProgram)); |
| fHWProgramID = fCopyProgram.fProgram; |
| |
| fHWGeometryState.setVertexArrayID(this, 0); |
| |
| GrGLAttribArrayState* attribs = |
| fHWGeometryState.bindArrayAndBufferToDraw(this, fCopyProgram.fArrayBuffer); |
| attribs->set(this, 0, fCopyProgram.fArrayBuffer, 2, GR_GL_FLOAT, false, |
| 2 * sizeof(GrGLfloat), 0); |
| attribs->disableUnusedArrays(this, 0x1); |
| |
| // dst rect edges in NDC (-1 to 1) |
| int dw = dst->width(); |
| int dh = dst->height(); |
| GrGLfloat dx0 = 2.f * dstPoint.fX / dw - 1.f; |
| GrGLfloat dx1 = 2.f * (dstPoint.fX + w) / dw - 1.f; |
| GrGLfloat dy0 = 2.f * dstPoint.fY / dh - 1.f; |
| GrGLfloat dy1 = 2.f * (dstPoint.fY + h) / dh - 1.f; |
| if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { |
| dy0 = -dy0; |
| dy1 = -dy1; |
| } |
| |
| // src rect edges in normalized texture space (0 to 1) |
| int sw = src->width(); |
| int sh = src->height(); |
| GrGLfloat sx0 = (GrGLfloat)srcRect.fLeft / sw; |
| GrGLfloat sx1 = (GrGLfloat)(srcRect.fLeft + w) / sw; |
| GrGLfloat sy0 = (GrGLfloat)srcRect.fTop / sh; |
| GrGLfloat sy1 = (GrGLfloat)(srcRect.fTop + h) / sh; |
| if (kBottomLeft_GrSurfaceOrigin == src->origin()) { |
| sy0 = 1.f - sy0; |
| sy1 = 1.f - sy1; |
| } |
| |
| GL_CALL(Uniform4f(fCopyProgram.fPosXformUniform, dx1 - dx0, dy1 - dy0, dx0, dy0)); |
| GL_CALL(Uniform4f(fCopyProgram.fTexCoordXformUniform, sx1 - sx0, sy1 - sy0, sx0, sy0)); |
| GL_CALL(Uniform1i(fCopyProgram.fTextureUniform, 0)); |
| |
| GrXferProcessor::BlendInfo blendInfo; |
| blendInfo.reset(); |
| this->flushBlend(blendInfo); |
| this->flushColorWrite(true); |
| this->flushDither(false); |
| this->flushDrawFace(GrPipelineBuilder::kBoth_DrawFace); |
| this->flushHWAAState(dstRT, false); |
| this->disableScissor(); |
| GrStencilSettings stencil; |
| stencil.setDisabled(); |
| this->flushStencil(stencil); |
| |
| GL_CALL(DrawArrays(GR_GL_TRIANGLE_STRIP, 0, 4)); |
| } |
| |
| void GrGLGpu::copySurfaceAsCopyTexSubImage(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_copy_texsubimage(dst, src, this)); |
| GrGLuint srcFBO; |
| GrGLIRect srcVP; |
| srcFBO = this->bindSurfaceAsFBO(src, GR_GL_FRAMEBUFFER, &srcVP, kSrc_TempFBOTarget); |
| GrGLTexture* dstTex = static_cast<GrGLTexture*>(dst->asTexture()); |
| SkASSERT(dstTex); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| GrGLIRect srcGLRect; |
| srcGLRect.setRelativeTo(srcVP, |
| srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.width(), |
| srcRect.height(), |
| src->origin()); |
| |
| this->setScratchTextureUnit(); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, dstTex->textureID())); |
| GrGLint dstY; |
| if (kBottomLeft_GrSurfaceOrigin == dst->origin()) { |
| dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight); |
| } else { |
| dstY = dstPoint.fY; |
| } |
| GL_CALL(CopyTexSubImage2D(GR_GL_TEXTURE_2D, 0, |
| dstPoint.fX, dstY, |
| srcGLRect.fLeft, srcGLRect.fBottom, |
| srcGLRect.fWidth, srcGLRect.fHeight)); |
| if (srcFBO) { |
| this->unbindTextureFromFBO(GR_GL_FRAMEBUFFER); |
| } |
| } |
| |
| bool GrGLGpu::copySurfaceAsBlitFramebuffer(GrSurface* dst, |
| GrSurface* src, |
| const SkIRect& srcRect, |
| const SkIPoint& dstPoint) { |
| SkASSERT(can_blit_framebuffer(dst, src, this)); |
| SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, |
| srcRect.width(), srcRect.height()); |
| if (dst == src) { |
| if (SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) { |
| return false; |
| } |
| } |
| |
| GrGLuint dstFBO; |
| GrGLuint srcFBO; |
| GrGLIRect dstVP; |
| GrGLIRect srcVP; |
| dstFBO = this->bindSurfaceAsFBO(dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP, |
| kDst_TempFBOTarget); |
| srcFBO = this->bindSurfaceAsFBO(src, GR_GL_READ_FRAMEBUFFER, &srcVP, |
| kSrc_TempFBOTarget); |
| // We modified the bound FBO |
| fHWBoundRenderTargetUniqueID = SK_InvalidUniqueID; |
| GrGLIRect srcGLRect; |
| GrGLIRect dstGLRect; |
| srcGLRect.setRelativeTo(srcVP, |
| srcRect.fLeft, |
| srcRect.fTop, |
| srcRect.width(), |
| srcRect.height(), |
| src->origin()); |
| dstGLRect.setRelativeTo(dstVP, |
| dstRect.fLeft, |
| dstRect.fTop, |
| dstRect.width(), |
| dstRect.height(), |
| dst->origin()); |
| |
| // BlitFrameBuffer respects the scissor, so disable it. |
| this->disableScissor(); |
| |
| GrGLint srcY0; |
| GrGLint srcY1; |
| // Does the blit need to y-mirror or not? |
| if (src->origin() == dst->origin()) { |
| srcY0 = srcGLRect.fBottom; |
| srcY1 = srcGLRect.fBottom + srcGLRect.fHeight; |
| } else { |
| srcY0 = srcGLRect.fBottom + srcGLRect.fHeight; |
| srcY1 = srcGLRect.fBottom; |
| } |
| GL_CALL(BlitFramebuffer(srcGLRect.fLeft, |
| srcY0, |
| srcGLRect.fLeft + srcGLRect.fWidth, |
| srcY1, |
| dstGLRect.fLeft, |
| dstGLRect.fBottom, |
| dstGLRect.fLeft + dstGLRect.fWidth, |
| dstGLRect.fBottom + dstGLRect.fHeight, |
| GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST)); |
| if (dstFBO) { |
| this->unbindTextureFromFBO(GR_GL_DRAW_FRAMEBUFFER); |
| } |
| if (srcFBO) { |
| this->unbindTextureFromFBO(GR_GL_READ_FRAMEBUFFER); |
| } |
| return true; |
| } |
| |
| void GrGLGpu::xferBarrier(GrRenderTarget* rt, GrXferBarrierType type) { |
| SkASSERT(type); |
| switch (type) { |
| case kTexture_GrXferBarrierType: { |
| GrGLRenderTarget* glrt = static_cast<GrGLRenderTarget*>(rt); |
| if (glrt->textureFBOID() != glrt->renderFBOID()) { |
| // The render target uses separate storage so no need for glTextureBarrier. |
| // FIXME: The render target will resolve automatically when its texture is bound, |
| // but we could resolve only the bounds that will be read if we do it here instead. |
| return; |
| } |
| SkASSERT(this->caps()->textureBarrierSupport()); |
| GL_CALL(TextureBarrier()); |
| return; |
| } |
| case kBlend_GrXferBarrierType: |
| SkASSERT(GrCaps::kAdvanced_BlendEquationSupport == |
| this->caps()->blendEquationSupport()); |
| GL_CALL(BlendBarrier()); |
| return; |
| default: break; // placate compiler warnings that kNone not handled |
| } |
| } |
| |
| void GrGLGpu::didAddGpuTraceMarker() { |
| if (this->caps()->gpuTracingSupport()) { |
| const GrTraceMarkerSet& markerArray = this->getActiveTraceMarkers(); |
| SkString markerString = markerArray.toStringLast(); |
| #if GR_FORCE_GPU_TRACE_DEBUGGING |
| SkDebugf("%s\n", markerString.c_str()); |
| #else |
| GL_CALL(PushGroupMarker(0, markerString.c_str())); |
| #endif |
| } |
| } |
| |
| void GrGLGpu::didRemoveGpuTraceMarker() { |
| if (this->caps()->gpuTracingSupport()) { |
| #if GR_FORCE_GPU_TRACE_DEBUGGING |
| SkDebugf("Pop trace marker.\n"); |
| #else |
| GL_CALL(PopGroupMarker()); |
| #endif |
| } |
| } |
| |
| GrBackendObject GrGLGpu::createTestingOnlyBackendTexture(void* pixels, int w, int h, |
| GrPixelConfig config) const { |
| GrGLuint texID; |
| GL_CALL(GenTextures(1, &texID)); |
| GL_CALL(ActiveTexture(GR_GL_TEXTURE0)); |
| GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, 1)); |
| GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texID)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MAG_FILTER, GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_MIN_FILTER, GR_GL_NEAREST)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_S, GR_GL_CLAMP_TO_EDGE)); |
| GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_WRAP_T, GR_GL_CLAMP_TO_EDGE)); |
| |
| GrGLenum internalFormat = 0x0; // suppress warning |
| GrGLenum externalFormat = 0x0; // suppress warning |
| GrGLenum externalType = 0x0; // suppress warning |
| |
| this->configToGLFormats(config, false, &internalFormat, &externalFormat, &externalType); |
| |
| GL_CALL(TexImage2D(GR_GL_TEXTURE_2D, 0, internalFormat, w, h, 0, externalFormat, |
| externalType, pixels)); |
| |
| return texID; |
| } |
| |
| bool GrGLGpu::isTestingOnlyBackendTexture(GrBackendObject id) const { |
| GrGLuint texID = (GrGLuint)id; |
| |
| GrGLboolean result; |
| GL_CALL_RET(result, IsTexture(texID)); |
| |
| return (GR_GL_TRUE == result); |
| } |
| |
| void GrGLGpu::deleteTestingOnlyBackendTexture(GrBackendObject id) const { |
| GrGLuint texID = (GrGLuint)id; |
| GL_CALL(DeleteTextures(1, &texID)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBuffersToDraw( |
| GrGLGpu* gpu, |
| const GrGLVertexBuffer* vbuffer, |
| const GrGLIndexBuffer* ibuffer) { |
| SkASSERT(vbuffer); |
| GrGLuint vbufferID = vbuffer->bufferID(); |
| GrGLuint* ibufferIDPtr = NULL; |
| GrGLuint ibufferID; |
| if (ibuffer) { |
| ibufferID = ibuffer->bufferID(); |
| ibufferIDPtr = &ibufferID; |
| } |
| return this->internalBind(gpu, vbufferID, ibufferIDPtr); |
| } |
| |
| GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBufferToDraw(GrGLGpu* gpu, |
| GrGLuint vbufferID) { |
| return this->internalBind(gpu, vbufferID, NULL); |
| } |
| |
| GrGLAttribArrayState* GrGLGpu::HWGeometryState::bindArrayAndBuffersToDraw(GrGLGpu* gpu, |
| GrGLuint vbufferID, |
| GrGLuint ibufferID) { |
| return this->internalBind(gpu, vbufferID, &ibufferID); |
| } |
| |
| GrGLAttribArrayState* GrGLGpu::HWGeometryState::internalBind(GrGLGpu* gpu, |
| GrGLuint vbufferID, |
| GrGLuint* ibufferID) { |
| GrGLAttribArrayState* attribState; |
| |
| if (gpu->glCaps().isCoreProfile() && 0 != vbufferID) { |
| if (!fVBOVertexArray) { |
| GrGLuint arrayID; |
| GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID)); |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| fVBOVertexArray = new GrGLVertexArray(arrayID, attrCount); |
| } |
| if (ibufferID) { |
| attribState = fVBOVertexArray->bindWithIndexBuffer(gpu, *ibufferID); |
| } else { |
| attribState = fVBOVertexArray->bind(gpu); |
| } |
| } else { |
| if (ibufferID) { |
| this->setIndexBufferIDOnDefaultVertexArray(gpu, *ibufferID); |
| } else { |
| this->setVertexArrayID(gpu, 0); |
| } |
| int attrCount = gpu->glCaps().maxVertexAttributes(); |
| if (fDefaultVertexArrayAttribState.count() != attrCount) { |
| fDefaultVertexArrayAttribState.resize(attrCount); |
| } |
| attribState = &fDefaultVertexArrayAttribState; |
| } |
| return attribState; |
| } |