blob: 81bcb1b086584388d2af11cc1956713a0f81650b [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLSPIRVCodeGenerator.h"
#include "src/sksl/GLSL.std.450.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExtension.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#ifdef SK_VULKAN
#include "src/gpu/vk/GrVkCaps.h"
#endif
namespace SkSL {
static const int32_t SKSL_MAGIC = 0x0; // FIXME: we should probably register a magic number
void SPIRVCodeGenerator::setupIntrinsics() {
#define ALL_GLSL(x) std::make_tuple(kGLSL_STD_450_IntrinsicKind, GLSLstd450 ## x, GLSLstd450 ## x, \
GLSLstd450 ## x, GLSLstd450 ## x)
#define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) std::make_tuple(kGLSL_STD_450_IntrinsicKind, \
GLSLstd450 ## ifFloat, \
GLSLstd450 ## ifInt, \
GLSLstd450 ## ifUInt, \
SpvOpUndef)
#define ALL_SPIRV(x) std::make_tuple(kSPIRV_IntrinsicKind, SpvOp ## x, SpvOp ## x, SpvOp ## x, \
SpvOp ## x)
#define SPECIAL(x) std::make_tuple(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic, \
k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \
k ## x ## _SpecialIntrinsic)
fIntrinsicMap[String("round")] = ALL_GLSL(Round);
fIntrinsicMap[String("roundEven")] = ALL_GLSL(RoundEven);
fIntrinsicMap[String("trunc")] = ALL_GLSL(Trunc);
fIntrinsicMap[String("abs")] = BY_TYPE_GLSL(FAbs, SAbs, SAbs);
fIntrinsicMap[String("sign")] = BY_TYPE_GLSL(FSign, SSign, SSign);
fIntrinsicMap[String("floor")] = ALL_GLSL(Floor);
fIntrinsicMap[String("ceil")] = ALL_GLSL(Ceil);
fIntrinsicMap[String("fract")] = ALL_GLSL(Fract);
fIntrinsicMap[String("radians")] = ALL_GLSL(Radians);
fIntrinsicMap[String("degrees")] = ALL_GLSL(Degrees);
fIntrinsicMap[String("sin")] = ALL_GLSL(Sin);
fIntrinsicMap[String("cos")] = ALL_GLSL(Cos);
fIntrinsicMap[String("tan")] = ALL_GLSL(Tan);
fIntrinsicMap[String("asin")] = ALL_GLSL(Asin);
fIntrinsicMap[String("acos")] = ALL_GLSL(Acos);
fIntrinsicMap[String("atan")] = SPECIAL(Atan);
fIntrinsicMap[String("sinh")] = ALL_GLSL(Sinh);
fIntrinsicMap[String("cosh")] = ALL_GLSL(Cosh);
fIntrinsicMap[String("tanh")] = ALL_GLSL(Tanh);
fIntrinsicMap[String("asinh")] = ALL_GLSL(Asinh);
fIntrinsicMap[String("acosh")] = ALL_GLSL(Acosh);
fIntrinsicMap[String("atanh")] = ALL_GLSL(Atanh);
fIntrinsicMap[String("pow")] = ALL_GLSL(Pow);
fIntrinsicMap[String("exp")] = ALL_GLSL(Exp);
fIntrinsicMap[String("log")] = ALL_GLSL(Log);
fIntrinsicMap[String("exp2")] = ALL_GLSL(Exp2);
fIntrinsicMap[String("log2")] = ALL_GLSL(Log2);
fIntrinsicMap[String("sqrt")] = ALL_GLSL(Sqrt);
fIntrinsicMap[String("inverse")] = ALL_GLSL(MatrixInverse);
fIntrinsicMap[String("transpose")] = ALL_SPIRV(Transpose);
fIntrinsicMap[String("inversesqrt")] = ALL_GLSL(InverseSqrt);
fIntrinsicMap[String("determinant")] = ALL_GLSL(Determinant);
fIntrinsicMap[String("matrixInverse")] = ALL_GLSL(MatrixInverse);
fIntrinsicMap[String("mod")] = SPECIAL(Mod);
fIntrinsicMap[String("min")] = SPECIAL(Min);
fIntrinsicMap[String("max")] = SPECIAL(Max);
fIntrinsicMap[String("clamp")] = SPECIAL(Clamp);
fIntrinsicMap[String("saturate")] = SPECIAL(Saturate);
fIntrinsicMap[String("dot")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDot,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("mix")] = SPECIAL(Mix);
fIntrinsicMap[String("step")] = ALL_GLSL(Step);
fIntrinsicMap[String("smoothstep")] = ALL_GLSL(SmoothStep);
fIntrinsicMap[String("fma")] = ALL_GLSL(Fma);
fIntrinsicMap[String("frexp")] = ALL_GLSL(Frexp);
fIntrinsicMap[String("ldexp")] = ALL_GLSL(Ldexp);
#define PACK(type) fIntrinsicMap[String("pack" #type)] = ALL_GLSL(Pack ## type); \
fIntrinsicMap[String("unpack" #type)] = ALL_GLSL(Unpack ## type)
PACK(Snorm4x8);
PACK(Unorm4x8);
PACK(Snorm2x16);
PACK(Unorm2x16);
PACK(Half2x16);
PACK(Double2x32);
fIntrinsicMap[String("length")] = ALL_GLSL(Length);
fIntrinsicMap[String("distance")] = ALL_GLSL(Distance);
fIntrinsicMap[String("cross")] = ALL_GLSL(Cross);
fIntrinsicMap[String("normalize")] = ALL_GLSL(Normalize);
fIntrinsicMap[String("faceForward")] = ALL_GLSL(FaceForward);
fIntrinsicMap[String("reflect")] = ALL_GLSL(Reflect);
fIntrinsicMap[String("refract")] = ALL_GLSL(Refract);
fIntrinsicMap[String("findLSB")] = ALL_GLSL(FindILsb);
fIntrinsicMap[String("findMSB")] = BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb);
fIntrinsicMap[String("dFdx")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdx,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("dFdy")] = SPECIAL(DFdy);
fIntrinsicMap[String("fwidth")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFwidth,
SpvOpUndef, SpvOpUndef, SpvOpUndef);
fIntrinsicMap[String("makeSampler2D")] = SPECIAL(SampledImage);
fIntrinsicMap[String("sample")] = SPECIAL(Texture);
fIntrinsicMap[String("subpassLoad")] = SPECIAL(SubpassLoad);
fIntrinsicMap[String("any")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef,
SpvOpUndef, SpvOpUndef, SpvOpAny);
fIntrinsicMap[String("all")] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef,
SpvOpUndef, SpvOpUndef, SpvOpAll);
fIntrinsicMap[String("equal")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdEqual, SpvOpIEqual,
SpvOpIEqual, SpvOpLogicalEqual);
fIntrinsicMap[String("notEqual")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdNotEqual, SpvOpINotEqual,
SpvOpINotEqual,
SpvOpLogicalNotEqual);
fIntrinsicMap[String("lessThan")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdLessThan, SpvOpSLessThan,
SpvOpULessThan, SpvOpUndef);
fIntrinsicMap[String("lessThanEqual")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdLessThanEqual,
SpvOpSLessThanEqual,
SpvOpULessThanEqual,
SpvOpUndef);
fIntrinsicMap[String("greaterThan")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdGreaterThan,
SpvOpSGreaterThan,
SpvOpUGreaterThan,
SpvOpUndef);
fIntrinsicMap[String("greaterThanEqual")] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpFOrdGreaterThanEqual,
SpvOpSGreaterThanEqual,
SpvOpUGreaterThanEqual,
SpvOpUndef);
fIntrinsicMap[String("EmitVertex")] = ALL_SPIRV(EmitVertex);
fIntrinsicMap[String("EndPrimitive")] = ALL_SPIRV(EndPrimitive);
// interpolateAt* not yet supported...
}
void SPIRVCodeGenerator::writeWord(int32_t word, OutputStream& out) {
out.write((const char*) &word, sizeof(word));
}
static bool is_float(const Context& context, const Type& type) {
if (type.columns() > 1) {
return is_float(context, type.componentType());
}
return type == *context.fFloat_Type || type == *context.fHalf_Type;
}
static bool is_signed(const Context& context, const Type& type) {
if (type.typeKind() == Type::TypeKind::kVector) {
return is_signed(context, type.componentType());
}
return type == *context.fInt_Type || type == *context.fShort_Type ||
type == *context.fByte_Type;
}
static bool is_unsigned(const Context& context, const Type& type) {
if (type.typeKind() == Type::TypeKind::kVector) {
return is_unsigned(context, type.componentType());
}
return type == *context.fUInt_Type || type == *context.fUShort_Type ||
type == *context.fUByte_Type;
}
static bool is_bool(const Context& context, const Type& type) {
if (type.typeKind() == Type::TypeKind::kVector) {
return is_bool(context, type.componentType());
}
return type == *context.fBool_Type;
}
static bool is_out(const Variable& var) {
return (var.fModifiers.fFlags & Modifiers::kOut_Flag) != 0;
}
void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, OutputStream& out) {
SkASSERT(opCode != SpvOpLoad || &out != &fConstantBuffer);
SkASSERT(opCode != SpvOpUndef);
switch (opCode) {
case SpvOpReturn: // fall through
case SpvOpReturnValue: // fall through
case SpvOpKill: // fall through
case SpvOpBranch: // fall through
case SpvOpBranchConditional:
SkASSERT(fCurrentBlock);
fCurrentBlock = 0;
break;
case SpvOpConstant: // fall through
case SpvOpConstantTrue: // fall through
case SpvOpConstantFalse: // fall through
case SpvOpConstantComposite: // fall through
case SpvOpTypeVoid: // fall through
case SpvOpTypeInt: // fall through
case SpvOpTypeFloat: // fall through
case SpvOpTypeBool: // fall through
case SpvOpTypeVector: // fall through
case SpvOpTypeMatrix: // fall through
case SpvOpTypeArray: // fall through
case SpvOpTypePointer: // fall through
case SpvOpTypeFunction: // fall through
case SpvOpTypeRuntimeArray: // fall through
case SpvOpTypeStruct: // fall through
case SpvOpTypeImage: // fall through
case SpvOpTypeSampledImage: // fall through
case SpvOpTypeSampler: // fall through
case SpvOpVariable: // fall through
case SpvOpFunction: // fall through
case SpvOpFunctionParameter: // fall through
case SpvOpFunctionEnd: // fall through
case SpvOpExecutionMode: // fall through
case SpvOpMemoryModel: // fall through
case SpvOpCapability: // fall through
case SpvOpExtInstImport: // fall through
case SpvOpEntryPoint: // fall through
case SpvOpSource: // fall through
case SpvOpSourceExtension: // fall through
case SpvOpName: // fall through
case SpvOpMemberName: // fall through
case SpvOpDecorate: // fall through
case SpvOpMemberDecorate:
break;
default:
SkASSERT(fCurrentBlock);
}
this->writeWord((length << 16) | opCode, out);
}
void SPIRVCodeGenerator::writeLabel(SpvId label, OutputStream& out) {
fCurrentBlock = label;
this->writeInstruction(SpvOpLabel, label, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, OutputStream& out) {
this->writeOpCode(opCode, 1, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out) {
this->writeOpCode(opCode, 2, out);
this->writeWord(word1, out);
}
void SPIRVCodeGenerator::writeString(const char* string, size_t length, OutputStream& out) {
out.write(string, length);
switch (length % 4) {
case 1:
out.write8(0);
[[fallthrough]];
case 2:
out.write8(0);
[[fallthrough]];
case 3:
out.write8(0);
break;
default:
this->writeWord(0, out);
}
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, StringFragment string, OutputStream& out) {
this->writeOpCode(opCode, 1 + (string.fLength + 4) / 4, out);
this->writeString(string.fChars, string.fLength, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, StringFragment string,
OutputStream& out) {
this->writeOpCode(opCode, 2 + (string.fLength + 4) / 4, out);
this->writeWord(word1, out);
this->writeString(string.fChars, string.fLength, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
StringFragment string, OutputStream& out) {
this->writeOpCode(opCode, 3 + (string.fLength + 4) / 4, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeString(string.fChars, string.fLength, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
OutputStream& out) {
this->writeOpCode(opCode, 3, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, OutputStream& out) {
this->writeOpCode(opCode, 4, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, OutputStream& out) {
this->writeOpCode(opCode, 5, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
OutputStream& out) {
this->writeOpCode(opCode, 6, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, OutputStream& out) {
this->writeOpCode(opCode, 7, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, int32_t word7, OutputStream& out) {
this->writeOpCode(opCode, 8, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
this->writeWord(word7, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, int32_t word7, int32_t word8,
OutputStream& out) {
this->writeOpCode(opCode, 9, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
this->writeWord(word7, out);
this->writeWord(word8, out);
}
void SPIRVCodeGenerator::writeCapabilities(OutputStream& out) {
for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) {
if (fCapabilities & bit) {
this->writeInstruction(SpvOpCapability, (SpvId) i, out);
}
}
if (fProgram.fKind == Program::kGeometry_Kind) {
this->writeInstruction(SpvOpCapability, SpvCapabilityGeometry, out);
}
else {
this->writeInstruction(SpvOpCapability, SpvCapabilityShader, out);
}
}
SpvId SPIRVCodeGenerator::nextId() {
return fIdCount++;
}
void SPIRVCodeGenerator::writeStruct(const Type& type, const MemoryLayout& memoryLayout,
SpvId resultId) {
this->writeInstruction(SpvOpName, resultId, type.name().c_str(), fNameBuffer);
// go ahead and write all of the field types, so we don't inadvertently write them while we're
// in the middle of writing the struct instruction
std::vector<SpvId> types;
for (const auto& f : type.fields()) {
types.push_back(this->getType(*f.fType, memoryLayout));
}
this->writeOpCode(SpvOpTypeStruct, 2 + (int32_t) types.size(), fConstantBuffer);
this->writeWord(resultId, fConstantBuffer);
for (SpvId id : types) {
this->writeWord(id, fConstantBuffer);
}
size_t offset = 0;
for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) {
const Type::Field& field = type.fields()[i];
size_t size = memoryLayout.size(*field.fType);
size_t alignment = memoryLayout.alignment(*field.fType);
const Layout& fieldLayout = field.fModifiers.fLayout;
if (fieldLayout.fOffset >= 0) {
if (fieldLayout.fOffset < (int) offset) {
fErrors.error(type.fOffset,
"offset of field '" + field.fName + "' must be at "
"least " + to_string((int) offset));
}
if (fieldLayout.fOffset % alignment) {
fErrors.error(type.fOffset,
"offset of field '" + field.fName + "' must be a multiple"
" of " + to_string((int) alignment));
}
offset = fieldLayout.fOffset;
} else {
size_t mod = offset % alignment;
if (mod) {
offset += alignment - mod;
}
}
this->writeInstruction(SpvOpMemberName, resultId, i, field.fName, fNameBuffer);
this->writeLayout(fieldLayout, resultId, i);
if (field.fModifiers.fLayout.fBuiltin < 0) {
this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset,
(SpvId) offset, fDecorationBuffer);
}
if (field.fType->typeKind() == Type::TypeKind::kMatrix) {
this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor,
fDecorationBuffer);
this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride,
(SpvId) memoryLayout.stride(*field.fType),
fDecorationBuffer);
}
if (!field.fType->highPrecision()) {
this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i,
SpvDecorationRelaxedPrecision, fDecorationBuffer);
}
offset += size;
Type::TypeKind kind = field.fType->typeKind();
if ((kind == Type::TypeKind::kArray || kind == Type::TypeKind::kStruct) &&
offset % alignment != 0) {
offset += alignment - offset % alignment;
}
}
}
Type SPIRVCodeGenerator::getActualType(const Type& type) {
if (type.isFloat()) {
return *fContext.fFloat_Type;
}
if (type.isSigned()) {
return *fContext.fInt_Type;
}
if (type.isUnsigned()) {
return *fContext.fUInt_Type;
}
if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) {
if (type.componentType() == *fContext.fHalf_Type) {
return fContext.fFloat_Type->toCompound(fContext, type.columns(), type.rows());
}
if (type.componentType() == *fContext.fShort_Type ||
type.componentType() == *fContext.fByte_Type) {
return fContext.fInt_Type->toCompound(fContext, type.columns(), type.rows());
}
if (type.componentType() == *fContext.fUShort_Type ||
type.componentType() == *fContext.fUByte_Type) {
return fContext.fUInt_Type->toCompound(fContext, type.columns(), type.rows());
}
}
return type;
}
SpvId SPIRVCodeGenerator::getType(const Type& type) {
return this->getType(type, fDefaultLayout);
}
SpvId SPIRVCodeGenerator::getType(const Type& rawType, const MemoryLayout& layout) {
Type type = this->getActualType(rawType);
String key = type.name() + to_string((int) layout.fStd);
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
switch (type.typeKind()) {
case Type::TypeKind::kScalar:
if (type == *fContext.fBool_Type) {
this->writeInstruction(SpvOpTypeBool, result, fConstantBuffer);
} else if (type == *fContext.fInt_Type || type == *fContext.fShort_Type ||
type == *fContext.fIntLiteral_Type) {
this->writeInstruction(SpvOpTypeInt, result, 32, 1, fConstantBuffer);
} else if (type == *fContext.fUInt_Type || type == *fContext.fUShort_Type) {
this->writeInstruction(SpvOpTypeInt, result, 32, 0, fConstantBuffer);
} else if (type == *fContext.fFloat_Type || type == *fContext.fHalf_Type ||
type == *fContext.fFloatLiteral_Type) {
this->writeInstruction(SpvOpTypeFloat, result, 32, fConstantBuffer);
} else {
SkASSERT(false);
}
break;
case Type::TypeKind::kVector:
this->writeInstruction(SpvOpTypeVector, result,
this->getType(type.componentType(), layout),
type.columns(), fConstantBuffer);
break;
case Type::TypeKind::kMatrix:
this->writeInstruction(SpvOpTypeMatrix, result,
this->getType(index_type(fContext, type), layout),
type.columns(), fConstantBuffer);
break;
case Type::TypeKind::kStruct:
this->writeStruct(type, layout, result);
break;
case Type::TypeKind::kArray: {
if (type.columns() > 0) {
IntLiteral count(fContext, -1, type.columns());
this->writeInstruction(SpvOpTypeArray, result,
this->getType(type.componentType(), layout),
this->writeIntLiteral(count), fConstantBuffer);
this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride,
(int32_t) layout.stride(type),
fDecorationBuffer);
} else {
SkASSERT(false); // we shouldn't have any runtime-sized arrays right now
this->writeInstruction(SpvOpTypeRuntimeArray, result,
this->getType(type.componentType(), layout),
fConstantBuffer);
this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride,
(int32_t) layout.stride(type),
fDecorationBuffer);
}
break;
}
case Type::TypeKind::kSampler: {
SpvId image = result;
if (SpvDimSubpassData != type.dimensions()) {
image = this->getType(type.textureType(), layout);
}
if (SpvDimBuffer == type.dimensions()) {
fCapabilities |= (((uint64_t) 1) << SpvCapabilitySampledBuffer);
}
if (SpvDimSubpassData != type.dimensions()) {
this->writeInstruction(SpvOpTypeSampledImage, result, image, fConstantBuffer);
}
break;
}
case Type::TypeKind::kSeparateSampler: {
this->writeInstruction(SpvOpTypeSampler, result, fConstantBuffer);
break;
}
case Type::TypeKind::kTexture: {
this->writeInstruction(SpvOpTypeImage, result,
this->getType(*fContext.fFloat_Type, layout),
type.dimensions(), type.isDepth(), type.isArrayed(),
type.isMultisampled(), type.isSampled() ? 1 : 2,
SpvImageFormatUnknown, fConstantBuffer);
fImageTypeMap[key] = result;
break;
}
default:
if (type == *fContext.fVoid_Type) {
this->writeInstruction(SpvOpTypeVoid, result, fConstantBuffer);
} else {
#ifdef SK_DEBUG
ABORT("invalid type: %s", type.description().c_str());
#endif
}
}
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::getImageType(const Type& type) {
SkASSERT(type.typeKind() == Type::TypeKind::kSampler);
this->getType(type);
String key = type.name() + to_string((int) fDefaultLayout.fStd);
SkASSERT(fImageTypeMap.find(key) != fImageTypeMap.end());
return fImageTypeMap[key];
}
SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) {
String key = to_string(this->getType(function.fReturnType)) + "(";
String separator;
for (size_t i = 0; i < function.fParameters.size(); i++) {
key += separator;
separator = ", ";
key += to_string(this->getType(function.fParameters[i]->type()));
}
key += ")";
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
int32_t length = 3 + (int32_t) function.fParameters.size();
SpvId returnType = this->getType(function.fReturnType);
std::vector<SpvId> parameterTypes;
for (size_t i = 0; i < function.fParameters.size(); i++) {
// glslang seems to treat all function arguments as pointers whether they need to be or
// not. I was initially puzzled by this until I ran bizarre failures with certain
// patterns of function calls and control constructs, as exemplified by this minimal
// failure case:
//
// void sphere(float x) {
// }
//
// void map() {
// sphere(1.0);
// }
//
// void main() {
// for (int i = 0; i < 1; i++) {
// map();
// }
// }
//
// As of this writing, compiling this in the "obvious" way (with sphere taking a float)
// crashes. Making it take a float* and storing the argument in a temporary variable,
// as glslang does, fixes it. It's entirely possible I simply missed whichever part of
// the spec makes this make sense.
// if (is_out(function->fParameters[i])) {
parameterTypes.push_back(this->getPointerType(function.fParameters[i]->type(),
SpvStorageClassFunction));
// } else {
// parameterTypes.push_back(this->getType(function.fParameters[i]->fType));
// }
}
this->writeOpCode(SpvOpTypeFunction, length, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
this->writeWord(returnType, fConstantBuffer);
for (SpvId id : parameterTypes) {
this->writeWord(id, fConstantBuffer);
}
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::getPointerType(const Type& type, SpvStorageClass_ storageClass) {
return this->getPointerType(type, fDefaultLayout, storageClass);
}
SpvId SPIRVCodeGenerator::getPointerType(const Type& rawType, const MemoryLayout& layout,
SpvStorageClass_ storageClass) {
Type type = this->getActualType(rawType);
String key = type.displayName() + "*" + to_string(layout.fStd) + to_string(storageClass);
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpTypePointer, result, storageClass,
this->getType(type), fConstantBuffer);
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, OutputStream& out) {
switch (expr.kind()) {
case Expression::Kind::kBinary:
return this->writeBinaryExpression(expr.as<BinaryExpression>(), out);
case Expression::Kind::kBoolLiteral:
return this->writeBoolLiteral(expr.as<BoolLiteral>());
case Expression::Kind::kConstructor:
return this->writeConstructor(expr.as<Constructor>(), out);
case Expression::Kind::kIntLiteral:
return this->writeIntLiteral(expr.as<IntLiteral>());
case Expression::Kind::kFieldAccess:
return this->writeFieldAccess(expr.as<FieldAccess>(), out);
case Expression::Kind::kFloatLiteral:
return this->writeFloatLiteral(expr.as<FloatLiteral>());
case Expression::Kind::kFunctionCall:
return this->writeFunctionCall(expr.as<FunctionCall>(), out);
case Expression::Kind::kPrefix:
return this->writePrefixExpression(expr.as<PrefixExpression>(), out);
case Expression::Kind::kPostfix:
return this->writePostfixExpression(expr.as<PostfixExpression>(), out);
case Expression::Kind::kSwizzle:
return this->writeSwizzle(expr.as<Swizzle>(), out);
case Expression::Kind::kVariableReference:
return this->writeVariableReference(expr.as<VariableReference>(), out);
case Expression::Kind::kTernary:
return this->writeTernaryExpression(expr.as<TernaryExpression>(), out);
case Expression::Kind::kIndex:
return this->writeIndexExpression(expr.as<IndexExpression>(), out);
default:
#ifdef SK_DEBUG
ABORT("unsupported expression: %s", expr.description().c_str());
#endif
break;
}
return -1;
}
SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, OutputStream& out) {
auto intrinsic = fIntrinsicMap.find(c.fFunction.fName);
SkASSERT(intrinsic != fIntrinsicMap.end());
int32_t intrinsicId;
if (c.fArguments.size() > 0) {
const Type& type = c.fArguments[0]->type();
if (std::get<0>(intrinsic->second) == kSpecial_IntrinsicKind || is_float(fContext, type)) {
intrinsicId = std::get<1>(intrinsic->second);
} else if (is_signed(fContext, type)) {
intrinsicId = std::get<2>(intrinsic->second);
} else if (is_unsigned(fContext, type)) {
intrinsicId = std::get<3>(intrinsic->second);
} else if (is_bool(fContext, type)) {
intrinsicId = std::get<4>(intrinsic->second);
} else {
intrinsicId = std::get<1>(intrinsic->second);
}
} else {
intrinsicId = std::get<1>(intrinsic->second);
}
switch (std::get<0>(intrinsic->second)) {
case kGLSL_STD_450_IntrinsicKind: {
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
arguments.push_back(this->getLValue(*c.fArguments[i], out)->getPointer());
} else {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
}
this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.type()), out);
this->writeWord(result, out);
this->writeWord(fGLSLExtendedInstructions, out);
this->writeWord(intrinsicId, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kSPIRV_IntrinsicKind: {
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
arguments.push_back(this->getLValue(*c.fArguments[i], out)->getPointer());
} else {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
}
if (c.type() != *fContext.fVoid_Type) {
this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.type()), out);
this->writeWord(result, out);
} else {
this->writeOpCode((SpvOp_) intrinsicId, 1 + (int32_t) arguments.size(), out);
}
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kSpecial_IntrinsicKind:
return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out);
default:
ABORT("unsupported intrinsic kind");
}
}
std::vector<SpvId> SPIRVCodeGenerator::vectorize(
const std::vector<std::unique_ptr<Expression>>& args,
OutputStream& out) {
int vectorSize = 0;
for (const auto& a : args) {
if (a->type().typeKind() == Type::TypeKind::kVector) {
if (vectorSize) {
SkASSERT(a->type().columns() == vectorSize);
}
else {
vectorSize = a->type().columns();
}
}
}
std::vector<SpvId> result;
for (const auto& arg : args) {
const Type& argType = arg->type();
SpvId raw = this->writeExpression(*arg, out);
if (vectorSize && argType.typeKind() == Type::TypeKind::kScalar) {
SpvId vector = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + vectorSize, out);
this->writeWord(this->getType(argType.toCompound(fContext, vectorSize, 1)), out);
this->writeWord(vector, out);
for (int i = 0; i < vectorSize; i++) {
this->writeWord(raw, out);
}
this->writePrecisionModifier(argType, vector);
result.push_back(vector);
} else {
result.push_back(raw);
}
}
return result;
}
void SPIRVCodeGenerator::writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst,
SpvId signedInst, SpvId unsignedInst,
const std::vector<SpvId>& args,
OutputStream& out) {
this->writeOpCode(SpvOpExtInst, 5 + args.size(), out);
this->writeWord(this->getType(type), out);
this->writeWord(id, out);
this->writeWord(fGLSLExtendedInstructions, out);
if (is_float(fContext, type)) {
this->writeWord(floatInst, out);
} else if (is_signed(fContext, type)) {
this->writeWord(signedInst, out);
} else if (is_unsigned(fContext, type)) {
this->writeWord(unsignedInst, out);
} else {
SkASSERT(false);
}
for (SpvId a : args) {
this->writeWord(a, out);
}
}
SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind,
OutputStream& out) {
SpvId result = this->nextId();
const Type& callType = c.type();
switch (kind) {
case kAtan_SpecialIntrinsic: {
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(callType), out);
this->writeWord(result, out);
this->writeWord(fGLSLExtendedInstructions, out);
this->writeWord(arguments.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
break;
}
case kSampledImage_SpecialIntrinsic: {
SkASSERT(2 == c.fArguments.size());
SpvId img = this->writeExpression(*c.fArguments[0], out);
SpvId sampler = this->writeExpression(*c.fArguments[1], out);
this->writeInstruction(SpvOpSampledImage,
this->getType(callType),
result,
img,
sampler,
out);
break;
}
case kSubpassLoad_SpecialIntrinsic: {
SpvId img = this->writeExpression(*c.fArguments[0], out);
std::vector<std::unique_ptr<Expression>> args;
args.emplace_back(new IntLiteral(fContext, -1, 0));
args.emplace_back(new IntLiteral(fContext, -1, 0));
Constructor ctor(-1, fContext.fInt2_Type.get(), std::move(args));
SpvId coords = this->writeConstantVector(ctor);
if (1 == c.fArguments.size()) {
this->writeInstruction(SpvOpImageRead,
this->getType(callType),
result,
img,
coords,
out);
} else {
SkASSERT(2 == c.fArguments.size());
SpvId sample = this->writeExpression(*c.fArguments[1], out);
this->writeInstruction(SpvOpImageRead,
this->getType(callType),
result,
img,
coords,
SpvImageOperandsSampleMask,
sample,
out);
}
break;
}
case kTexture_SpecialIntrinsic: {
SpvOp_ op = SpvOpImageSampleImplicitLod;
const Type& arg1Type = c.fArguments[1]->type();
switch (c.fArguments[0]->type().dimensions()) {
case SpvDim1D:
if (arg1Type == *fContext.fFloat2_Type) {
op = SpvOpImageSampleProjImplicitLod;
} else {
SkASSERT(arg1Type == *fContext.fFloat_Type);
}
break;
case SpvDim2D:
if (arg1Type == *fContext.fFloat3_Type) {
op = SpvOpImageSampleProjImplicitLod;
} else {
SkASSERT(arg1Type == *fContext.fFloat2_Type);
}
break;
case SpvDim3D:
if (arg1Type == *fContext.fFloat4_Type) {
op = SpvOpImageSampleProjImplicitLod;
} else {
SkASSERT(arg1Type == *fContext.fFloat3_Type);
}
break;
case SpvDimCube: // fall through
case SpvDimRect: // fall through
case SpvDimBuffer: // fall through
case SpvDimSubpassData:
break;
}
SpvId type = this->getType(callType);
SpvId sampler = this->writeExpression(*c.fArguments[0], out);
SpvId uv = this->writeExpression(*c.fArguments[1], out);
if (c.fArguments.size() == 3) {
this->writeInstruction(op, type, result, sampler, uv,
SpvImageOperandsBiasMask,
this->writeExpression(*c.fArguments[2], out),
out);
} else {
SkASSERT(c.fArguments.size() == 2);
if (fProgram.fSettings.fSharpenTextures) {
FloatLiteral lodBias(fContext, -1, -0.5);
this->writeInstruction(op, type, result, sampler, uv,
SpvImageOperandsBiasMask,
this->writeFloatLiteral(lodBias),
out);
} else {
this->writeInstruction(op, type, result, sampler, uv,
out);
}
}
break;
}
case kMod_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 2);
const Type& operandType = c.fArguments[0]->type();
SpvOp_ op;
if (is_float(fContext, operandType)) {
op = SpvOpFMod;
} else if (is_signed(fContext, operandType)) {
op = SpvOpSMod;
} else if (is_unsigned(fContext, operandType)) {
op = SpvOpUMod;
} else {
SkASSERT(false);
return 0;
}
this->writeOpCode(op, 5, out);
this->writeWord(this->getType(operandType), out);
this->writeWord(result, out);
this->writeWord(args[0], out);
this->writeWord(args[1], out);
break;
}
case kDFdy_SpecialIntrinsic: {
SpvId fn = this->writeExpression(*c.fArguments[0], out);
this->writeOpCode(SpvOpDPdy, 4, out);
this->writeWord(this->getType(callType), out);
this->writeWord(result, out);
this->writeWord(fn, out);
if (fProgram.fSettings.fFlipY) {
// Flipping Y also negates the Y derivatives.
SpvId flipped = this->nextId();
this->writeInstruction(SpvOpFNegate, this->getType(callType), flipped, result,
out);
this->writePrecisionModifier(callType, flipped);
return flipped;
}
break;
}
case kClamp_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 3);
this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp,
GLSLstd450UClamp, args, out);
break;
}
case kMax_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 2);
this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMax, GLSLstd450SMax,
GLSLstd450UMax, args, out);
break;
}
case kMin_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 2);
this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMin, GLSLstd450SMin,
GLSLstd450UMin, args, out);
break;
}
case kMix_SpecialIntrinsic: {
std::vector<SpvId> args = this->vectorize(c.fArguments, out);
SkASSERT(args.size() == 3);
this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMix, SpvOpUndef,
SpvOpUndef, args, out);
break;
}
case kSaturate_SpecialIntrinsic: {
SkASSERT(c.fArguments.size() == 1);
std::vector<std::unique_ptr<Expression>> finalArgs;
finalArgs.push_back(c.fArguments[0]->clone());
finalArgs.emplace_back(new FloatLiteral(fContext, -1, 0));
finalArgs.emplace_back(new FloatLiteral(fContext, -1, 1));
std::vector<SpvId> spvArgs = this->vectorize(finalArgs, out);
this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp,
GLSLstd450UClamp, spvArgs, out);
break;
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, OutputStream& out) {
const auto& entry = fFunctionMap.find(&c.fFunction);
if (entry == fFunctionMap.end()) {
return this->writeIntrinsicCall(c, out);
}
// stores (variable, type, lvalue) pairs to extract and save after the function call is complete
std::vector<std::tuple<SpvId, const Type*, std::unique_ptr<LValue>>> lvalues;
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
// id of temporary variable that we will use to hold this argument, or 0 if it is being
// passed directly
SpvId tmpVar;
// if we need a temporary var to store this argument, this is the value to store in the var
SpvId tmpValueId;
if (is_out(*c.fFunction.fParameters[i])) {
std::unique_ptr<LValue> lv = this->getLValue(*c.fArguments[i], out);
SpvId ptr = lv->getPointer();
if (ptr) {
arguments.push_back(ptr);
continue;
} else {
// lvalue cannot simply be read and written via a pointer (e.g. a swizzle). Need to
// copy it into a temp, call the function, read the value out of the temp, and then
// update the lvalue.
tmpValueId = lv->load(out);
tmpVar = this->nextId();
lvalues.push_back(std::make_tuple(tmpVar, &c.fArguments[i]->type(), std::move(lv)));
}
} else {
// see getFunctionType for an explanation of why we're always using pointer parameters
tmpValueId = this->writeExpression(*c.fArguments[i], out);
tmpVar = this->nextId();
}
this->writeInstruction(SpvOpVariable,
this->getPointerType(c.fArguments[i]->type(),
SpvStorageClassFunction),
tmpVar,
SpvStorageClassFunction,
fVariableBuffer);
this->writeInstruction(SpvOpStore, tmpVar, tmpValueId, out);
arguments.push_back(tmpVar);
}
SpvId result = this->nextId();
this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t) c.fArguments.size(), out);
this->writeWord(this->getType(c.type()), out);
this->writeWord(result, out);
this->writeWord(entry->second, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
// now that the call is complete, we may need to update some lvalues with the new values of out
// arguments
for (const auto& tuple : lvalues) {
SpvId load = this->nextId();
this->writeInstruction(SpvOpLoad, getType(*std::get<1>(tuple)), load, std::get<0>(tuple),
out);
this->writePrecisionModifier(*std::get<1>(tuple), load);
std::get<2>(tuple)->store(load, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeConstantVector(const Constructor& c) {
const Type& type = c.type();
SkASSERT(type.typeKind() == Type::TypeKind::kVector && c.isCompileTimeConstant());
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (const std::unique_ptr<Expression>& arg : c.arguments()) {
arguments.push_back(this->writeExpression(*arg, fConstantBuffer));
}
SpvId typeId = this->getType(type);
if (c.arguments().size() == 1) {
// with a single argument, a vector will have all of its entries equal to the argument
this->writeOpCode(SpvOpConstantComposite, 3 + type.columns(), fConstantBuffer);
this->writeWord(typeId, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
for (int i = 0; i < type.columns(); i++) {
this->writeWord(arguments[0], fConstantBuffer);
}
} else {
this->writeOpCode(SpvOpConstantComposite, 3 + (int32_t) c.arguments().size(),
fConstantBuffer);
this->writeWord(typeId, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
for (SpvId id : arguments) {
this->writeWord(id, fConstantBuffer);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeFloatConstructor(const Constructor& c, OutputStream& out) {
const Type& constructorType = c.type();
SkASSERT(c.arguments().size() == 1);
const Type& argType = c.arguments()[0]->type();
SkASSERT(constructorType.isFloat());
SkASSERT(argType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.arguments()[0], out);
if (argType.isSigned()) {
this->writeInstruction(SpvOpConvertSToF, this->getType(constructorType), result, parameter,
out);
} else {
SkASSERT(argType.isUnsigned());
this->writeInstruction(SpvOpConvertUToF, this->getType(constructorType), result, parameter,
out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeIntConstructor(const Constructor& c, OutputStream& out) {
const Type& constructorType = c.type();
SkASSERT(c.arguments().size() == 1);
const Type& argType = c.arguments()[0]->type();
SkASSERT(constructorType.isSigned());
SkASSERT(argType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.arguments()[0], out);
if (argType.isFloat()) {
this->writeInstruction(SpvOpConvertFToS, this->getType(constructorType), result, parameter,
out);
}
else {
SkASSERT(argType.isUnsigned());
this->writeInstruction(SpvOpBitcast, this->getType(constructorType), result, parameter,
out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeUIntConstructor(const Constructor& c, OutputStream& out) {
const Type& constructorType = c.type();
SkASSERT(c.arguments().size() == 1);
const Type& argType = c.arguments()[0]->type();
SkASSERT(constructorType.isUnsigned());
SkASSERT(argType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.arguments()[0], out);
if (argType.isFloat()) {
this->writeInstruction(SpvOpConvertFToU, this->getType(constructorType), result, parameter,
out);
} else {
SkASSERT(argType.isSigned());
this->writeInstruction(SpvOpBitcast, this->getType(constructorType), result, parameter,
out);
}
return result;
}
void SPIRVCodeGenerator::writeUniformScaleMatrix(SpvId id, SpvId diagonal, const Type& type,
OutputStream& out) {
FloatLiteral zero(fContext, -1, 0);
SpvId zeroId = this->writeFloatLiteral(zero);
std::vector<SpvId> columnIds;
for (int column = 0; column < type.columns(); column++) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + type.rows(),
out);
this->writeWord(this->getType(type.componentType().toCompound(fContext, type.rows(), 1)),
out);
SpvId columnId = this->nextId();
this->writeWord(columnId, out);
columnIds.push_back(columnId);
for (int row = 0; row < type.columns(); row++) {
this->writeWord(row == column ? diagonal : zeroId, out);
}
this->writePrecisionModifier(type, columnId);
}
this->writeOpCode(SpvOpCompositeConstruct, 3 + type.columns(),
out);
this->writeWord(this->getType(type), out);
this->writeWord(id, out);
for (SpvId columnId : columnIds) {
this->writeWord(columnId, out);
}
this->writePrecisionModifier(type, id);
}
void SPIRVCodeGenerator::writeMatrixCopy(SpvId id, SpvId src, const Type& srcType,
const Type& dstType, OutputStream& out) {
SkASSERT(srcType.typeKind() == Type::TypeKind::kMatrix);
SkASSERT(dstType.typeKind() == Type::TypeKind::kMatrix);
SkASSERT(srcType.componentType() == dstType.componentType());
SpvId srcColumnType = this->getType(srcType.componentType().toCompound(fContext,
srcType.rows(),
1));
SpvId dstColumnType = this->getType(dstType.componentType().toCompound(fContext,
dstType.rows(),
1));
SpvId zeroId;
if (dstType.componentType() == *fContext.fFloat_Type) {
FloatLiteral zero(fContext, -1, 0.0);
zeroId = this->writeFloatLiteral(zero);
} else if (dstType.componentType() == *fContext.fInt_Type) {
IntLiteral zero(fContext, -1, 0);
zeroId = this->writeIntLiteral(zero);
} else {
ABORT("unsupported matrix component type");
}
SpvId zeroColumn = 0;
SpvId columns[4];
for (int i = 0; i < dstType.columns(); i++) {
if (i < srcType.columns()) {
// we're still inside the src matrix, copy the column
SpvId srcColumn = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, srcColumnType, srcColumn, src, i, out);
this->writePrecisionModifier(dstType, srcColumn);
SpvId dstColumn;
if (srcType.rows() == dstType.rows()) {
// columns are equal size, don't need to do anything
dstColumn = srcColumn;
}
else if (dstType.rows() > srcType.rows()) {
// dst column is bigger, need to zero-pad it
dstColumn = this->nextId();
int delta = dstType.rows() - srcType.rows();
this->writeOpCode(SpvOpCompositeConstruct, 4 + delta, out);
this->writeWord(dstColumnType, out);
this->writeWord(dstColumn, out);
this->writeWord(srcColumn, out);
for (int j = 0; j < delta; ++j) {
this->writeWord(zeroId, out);
}
this->writePrecisionModifier(dstType, dstColumn);
}
else {
// dst column is smaller, need to swizzle the src column
dstColumn = this->nextId();
int count = dstType.rows();
this->writeOpCode(SpvOpVectorShuffle, 5 + count, out);
this->writeWord(dstColumnType, out);
this->writeWord(dstColumn, out);
this->writeWord(srcColumn, out);
this->writeWord(srcColumn, out);
for (int j = 0; j < count; j++) {
this->writeWord(j, out);
}
this->writePrecisionModifier(dstType, dstColumn);
}
columns[i] = dstColumn;
} else {
// we're past the end of the src matrix, need a vector of zeroes
if (!zeroColumn) {
zeroColumn = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + dstType.rows(), out);
this->writeWord(dstColumnType, out);
this->writeWord(zeroColumn, out);
for (int j = 0; j < dstType.rows(); ++j) {
this->writeWord(zeroId, out);
}
this->writePrecisionModifier(dstType, zeroColumn);
}
columns[i] = zeroColumn;
}
}
this->writeOpCode(SpvOpCompositeConstruct, 3 + dstType.columns(), out);
this->writeWord(this->getType(dstType), out);
this->writeWord(id, out);
for (int i = 0; i < dstType.columns(); i++) {
this->writeWord(columns[i], out);
}
this->writePrecisionModifier(dstType, id);
}
void SPIRVCodeGenerator::addColumnEntry(SpvId columnType, Precision precision,
std::vector<SpvId>* currentColumn,
std::vector<SpvId>* columnIds,
int* currentCount, int rows, SpvId entry,
OutputStream& out) {
SkASSERT(*currentCount < rows);
++(*currentCount);
currentColumn->push_back(entry);
if (*currentCount == rows) {
*currentCount = 0;
this->writeOpCode(SpvOpCompositeConstruct, 3 + currentColumn->size(), out);
this->writeWord(columnType, out);
SpvId columnId = this->nextId();
this->writeWord(columnId, out);
columnIds->push_back(columnId);
for (SpvId id : *currentColumn) {
this->writeWord(id, out);
}
currentColumn->clear();
this->writePrecisionModifier(precision, columnId);
}
}
SpvId SPIRVCodeGenerator::writeMatrixConstructor(const Constructor& c, OutputStream& out) {
const Type& type = c.type();
SkASSERT(type.typeKind() == Type::TypeKind::kMatrix);
SkASSERT(c.arguments().size() > 0);
const Type& arg0Type = c.arguments()[0]->type();
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.arguments().size(); i++) {
arguments.push_back(this->writeExpression(*c.arguments()[i], out));
}
SpvId result = this->nextId();
int rows = type.rows();
int columns = type.columns();
if (arguments.size() == 1 && arg0Type.typeKind() == Type::TypeKind::kScalar) {
this->writeUniformScaleMatrix(result, arguments[0], type, out);
} else if (arguments.size() == 1 && arg0Type.typeKind() == Type::TypeKind::kMatrix) {
this->writeMatrixCopy(result, arguments[0], arg0Type, type, out);
} else if (arguments.size() == 1 &&
arg0Type.typeKind() == Type::TypeKind::kVector) {
SkASSERT(type.rows() == 2 && type.columns() == 2);
SkASSERT(arg0Type.columns() == 4);
SpvId componentType = this->getType(type.componentType());
SpvId v[4];
for (int i = 0; i < 4; ++i) {
v[i] = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, componentType, v[i], arguments[0], i,
out);
}
SpvId columnType = this->getType(type.componentType().toCompound(fContext, 2, 1));
SpvId column1 = this->nextId();
this->writeInstruction(SpvOpCompositeConstruct, columnType, column1, v[0], v[1], out);
SpvId column2 = this->nextId();
this->writeInstruction(SpvOpCompositeConstruct, columnType, column2, v[2], v[3], out);
this->writeInstruction(SpvOpCompositeConstruct, this->getType(type), result, column1,
column2, out);
} else {
SpvId columnType = this->getType(type.componentType().toCompound(fContext, rows, 1));
std::vector<SpvId> columnIds;
// ids of vectors and scalars we have written to the current column so far
std::vector<SpvId> currentColumn;
// the total number of scalars represented by currentColumn's entries
int currentCount = 0;
Precision precision = type.highPrecision() ? Precision::kHigh : Precision::kLow;
for (size_t i = 0; i < arguments.size(); i++) {
const Type& argType = c.arguments()[i]->type();
if (currentCount == 0 && argType.typeKind() == Type::TypeKind::kVector &&
argType.columns() == type.rows()) {
// this is a complete column by itself
columnIds.push_back(arguments[i]);
} else {
if (argType.columns() == 1) {
this->addColumnEntry(columnType, precision, &currentColumn, &columnIds,
&currentCount, rows, arguments[i], out);
} else {
SpvId componentType = this->getType(argType.componentType());
for (int j = 0; j < argType.columns(); ++j) {
SpvId swizzle = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, componentType, swizzle,
arguments[i], j, out);
this->addColumnEntry(columnType, precision, &currentColumn, &columnIds,
&currentCount, rows, swizzle, out);
}
}
}
}
SkASSERT(columnIds.size() == (size_t) columns);
this->writeOpCode(SpvOpCompositeConstruct, 3 + columns, out);
this->writeWord(this->getType(type), out);
this->writeWord(result, out);
for (SpvId id : columnIds) {
this->writeWord(id, out);
}
}
this->writePrecisionModifier(type, result);
return result;
}
SpvId SPIRVCodeGenerator::writeVectorConstructor(const Constructor& c, OutputStream& out) {
const Type& type = c.type();
SkASSERT(type.typeKind() == Type::TypeKind::kVector);
if (c.isCompileTimeConstant()) {
return this->writeConstantVector(c);
}
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.arguments().size(); i++) {
const Type& argType = c.arguments()[i]->type();
if (argType.typeKind() == Type::TypeKind::kVector) {
// SPIR-V doesn't support vector(vector-of-different-type) directly, so we need to
// extract the components and convert them in that case manually. On top of that,
// as of this writing there's a bug in the Intel Vulkan driver where OpCreateComposite
// doesn't handle vector arguments at all, so we always extract vector components and
// pass them into OpCreateComposite individually.
SpvId vec = this->writeExpression(*c.arguments()[i], out);
SpvOp_ op = SpvOpUndef;
const Type& src = argType.componentType();
const Type& dst = type.componentType();
if (dst == *fContext.fFloat_Type || dst == *fContext.fHalf_Type) {
if (src == *fContext.fFloat_Type || src == *fContext.fHalf_Type) {
if (c.arguments().size() == 1) {
return vec;
}
} else if (src == *fContext.fInt_Type ||
src == *fContext.fShort_Type ||
src == *fContext.fByte_Type) {
op = SpvOpConvertSToF;
} else if (src == *fContext.fUInt_Type ||
src == *fContext.fUShort_Type ||
src == *fContext.fUByte_Type) {
op = SpvOpConvertUToF;
} else {
SkASSERT(false);
}
} else if (dst == *fContext.fInt_Type ||
dst == *fContext.fShort_Type ||
dst == *fContext.fByte_Type) {
if (src == *fContext.fFloat_Type || src == *fContext.fHalf_Type) {
op = SpvOpConvertFToS;
} else if (src == *fContext.fInt_Type ||
src == *fContext.fShort_Type ||
src == *fContext.fByte_Type) {
if (c.arguments().size() == 1) {
return vec;
}
} else if (src == *fContext.fUInt_Type ||
src == *fContext.fUShort_Type ||
src == *fContext.fUByte_Type) {
op = SpvOpBitcast;
} else {
SkASSERT(false);
}
} else if (dst == *fContext.fUInt_Type ||
dst == *fContext.fUShort_Type ||
dst == *fContext.fUByte_Type) {
if (src == *fContext.fFloat_Type || src == *fContext.fHalf_Type) {
op = SpvOpConvertFToS;
} else if (src == *fContext.fInt_Type ||
src == *fContext.fShort_Type ||
src == *fContext.fByte_Type) {
op = SpvOpBitcast;
} else if (src == *fContext.fUInt_Type ||
src == *fContext.fUShort_Type ||
src == *fContext.fUByte_Type) {
if (c.arguments().size() == 1) {
return vec;
}
} else {
SkASSERT(false);
}
}
for (int j = 0; j < argType.columns(); j++) {
SpvId swizzle = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(src), swizzle, vec, j,
out);
if (op != SpvOpUndef) {
SpvId cast = this->nextId();
this->writeInstruction(op, this->getType(dst), cast, swizzle, out);
arguments.push_back(cast);
} else {
arguments.push_back(swizzle);
}
}
} else {
arguments.push_back(this->writeExpression(*c.arguments()[i], out));
}
}
SpvId result = this->nextId();
if (arguments.size() == 1 && c.arguments()[0]->type().typeKind() == Type::TypeKind::kScalar) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + type.columns(), out);
this->writeWord(this->getType(type), out);
this->writeWord(result, out);
for (int i = 0; i < type.columns(); i++) {
this->writeWord(arguments[0], out);
}
} else {
SkASSERT(arguments.size() > 1);
this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(type), out);
this->writeWord(result, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeArrayConstructor(const Constructor& c, OutputStream& out) {
const Type& type = c.type();
SkASSERT(type.typeKind() == Type::TypeKind::kArray);
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.arguments().size(); i++) {
arguments.push_back(this->writeExpression(*c.arguments()[i], out));
}
SpvId result = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) c.arguments().size(), out);
this->writeWord(this->getType(type), out);
this->writeWord(result, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeConstructor(const Constructor& c, OutputStream& out) {
const Type& type = c.type();
if (c.arguments().size() == 1 &&
this->getActualType(type) == this->getActualType(c.arguments()[0]->type())) {
return this->writeExpression(*c.arguments()[0], out);
}
if (type == *fContext.fFloat_Type || type == *fContext.fHalf_Type) {
return this->writeFloatConstructor(c, out);
} else if (type == *fContext.fInt_Type ||
type == *fContext.fShort_Type ||
type == *fContext.fByte_Type) {
return this->writeIntConstructor(c, out);
} else if (type == *fContext.fUInt_Type ||
type == *fContext.fUShort_Type ||
type == *fContext.fUByte_Type) {
return this->writeUIntConstructor(c, out);
}
switch (type.typeKind()) {
case Type::TypeKind::kVector:
return this->writeVectorConstructor(c, out);
case Type::TypeKind::kMatrix:
return this->writeMatrixConstructor(c, out);
case Type::TypeKind::kArray:
return this->writeArrayConstructor(c, out);
default:
#ifdef SK_DEBUG
ABORT("unsupported constructor: %s", c.description().c_str());
#endif
return -1;
}
}
SpvStorageClass_ get_storage_class(const Modifiers& modifiers) {
if (modifiers.fFlags & Modifiers::kIn_Flag) {
SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag));
return SpvStorageClassInput;
} else if (modifiers.fFlags & Modifiers::kOut_Flag) {
SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag));
return SpvStorageClassOutput;
} else if (modifiers.fFlags & Modifiers::kUniform_Flag) {
if (modifiers.fLayout.fFlags & Layout::kPushConstant_Flag) {
return SpvStorageClassPushConstant;
}
return SpvStorageClassUniform;
} else {
return SpvStorageClassFunction;
}
}
SpvStorageClass_ get_storage_class(const Expression& expr) {
switch (expr.kind()) {
case Expression::Kind::kVariableReference: {
const Variable& var = *expr.as<VariableReference>().fVariable;
if (var.fStorage != Variable::kGlobal_Storage) {
return SpvStorageClassFunction;
}
SpvStorageClass_ result = get_storage_class(var.fModifiers);
if (result == SpvStorageClassFunction) {
result = SpvStorageClassPrivate;
}
return result;
}
case Expression::Kind::kFieldAccess:
return get_storage_class(*expr.as<FieldAccess>().fBase);
case Expression::Kind::kIndex:
return get_storage_class(*expr.as<IndexExpression>().fBase);
default:
return SpvStorageClassFunction;
}
}
std::vector<SpvId> SPIRVCodeGenerator::getAccessChain(const Expression& expr, OutputStream& out) {
std::vector<SpvId> chain;
switch (expr.kind()) {
case Expression::Kind::kIndex: {
IndexExpression& indexExpr = (IndexExpression&) expr;
chain = this->getAccessChain(*indexExpr.fBase, out);
chain.push_back(this->writeExpression(*indexExpr.fIndex, out));
break;
}
case Expression::Kind::kFieldAccess: {
FieldAccess& fieldExpr = (FieldAccess&) expr;
chain = this->getAccessChain(*fieldExpr.fBase, out);
IntLiteral index(fContext, -1, fieldExpr.fFieldIndex);
chain.push_back(this->writeIntLiteral(index));
break;
}
default: {
SpvId id = this->getLValue(expr, out)->getPointer();
SkASSERT(id != 0);
chain.push_back(id);
}
}
return chain;
}
class PointerLValue : public SPIRVCodeGenerator::LValue {
public:
PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, SpvId type,
SPIRVCodeGenerator::Precision precision)
: fGen(gen)
, fPointer(pointer)
, fType(type)
, fPrecision(precision) {}
SpvId getPointer() override {
return fPointer;
}
SpvId load(OutputStream& out) override {
SpvId result = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fType, result, fPointer, out);
fGen.writePrecisionModifier(fPrecision, result);
return result;
}
void store(SpvId value, OutputStream& out) override {
fGen.writeInstruction(SpvOpStore, fPointer, value, out);
}
private:
SPIRVCodeGenerator& fGen;
const SpvId fPointer;
const SpvId fType;
const SPIRVCodeGenerator::Precision fPrecision;
};
class SwizzleLValue : public SPIRVCodeGenerator::LValue {
public:
SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const std::vector<int>& components,
const Type& baseType, const Type& swizzleType,
SPIRVCodeGenerator::Precision precision)
: fGen(gen)
, fVecPointer(vecPointer)
, fComponents(components)
, fBaseType(baseType)
, fSwizzleType(swizzleType)
, fPrecision(precision) {}
SpvId getPointer() override {
return 0;
}
SpvId load(OutputStream& out) override {
SpvId base = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out);
fGen.writePrecisionModifier(fPrecision, base);
SpvId result = fGen.nextId();
fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out);
fGen.writeWord(fGen.getType(fSwizzleType), out);
fGen.writeWord(result, out);
fGen.writeWord(base, out);
fGen.writeWord(base, out);
for (int component : fComponents) {
fGen.writeWord(component, out);
}
fGen.writePrecisionModifier(fPrecision, result);
return result;
}
void store(SpvId value, OutputStream& out) override {
// use OpVectorShuffle to mix and match the vector components. We effectively create
// a virtual vector out of the concatenation of the left and right vectors, and then
// select components from this virtual vector to make the result vector. For
// instance, given:
// float3L = ...;
// float3R = ...;
// L.xz = R.xy;
// we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want
// our result vector to look like (R.x, L.y, R.y), so we need to select indices
// (3, 1, 4).
SpvId base = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out);
SpvId shuffle = fGen.nextId();
fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType.columns(), out);
fGen.writeWord(fGen.getType(fBaseType), out);
fGen.writeWord(shuffle, out);
fGen.writeWord(base, out);
fGen.writeWord(value, out);
for (int i = 0; i < fBaseType.columns(); i++) {
// current offset into the virtual vector, defaults to pulling the unmodified
// value from the left side
int offset = i;
// check to see if we are writing this component
for (size_t j = 0; j < fComponents.size(); j++) {
if (fComponents[j] == i) {
// we're writing to this component, so adjust the offset to pull from
// the correct component of the right side instead of preserving the
// value from the left
offset = (int) (j + fBaseType.columns());
break;
}
}
fGen.writeWord(offset, out);
}
fGen.writePrecisionModifier(fPrecision, shuffle);
fGen.writeInstruction(SpvOpStore, fVecPointer, shuffle, out);
}
private:
SPIRVCodeGenerator& fGen;
const SpvId fVecPointer;
const std::vector<int>& fComponents;
const Type& fBaseType;
const Type& fSwizzleType;
const SPIRVCodeGenerator::Precision fPrecision;
};
std::unique_ptr<SPIRVCodeGenerator::LValue> SPIRVCodeGenerator::getLValue(const Expression& expr,
OutputStream& out) {
const Type& type = expr.type();
Precision precision = type.highPrecision() ? Precision::kHigh : Precision::kLow;
switch (expr.kind()) {
case Expression::Kind::kVariableReference: {
SpvId typeId;
const Variable& var = *expr.as<VariableReference>().fVariable;
if (var.fModifiers.fLayout.fBuiltin == SK_IN_BUILTIN) {
typeId = this->getType(Type("sk_in", Type::TypeKind::kArray,
var.type().componentType(), fSkInCount));
} else {
typeId = this->getType(type);
}
auto entry = fVariableMap.find(&var);
SkASSERT(entry != fVariableMap.end());
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(*this,
entry->second,
typeId,
precision));
}
case Expression::Kind::kIndex: // fall through
case Expression::Kind::kFieldAccess: {
std::vector<SpvId> chain = this->getAccessChain(expr, out);
SpvId member = this->nextId();
this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out);
this->writeWord(this->getPointerType(type, get_storage_class(expr)), out);
this->writeWord(member, out);
for (SpvId idx : chain) {
this->writeWord(idx, out);
}
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
member,
this->getType(type),
precision));
}
case Expression::Kind::kSwizzle: {
Swizzle& swizzle = (Swizzle&) expr;
size_t count = swizzle.fComponents.size();
SpvId base = this->getLValue(*swizzle.fBase, out)->getPointer();
SkASSERT(base);
if (count == 1) {
IntLiteral index(fContext, -1, swizzle.fComponents[0]);
SpvId member = this->nextId();
this->writeInstruction(SpvOpAccessChain,
this->getPointerType(type,
get_storage_class(*swizzle.fBase)),
member,
base,
this->writeIntLiteral(index),
out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
member,
this->getType(type),
precision));
} else {
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new SwizzleLValue(
*this,
base,
swizzle.fComponents,
swizzle.fBase->type(),
type,
precision));
}
}
case Expression::Kind::kTernary: {
TernaryExpression& t = (TernaryExpression&) expr;
SpvId test = this->writeExpression(*t.fTest, out);
SpvId end = this->nextId();
SpvId ifTrueLabel = this->nextId();
SpvId ifFalseLabel = this->nextId();
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, ifTrueLabel, ifFalseLabel, out);
this->writeLabel(ifTrueLabel, out);
SpvId ifTrue = this->getLValue(*t.fIfTrue, out)->getPointer();
SkASSERT(ifTrue);
this->writeInstruction(SpvOpBranch, end, out);
ifTrueLabel = fCurrentBlock;
SpvId ifFalse = this->getLValue(*t.fIfFalse, out)->getPointer();
SkASSERT(ifFalse);
ifFalseLabel = fCurrentBlock;
this->writeInstruction(SpvOpBranch, end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, ifTrue,
ifTrueLabel, ifFalse, ifFalseLabel, out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
result,
this->getType(type),
precision));
}
default: {
// expr isn't actually an lvalue, create a dummy variable for it. This case happens due
// to the need to store values in temporary variables during function calls (see
// comments in getFunctionType); erroneous uses of rvalues as lvalues should have been
// caught by IRGenerator
SpvId result = this->nextId();
SpvId pointerType = this->getPointerType(type, SpvStorageClassFunction);
this->writeInstruction(SpvOpVariable, pointerType, result, SpvStorageClassFunction,
fVariableBuffer);
this->writeInstruction(SpvOpStore, result, this->writeExpression(expr, out), out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
result,
this->getType(type),
precision));
}
}
}
SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, OutputStream& out) {
SpvId result = this->nextId();
auto entry = fVariableMap.find(ref.fVariable);
SkASSERT(entry != fVariableMap.end());
SpvId var = entry->second;
this->writeInstruction(SpvOpLoad, this->getType(ref.fVariable->type()), result, var, out);
this->writePrecisionModifier(ref.fVariable->type(), result);
if (ref.fVariable->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN &&
(fProgram.fSettings.fFlipY || fProgram.fSettings.fInverseW)) {
// The x component never changes, so just grab it
SpvId xId = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(*fContext.fFloat_Type), xId,
result, 0, out);
// Calculate the y component which may need to be flipped
SpvId rawYId = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(*fContext.fFloat_Type), rawYId,
result, 1, out);
SpvId flippedYId = 0;
if (fProgram.fSettings.fFlipY) {
// need to remap to a top-left coordinate system
if (fRTHeightStructId == (SpvId)-1) {
// height variable hasn't been written yet
std::shared_ptr<SymbolTable> st(new SymbolTable(&fErrors));
SkASSERT(fRTHeightFieldIndex == (SpvId)-1);
std::vector<Type::Field> fields;
SkASSERT(fProgram.fSettings.fRTHeightOffset >= 0);
fields.emplace_back(
Modifiers(Layout(0, -1, fProgram.fSettings.fRTHeightOffset, -1, -1, -1, -1,
-1, Layout::Format::kUnspecified,
Layout::kUnspecified_Primitive, 1, -1, "", "",
Layout::kNo_Key, Layout::CType::kDefault),
0),
SKSL_RTHEIGHT_NAME, fContext.fFloat_Type.get());
StringFragment name("sksl_synthetic_uniforms");
Type intfStruct(-1, name, fields);
int binding = fProgram.fSettings.fRTHeightBinding;
int set = fProgram.fSettings.fRTHeightSet;
SkASSERT(binding != -1 && set != -1);
Layout layout(0, -1, -1, binding, -1, set, -1, -1, Layout::Format::kUnspecified,
Layout::kUnspecified_Primitive, -1, -1, "", "", Layout::kNo_Key,
Layout::CType::kDefault);
const Variable* intfVar = fSynthetics.takeOwnershipOfSymbol(
std::make_unique<Variable>(/*offset=*/-1,
Modifiers(layout, Modifiers::kUniform_Flag),
name,
&intfStruct,
/*builtin=*/false,
Variable::kGlobal_Storage));
InterfaceBlock intf(-1, intfVar, name, String(""),
std::vector<std::unique_ptr<Expression>>(), st);
fRTHeightStructId = this->writeInterfaceBlock(intf, false);
fRTHeightFieldIndex = 0;
}
SkASSERT(fRTHeightFieldIndex != (SpvId)-1);
IntLiteral fieldIndex(fContext, -1, fRTHeightFieldIndex);
SpvId fieldIndexId = this->writeIntLiteral(fieldIndex);
SpvId heightPtr = this->nextId();
this->writeOpCode(SpvOpAccessChain, 5, out);
this->writeWord(this->getPointerType(*fContext.fFloat_Type, SpvStorageClassUniform),
out);
this->writeWord(heightPtr, out);
this->writeWord(fRTHeightStructId, out);
this->writeWord(fieldIndexId, out);
SpvId heightRead = this->nextId();
this->writeInstruction(SpvOpLoad, this->getType(*fContext.fFloat_Type), heightRead,
heightPtr, out);
flippedYId = this->nextId();
this->writeInstruction(SpvOpFSub, this->getType(*fContext.fFloat_Type), flippedYId,
heightRead, rawYId, out);
}
// The z component will always be zero so we just get an id to the 0 literal
FloatLiteral zero(fContext, -1, 0.0);
SpvId zeroId = writeFloatLiteral(zero);
// Calculate the w component which may need to be inverted
SpvId rawWId = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, this->getType(*fContext.fFloat_Type), rawWId,
result, 3, out);
SpvId invWId = 0;
if (fProgram.fSettings.fInverseW) {
// We need to invert w
FloatLiteral one(fContext, -1, 1.0);
SpvId oneId = writeFloatLiteral(one);
invWId = this->nextId();
this->writeInstruction(SpvOpFDiv, this->getType(*fContext.fFloat_Type), invWId, oneId,
rawWId, out);
}
// Fill in the new fragcoord with the components from above
SpvId adjusted = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 7, out);
this->writeWord(this->getType(*fContext.fFloat4_Type), out);
this->writeWord(adjusted, out);
this->writeWord(xId, out);
if (fProgram.fSettings.fFlipY) {
this->writeWord(flippedYId, out);
} else {
this->writeWord(rawYId, out);
}
this->writeWord(zeroId, out);
if (fProgram.fSettings.fInverseW) {
this->writeWord(invWId, out);
} else {
this->writeWord(rawWId, out);
}
return adjusted;
}
if (ref.fVariable->fModifiers.fLayout.fBuiltin == SK_CLOCKWISE_BUILTIN &&
!fProgram.fSettings.fFlipY) {
// FrontFacing in Vulkan is defined in terms of a top-down render target. In skia, we use
// the default convention of "counter-clockwise face is front".
SpvId inverse = this->nextId();
this->writeInstruction(SpvOpLogicalNot, this->getType(*fContext.fBool_Type), inverse,
result, out);
return inverse;
}
return result;
}
SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, OutputStream& out) {
if (expr.fBase->type().typeKind() == Type::TypeKind::kVector) {
SpvId base = this->writeExpression(*expr.fBase, out);
SpvId index = this->writeExpression(*expr.fIndex, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpVectorExtractDynamic, this->getType(expr.type()), result, base,
index, out);
return result;
}
return getLValue(expr, out)->load(out);
}
SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, OutputStream& out) {
return getLValue(f, out)->load(out);
}
SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, OutputStream& out) {
SpvId base = this->writeExpression(*swizzle.fBase, out);
SpvId result = this->nextId();
size_t count = swizzle.fComponents.size();
if (count == 1) {
this->writeInstruction(SpvOpCompositeExtract, this->getType(swizzle.type()), result, base,
swizzle.fComponents[0], out);
} else {
this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out);
this->writeWord(this->getType(swizzle.type()), out);
this->writeWord(result, out);
this->writeWord(base, out);
this->writeWord(base, out);
for (int component : swizzle.fComponents) {
this->writeWord(component, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType,
const Type& operandType, SpvId lhs,
SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt,
SpvOp_ ifUInt, SpvOp_ ifBool, OutputStream& out) {
SpvId result = this->nextId();
if (is_float(fContext, operandType)) {
this->writeInstruction(ifFloat, this->getType(resultType), result, lhs, rhs, out);
} else if (is_signed(fContext, operandType)) {
this->writeInstruction(ifInt, this->getType(resultType), result, lhs, rhs, out);
} else if (is_unsigned(fContext, operandType)) {
this->writeInstruction(ifUInt, this->getType(resultType), result, lhs, rhs, out);
} else if (operandType == *fContext.fBool_Type) {
this->writeInstruction(ifBool, this->getType(resultType), result, lhs, rhs, out);
return result; // skip RelaxedPrecision check
} else {
#ifdef SK_DEBUG
ABORT("invalid operandType: %s", operandType.description().c_str());
#endif
}
if (getActualType(resultType) == operandType && !resultType.highPrecision()) {
this->writeInstruction(SpvOpDecorate, result, SpvDecorationRelaxedPrecision,
fDecorationBuffer);
}
return result;
}
SpvId SPIRVCodeGenerator::foldToBool(SpvId id, const Type& operandType, SpvOp op,
OutputStream& out) {
if (operandType.typeKind() == Type::TypeKind::kVector) {
SpvId result = this->nextId();
this->writeInstruction(op, this->getType(*fContext.fBool_Type), result, id, out);
return result;
}
return id;
}
SpvId SPIRVCodeGenerator::writeMatrixComparison(const Type& operandType, SpvId lhs, SpvId rhs,
SpvOp_ floatOperator, SpvOp_ intOperator,
SpvOp_ vectorMergeOperator, SpvOp_ mergeOperator,
OutputStream& out) {
SpvOp_ compareOp = is_float(fContext, operandType) ? floatOperator : intOperator;
SkASSERT(operandType.typeKind() == Type::TypeKind::kMatrix);
SpvId columnType = this->getType(operandType.componentType().toCompound(fContext,
operandType.rows(),
1));
SpvId bvecType = this->getType(fContext.fBool_Type->toCompound(fContext,
operandType.rows(),
1));
SpvId boolType = this->getType(*fContext.fBool_Type);
SpvId result = 0;
for (int i = 0; i < operandType.columns(); i++) {
SpvId columnL = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, columnType, columnL, lhs, i, out);
SpvId columnR = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, columnType, columnR, rhs, i, out);
SpvId compare = this->nextId();
this->writeInstruction(compareOp, bvecType, compare, columnL, columnR, out);
SpvId merge = this->nextId();
this->writeInstruction(vectorMergeOperator, boolType, merge, compare, out);
if (result != 0) {
SpvId next = this->nextId();
this->writeInstruction(mergeOperator, boolType, next, result, merge, out);
result = next;
}
else {
result = merge;
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeComponentwiseMatrixBinary(const Type& operandType, SpvId lhs,
SpvId rhs, SpvOp_ floatOperator,
SpvOp_ intOperator,
OutputStream& out) {
SpvOp_ op = is_float(fContext, operandType) ? floatOperator : intOperator;
SkASSERT(operandType.typeKind() == Type::TypeKind::kMatrix);
SpvId columnType = this->getType(operandType.componentType().toCompound(fContext,
operandType.rows(),
1));
SpvId columns[4];
for (int i = 0; i < operandType.columns(); i++) {
SpvId columnL = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, columnType, columnL, lhs, i, out);
SpvId columnR = this->nextId();
this->writeInstruction(SpvOpCompositeExtract, columnType, columnR, rhs, i, out);
columns[i] = this->nextId();
this->writeInstruction(op, columnType, columns[i], columnL, columnR, out);
}
SpvId result = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + operandType.columns(), out);
this->writeWord(this->getType(operandType), out);
this->writeWord(result, out);
for (int i = 0; i < operandType.columns(); i++) {
this->writeWord(columns[i], out);
}
return result;
}
std::unique_ptr<Expression> create_literal_1(const Context& context, const Type& type) {
if (type.isInteger()) {
return std::unique_ptr<Expression>(new IntLiteral(-1, 1, &type));
}
else if (type.isFloat()) {
return std::unique_ptr<Expression>(new FloatLiteral(-1, 1.0, &type));
} else {
ABORT("math is unsupported on type '%s'", type.name().c_str());
}
}
SpvId SPIRVCodeGenerator::writeBinaryExpression(const Type& leftType, SpvId lhs, Token::Kind op,
const Type& rightType, SpvId rhs,
const Type& resultType, OutputStream& out) {
Type tmp("<invalid>");
// overall type we are operating on: float2, int, uint4...
const Type* operandType;
// IR allows mismatched types in expressions (e.g. float2 * float), but they need special
// handling in SPIR-V
if (this->getActualType(leftType) != this->getActualType(rightType)) {
if (leftType.typeKind() == Type::TypeKind::kVector && rightType.isNumber()) {
if (op == Token::Kind::TK_SLASH) {
SpvId one = this->writeExpression(*create_literal_1(fContext, rightType), out);
SpvId inverse = this->nextId();
this->writeInstruction(SpvOpFDiv, this->getType(rightType), inverse, one, rhs, out);
rhs = inverse;
op = Token::Kind::TK_STAR;
}
if (op == Token::Kind::TK_STAR) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType),
result, lhs, rhs, out);
return result;
}
// promote number to vector
SpvId vec = this->nextId();
const Type& vecType = leftType;
this->writeOpCode(SpvOpCompositeConstruct, 3 + vecType.columns(), out);
this->writeWord(this->getType(vecType), out);
this->writeWord(vec, out);
for (int i = 0; i < vecType.columns(); i++) {
this->writeWord(rhs, out);
}
rhs = vec;
operandType = &leftType;
} else if (rightType.typeKind() == Type::TypeKind::kVector && leftType.isNumber()) {
if (op == Token::Kind::TK_STAR) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpVectorTimesScalar, this->getType(resultType),
result, rhs, lhs, out);
return result;
}
// promote number to vector
SpvId vec = this->nextId();
const Type& vecType = rightType;
this->writeOpCode(SpvOpCompositeConstruct, 3 + vecType.columns(), out);
this->writeWord(this->getType(vecType), out);
this->writeWord(vec, out);
for (int i = 0; i < vecType.columns(); i++) {
this->writeWord(lhs, out);
}
lhs = vec;
operandType = &rightType;
} else if (leftType.typeKind() == Type::TypeKind::kMatrix) {
SpvOp_ spvop;
if (rightType.typeKind() == Type::TypeKind::kMatrix) {
spvop = SpvOpMatrixTimesMatrix;
} else if (rightType.typeKind() == Type::TypeKind::kVector) {
spvop = SpvOpMatrixTimesVector;
} else {
SkASSERT(rightType.typeKind() == Type::TypeKind::kScalar);
spvop = SpvOpMatrixTimesScalar;
}
SpvId result = this->nextId();
this->writeInstruction(spvop, this->getType(resultType), result, lhs, rhs, out);
return result;
} else if (rightType.typeKind() == Type::TypeKind::kMatrix) {
SpvId result = this->nextId();
if (leftType.typeKind() == Type::TypeKind::kVector) {
this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(resultType), result,
lhs, rhs, out);
} else {
SkASSERT(leftType.typeKind() == Type::TypeKind::kScalar);
this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(resultType), result,
rhs, lhs, out);
}
return result;
} else {
SkASSERT(false);
return -1;
}
} else {
tmp = this->getActualType(leftType);
operandType = &tmp;
SkASSERT(*operandType == this->getActualType(rightType));
}
switch (op) {
case Token::Kind::TK_EQEQ: {
if (operandType->typeKind() == Type::TypeKind::kMatrix) {
return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdEqual,
SpvOpIEqual, SpvOpAll, SpvOpLogicalAnd, out);
}
SkASSERT(resultType == *fContext.fBool_Type);
const Type* tmpType;
if (operandType->typeKind() == Type::TypeKind::kVector) {
tmpType = &fContext.fBool_Type->toCompound(fContext,
operandType->columns(),
operandType->rows());
} else {
tmpType = &resultType;
}
return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs,
SpvOpFOrdEqual, SpvOpIEqual,
SpvOpIEqual, SpvOpLogicalEqual, out),
*operandType, SpvOpAll, out);
}
case Token::Kind::TK_NEQ:
if (operandType->typeKind() == Type::TypeKind::kMatrix) {
return this->writeMatrixComparison(*operandType, lhs, rhs, SpvOpFOrdNotEqual,
SpvOpINotEqual, SpvOpAny, SpvOpLogicalOr, out);
}
SkASSERT(resultType == *fContext.fBool_Type);
const Type* tmpType;
if (operandType->typeKind() == Type::TypeKind::kVector) {
tmpType = &fContext.fBool_Type->toCompound(fContext,
operandType->columns(),
operandType->rows());
} else {
tmpType = &resultType;
}
return this->foldToBool(this->writeBinaryOperation(*tmpType, *operandType, lhs, rhs,
SpvOpFOrdNotEqual, SpvOpINotEqual,
SpvOpINotEqual, SpvOpLogicalNotEqual,
out),
*operandType, SpvOpAny, out);
case Token::Kind::TK_GT:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdGreaterThan, SpvOpSGreaterThan,
SpvOpUGreaterThan, SpvOpUndef, out);
case Token::Kind::TK_LT:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan,
SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out);
case Token::Kind::TK_GTEQ:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual,
SpvOpUGreaterThanEqual, SpvOpUndef, out);
case Token::Kind::TK_LTEQ:
SkASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual,
SpvOpULessThanEqual, SpvOpUndef, out);
case Token::Kind::TK_PLUS:
if (leftType.typeKind() == Type::TypeKind::kMatrix &&
rightType.typeKind() == Type::TypeKind::kMatrix) {
SkASSERT(leftType == rightType);
return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs,
SpvOpFAdd, SpvOpIAdd, out);
}
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
case Token::Kind::TK_MINUS:
if (leftType.typeKind() == Type::TypeKind::kMatrix &&
rightType.typeKind() == Type::TypeKind::kMatrix) {
SkASSERT(leftType == rightType);
return this->writeComponentwiseMatrixBinary(leftType, lhs, rhs,
SpvOpFSub, SpvOpISub, out);
}
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
case Token::Kind::TK_STAR:
if (leftType.typeKind() == Type::TypeKind::kMatrix &&
rightType.typeKind() == Type::TypeKind::kMatrix) {
// matrix multiply
SpvId result = this->nextId();
this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result,
lhs, rhs, out);
return result;
}
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul,
SpvOpIMul, SpvOpIMul, SpvOpUndef, out);
case Token::Kind::TK_SLASH:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv,
SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out);
case Token::Kind::TK_PERCENT:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMod,
SpvOpSMod, SpvOpUMod, SpvOpUndef, out);
case Token::Kind::TK_SHL:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpShiftLeftLogical, SpvOpShiftLeftLogical,
SpvOpUndef, out);
case Token::Kind::TK_SHR:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpShiftRightArithmetic, SpvOpShiftRightLogical,
SpvOpUndef, out);
case Token::Kind::TK_BITWISEAND:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpBitwiseAnd, SpvOpBitwiseAnd, SpvOpUndef, out);
case Token::Kind::TK_BITWISEOR:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpBitwiseOr, SpvOpBitwiseOr, SpvOpUndef, out);
case Token::Kind::TK_BITWISEXOR:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpUndef,
SpvOpBitwiseXor, SpvOpBitwiseXor, SpvOpUndef, out);
case Token::Kind::TK_COMMA:
return rhs;
default:
SkASSERT(false);
return -1;
}
}
SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, OutputStream& out) {
const Expression& left = b.left();
const Expression& right = b.right();
Token::Kind op = b.getOperator();
// handle cases where we don't necessarily evaluate both LHS and RHS
switch (op) {
case Token::Kind::TK_EQ: {
SpvId rhs = this->writeExpression(right, out);
this->getLValue(left, out)->store(rhs, out);
return rhs;
}
case Token::Kind::TK_LOGICALAND:
return this->writeLogicalAnd(b, out);
case Token::Kind::TK_LOGICALOR:
return this->writeLogicalOr(b, out);
default:
break;
}
std::unique_ptr<LValue> lvalue;
SpvId lhs;
if (Compiler::IsAssignment(op)) {
lvalue = this->getLValue(left, out);
lhs = lvalue->load(out);
} else {
lvalue = nullptr;
lhs = this->writeExpression(left, out);
}
SpvId rhs = this->writeExpression(right, out);
SpvId result = this->writeBinaryExpression(left.type(), lhs, Compiler::RemoveAssignment(op),
right.type(), rhs, b.type(), out);
if (lvalue) {
lvalue->store(result, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeLogicalAnd(const BinaryExpression& a, OutputStream& out) {
SkASSERT(a.getOperator() == Token::Kind::TK_LOGICALAND);
BoolLiteral falseLiteral(fContext, -1, false);
SpvId falseConstant = this->writeBoolLiteral(falseLiteral);
SpvId lhs = this->writeExpression(a.left(), out);
SpvId rhsLabel = this->nextId();
SpvId end = this->nextId();
SpvId lhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, lhs, rhsLabel, end, out);
this->writeLabel(rhsLabel, out);
SpvId rhs = this->writeExpression(a.right(), out);
SpvId rhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, falseConstant,
lhsBlock, rhs, rhsBlock, out);
return result;
}
SpvId SPIRVCodeGenerator::writeLogicalOr(const BinaryExpression& o, OutputStream& out) {
SkASSERT(o.getOperator() == Token::Kind::TK_LOGICALOR);
BoolLiteral trueLiteral(fContext, -1, true);
SpvId trueConstant = this->writeBoolLiteral(trueLiteral);
SpvId lhs = this->writeExpression(o.left(), out);
SpvId rhsLabel = this->nextId();
SpvId end = this->nextId();
SpvId lhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, lhs, end, rhsLabel, out);
this->writeLabel(rhsLabel, out);
SpvId rhs = this->writeExpression(o.right(), out);
SpvId rhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, trueConstant,
lhsBlock, rhs, rhsBlock, out);
return result;
}
SpvId SPIRVCodeGenerator::writeTernaryExpression(const TernaryExpression& t, OutputStream& out) {
const Type& type = t.type();
SpvId test = this->writeExpression(*t.fTest, out);
if (t.fIfTrue->type().columns() == 1 &&
t.fIfTrue->isCompileTimeConstant() &&
t.fIfFalse->isCompileTimeConstant()) {
// both true and false are constants, can just use OpSelect
SpvId result = this->nextId();
SpvId trueId = this->writeExpression(*t.fIfTrue, out);
SpvId falseId = this->writeExpression(*t.fIfFalse, out);
this->writeInstruction(SpvOpSelect, this->getType(type), result, test, trueId, falseId,
out);
return result;
}
// was originally using OpPhi to choose the result, but for some reason that is crashing on
// Adreno. Switched to storing the result in a temp variable as glslang does.
SpvId var = this->nextId();
this->writeInstruction(SpvOpVariable, this->getPointerType(type, SpvStorageClassFunction),
var, SpvStorageClassFunction, fVariableBuffer);
SpvId trueLabel = this->nextId();
SpvId falseLabel = this->nextId();
SpvId end = this->nextId();
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, trueLabel, falseLabel, out);
this->writeLabel(trueLabel, out);
this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.fIfTrue, out), out);
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(falseLabel, out);
this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.fIfFalse, out), out);
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpLoad, this->getType(type), result, var, out);
this->writePrecisionModifier(type, result);
return result;
}
SpvId SPIRVCodeGenerator::writePrefixExpression(const PrefixExpression& p, OutputStream& out) {
const Type& type = p.type();
if (p.fOperator == Token::Kind::TK_MINUS) {
SpvId result = this->nextId();
SpvId typeId = this->getType(type);
SpvId expr = this->writeExpression(*p.fOperand, out);
if (is_float(fContext, type)) {
this->writeInstruction(SpvOpFNegate, typeId, result, expr, out);
} else if (is_signed(fContext, type)) {
this->writeInstruction(SpvOpSNegate, typeId, result, expr, out);
} else {
#ifdef SK_DEBUG
ABORT("unsupported prefix expression %s", p.description().c_str());
#endif
}
this->writePrecisionModifier(type, result);
return result;
}
switch (p.fOperator) {
case Token::Kind::TK_PLUS:
return this->writeExpression(*p.fOperand, out);
case Token::Kind::TK_PLUSPLUS: {
std::unique_ptr<LValue> lv = this->getLValue(*p.fOperand, out);
SpvId one = this->writeExpression(*create_literal_1(fContext, type), out);
SpvId result = this->writeBinaryOperation(type, type, lv->load(out), one,
SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef,
out);
lv->store(result, out);
return result;
}
case Token::Kind::TK_MINUSMINUS: {
std::unique_ptr<LValue> lv = this->getLValue(*p.fOperand, out);
SpvId one = this->writeExpression(*create_literal_1(fContext, type), out);
SpvId result = this->writeBinaryOperation(type, type, lv->load(out), one, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
lv->store(result, out);
return result;
}
case Token::Kind::TK_LOGICALNOT: {
SkASSERT(p.fOperand->type() == *fContext.fBool_Type);
SpvId result = this->nextId();
this->writeInstruction(SpvOpLogicalNot, this->getType(p.fOperand->type()), result,
this->writeExpression(*p.fOperand, out), out);
return result;
}
case Token::Kind::TK_BITWISENOT: {
SpvId result = this->nextId();
this->writeInstruction(SpvOpNot, this->getType(p.fOperand->type()), result,
this->writeExpression(*p.fOperand, out), out);
return result;
}
default:
#ifdef SK_DEBUG
ABORT("unsupported prefix expression: %s", p.description().c_str());
#endif
return -1;
}
}
SpvId SPIRVCodeGenerator::writePostfixExpression(const PostfixExpression& p, OutputStream& out) {
const Type& type = p.type();
std::unique_ptr<LValue> lv = this->getLValue(*p.fOperand, out);
SpvId result = lv->load(out);
SpvId one = this->writeExpression(*create_literal_1(fContext, type), out);
switch (p.fOperator) {
case Token::Kind::TK_PLUSPLUS: {
SpvId temp = this->writeBinaryOperation(type, type, result, one, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
lv->store(temp, out);
return result;
}
case Token::Kind::TK_MINUSMINUS: {
SpvId temp = this->writeBinaryOperation(type, type, result, one, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
lv->store(temp, out);
return result;
}
default:
#ifdef SK_DEBUG
ABORT("unsupported postfix expression %s", p.description().c_str());
#endif
return -1;
}
}
SpvId SPIRVCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
if (b.value()) {
if (fBoolTrue == 0) {
fBoolTrue = this->nextId();
this->writeInstruction(SpvOpConstantTrue, this->getType(b.type()), fBoolTrue,
fConstantBuffer);
}
return fBoolTrue;
} else {
if (fBoolFalse == 0) {
fBoolFalse = this->nextId();
this->writeInstruction(SpvOpConstantFalse, this->getType(b.type()), fBoolFalse,
fConstantBuffer);
}
return fBoolFalse;
}
}
SpvId SPIRVCodeGenerator::writeIntLiteral(const IntLiteral& i) {
const Type& type = i.type();
ConstantType constantType;
if (type == *fContext.fInt_Type) {
constantType = ConstantType::kInt;
} else if (type == *fContext.fUInt_Type) {
constantType = ConstantType::kUInt;
} else if (type == *fContext.fShort_Type || type == *fContext.fByte_Type) {
constantType = ConstantType::kShort;
} else if (type == *fContext.fUShort_Type || type == *fContext.fUByte_Type) {
constantType = ConstantType::kUShort;
} else {
SkASSERT(false);
}
std::pair<ConstantValue, ConstantType> key(i.value(), constantType);
auto entry = fNumberConstants.find(key);
if (entry == fNumberConstants.end()) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpConstant, this->getType(type), result, (SpvId) i.value(),
fConstantBuffer);
fNumberConstants[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
const Type& type = f.type();
ConstantType constantType;
if (type == *fContext.fHalf_Type) {
constantType = ConstantType::kHalf;
} else {
constantType = ConstantType::kFloat;
}
float value = (float) f.value();
std::pair<ConstantValue, ConstantType> key(f.value(), constantType);
auto entry = fNumberConstants.find(key);
if (entry == fNumberConstants.end()) {
SpvId result = this->nextId();
uint32_t bits;
SkASSERT(sizeof(bits) == sizeof(value));
memcpy(&bits, &value, sizeof(bits));
this->writeInstruction(SpvOpConstant, this->getType(type), result, bits,
fConstantBuffer);
fNumberConstants[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::writeFunctionStart(const FunctionDeclaration& f, OutputStream& out) {
SpvId result = fFunctionMap[&f];
this->writeInstruction(SpvOpFunction, this->getType(f.fReturnType), result,
SpvFunctionControlMaskNone, this->getFunctionType(f), out);
this->writeInstruction(SpvOpName, result, f.fName, fNameBuffer);
for (size_t i = 0; i < f.fParameters.size(); i++) {
SpvId id = this->nextId();
fVariableMap[f.fParameters[i]] = id;
SpvId type;
type = this->getPointerType(f.fParameters[i]->type(), SpvStorageClassFunction);
this->writeInstruction(SpvOpFunctionParameter, type, id, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeFunction(const FunctionDefinition& f, OutputStream& out) {
fVariableBuffer.reset();
SpvId result = this->writeFunctionStart(f.fDeclaration, out);
this->writeLabel(this->nextId(), out);
StringStream bodyBuffer;
this->writeBlock((Block&) *f.fBody, bodyBuffer);
write_stringstream(fVariableBuffer, out);
if (f.fDeclaration.fName == "main") {
write_stringstream(fGlobalInitializersBuffer, out);
}
write_stringstream(bodyBuffer, out);
if (fCurrentBlock) {
if (f.fDeclaration.fReturnType == *fContext.fVoid_Type) {
this->writeInstruction(SpvOpReturn, out);
} else {
this->writeInstruction(SpvOpUnreachable, out);
}
}
this->writeInstruction(SpvOpFunctionEnd, out);
return result;
}
void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target) {
if (layout.fLocation >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationLocation, layout.fLocation,
fDecorationBuffer);
}
if (layout.fBinding >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationBinding, layout.fBinding,
fDecorationBuffer);
}
if (layout.fIndex >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationIndex, layout.fIndex,
fDecorationBuffer);
}
if (layout.fSet >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationDescriptorSet, layout.fSet,
fDecorationBuffer);
}
if (layout.fInputAttachmentIndex >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationInputAttachmentIndex,
layout.fInputAttachmentIndex, fDecorationBuffer);
fCapabilities |= (((uint64_t) 1) << SpvCapabilityInputAttachment);
}
if (layout.fBuiltin >= 0 && layout.fBuiltin != SK_FRAGCOLOR_BUILTIN &&
layout.fBuiltin != SK_IN_BUILTIN && layout.fBuiltin != SK_OUT_BUILTIN) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationBuiltIn, layout.fBuiltin,
fDecorationBuffer);
}
}
void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target, int member) {
if (layout.fLocation >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationLocation,
layout.fLocation, fDecorationBuffer);
}
if (layout.fBinding >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBinding,
layout.fBinding, fDecorationBuffer);
}
if (layout.fIndex >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationIndex,
layout.fIndex, fDecorationBuffer);
}
if (layout.fSet >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationDescriptorSet,
layout.fSet, fDecorationBuffer);
}
if (layout.fInputAttachmentIndex >= 0) {
this->writeInstruction(SpvOpDecorate, target, member, SpvDecorationInputAttachmentIndex,
layout.fInputAttachmentIndex, fDecorationBuffer);
}
if (layout.fBuiltin >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBuiltIn,
layout.fBuiltin, fDecorationBuffer);
}
}
static void update_sk_in_count(const Modifiers& m, int* outSkInCount) {
switch (m.fLayout.fPrimitive) {
case Layout::kPoints_Primitive:
*outSkInCount = 1;
break;
case Layout::kLines_Primitive:
*outSkInCount = 2;
break;
case Layout::kLinesAdjacency_Primitive:
*outSkInCount = 4;
break;
case Layout::kTriangles_Primitive:
*outSkInCount = 3;
break;
case Layout::kTrianglesAdjacency_Primitive:
*outSkInCount = 6;
break;
default:
return;
}
}
SpvId SPIRVCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf, bool appendRTHeight) {
bool isBuffer = (0 != (intf.fVariable.fModifiers.fFlags & Modifiers::kBuffer_Flag));
bool pushConstant = (0 != (intf.fVariable.fModifiers.fLayout.fFlags &
Layout::kPushConstant_Flag));
MemoryLayout memoryLayout = (pushConstant || isBuffer) ?
MemoryLayout(MemoryLayout::k430_Standard) :
fDefaultLayout;
SpvId result = this->nextId();
const Type* type = &intf.fVariable.type();
if (fProgram.fInputs.fRTHeight && appendRTHeight) {
SkASSERT(fRTHeightStructId == (SpvId) -1);
SkASSERT(fRTHeightFieldIndex == (SpvId) -1);
std::vector<Type::Field> fields = type->fields();
fRTHeightStructId = result;
fRTHeightFieldIndex = fields.size();
fields.emplace_back(Modifiers(), StringFragment(SKSL_RTHEIGHT_NAME), fContext.fFloat_Type.get());
type = new Type(type->fOffset, type->name(), fields);
}
SpvId typeId;
if (intf.fVariable.fModifiers.fLayout.fBuiltin == SK_IN_BUILTIN) {
for (const auto& e : fProgram) {
if (e.kind() == ProgramElement::Kind::kModifiers) {
const Modifiers& m = ((ModifiersDeclaration&) e).fModifiers;
update_sk_in_count(m, &fSkInCount);
}
}
typeId = this->getType(Type("sk_in", Type::TypeKind::kArray,
intf.fVariable.type().componentType(),
fSkInCount),
memoryLayout);
} else {
typeId = this->getType(*type, memoryLayout);
}
if (intf.fVariable.fModifiers.fFlags & Modifiers::kBuffer_Flag) {
this->writeInstruction(SpvOpDecorate, typeId, SpvDecorationBufferBlock, fDecorationBuffer);
} else if (intf.fVariable.fModifiers.fLayout.fBuiltin == -1) {
this->writeInstruction(SpvOpDecorate, typeId, SpvDecorationBlock, fDecorationBuffer);
}
SpvStorageClass_ storageClass = get_storage_class(intf.fVariable.fModifiers);
SpvId ptrType = this->nextId();
this->writeInstruction(SpvOpTypePointer, ptrType, storageClass, typeId, fConstantBuffer);
this->writeInstruction(SpvOpVariable, ptrType, result, storageClass, fConstantBuffer);
Layout layout = intf.fVariable.fModifiers.fLayout;
if (intf.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag && layout.fSet == -1) {
layout.fSet = 0;
}
this->writeLayout(layout, result);
fVariableMap[&intf.fVariable] = result;
if (fProgram.fInputs.fRTHeight && appendRTHeight) {
delete type;
}
return result;
}
void SPIRVCodeGenerator::writePrecisionModifier(const Type& type, SpvId id) {
this->writePrecisionModifier(type.highPrecision() ? Precision::kHigh : Precision::kLow, id);
}
void SPIRVCodeGenerator::writePrecisionModifier(Precision precision, SpvId id) {
if (precision == Precision::kLow) {
this->writeInstruction(SpvOpDecorate, id, SpvDecorationRelaxedPrecision, fDecorationBuffer);
}
}
bool is_dead(const Variable& var) {
if (var.fReadCount || var.fWriteCount) {
return false;
}
// not entirely sure what the rules are for when it's safe to elide interface variables, but it
// causes various problems to elide some of them even when dead. But it also causes problems
// *not* to elide sk_SampleMask when it's not being used.
if (!(var.fModifiers.fFlags & (Modifiers::kIn_Flag |
Modifiers::kOut_Flag |
Modifiers::kUniform_Flag |
Modifiers::kBuffer_Flag))) {
return true;
}
return var.fModifiers.fLayout.fBuiltin == SK_SAMPLEMASK_BUILTIN;
}
#define BUILTIN_IGNORE 9999
void SPIRVCodeGenerator::writeGlobalVars(Program::Kind kind, const VarDeclarations& decl,
OutputStream& out) {
for (size_t i = 0; i < decl.fVars.size(); i++) {
if (decl.fVars[i]->kind() == Statement::Kind::kNop) {
continue;
}
const VarDeclaration& varDecl = (VarDeclaration&) *decl.fVars[i];
const Variable* var = varDecl.fVar;
// These haven't been implemented in our SPIR-V generator yet and we only currently use them
// in the OpenGL backend.
SkASSERT(!(var->fModifiers.fFlags & (Modifiers::kReadOnly_Flag |
Modifiers::kWriteOnly_Flag |
Modifiers::kCoherent_Flag |
Modifiers::kVolatile_Flag |
Modifiers::kRestrict_Flag)));
if (var->fModifiers.fLayout.fBuiltin == BUILTIN_IGNORE) {
continue;
}
if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOLOR_BUILTIN &&
kind != Program::kFragment_Kind) {
SkASSERT(!fProgram.fSettings.fFragColorIsInOut);
continue;
}
if (is_dead(*var)) {
continue;
}
const Type& type = var->type();
SpvStorageClass_ storageClass;
if (var->fModifiers.fFlags & Modifiers::kIn_Flag) {
storageClass = SpvStorageClassInput;
} else if (var->fModifiers.fFlags & Modifiers::kOut_Flag) {
storageClass = SpvStorageClassOutput;
} else if (var->fModifiers.fFlags & Modifiers::kUniform_Flag) {
if (type.typeKind() == Type::TypeKind::kSampler ||
type.typeKind() == Type::TypeKind::kSeparateSampler ||
type.typeKind() == Type::TypeKind::kTexture) {
storageClass = SpvStorageClassUniformConstant;
} else {
storageClass = SpvStorageClassUniform;
}
} else {
storageClass = SpvStorageClassPrivate;
}
SpvId id = this->nextId();
fVariableMap[var] = id;
SpvId typeId;
if (var->fModifiers.fLayout.fBuiltin == SK_IN_BUILTIN) {
typeId = this->getPointerType(Type("sk_in", Type::TypeKind::kArray,
type.componentType(), fSkInCount),
storageClass);
} else {
typeId = this->getPointerType(type, storageClass);
}
this->writeInstruction(SpvOpVariable, typeId, id, storageClass, fConstantBuffer);
this->writeInstruction(SpvOpName, id, var->fName, fNameBuffer);
this->writePrecisionModifier(type, id);
if (varDecl.fValue) {
SkASSERT(!fCurrentBlock);
fCurrentBlock = -1;
SpvId value = this->writeExpression(*varDecl.fValue, fGlobalInitializersBuffer);
this->writeInstruction(SpvOpStore, id, value, fGlobalInitializersBuffer);
fCurrentBlock = 0;
}
this->writeLayout(var->fModifiers.fLayout, id);
if (var->fModifiers.fFlags & Modifiers::kFlat_Flag) {
this->writeInstruction(SpvOpDecorate, id, SpvDecorationFlat, fDecorationBuffer);
}
if (var->fModifiers.fFlags & Modifiers::kNoPerspective_Flag) {
this->writeInstruction(SpvOpDecorate, id, SpvDecorationNoPerspective,
fDecorationBuffer);
}
}
}
void SPIRVCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, OutputStream& out) {
for (const auto& stmt : decl.fVars) {
SkASSERT(stmt->kind() == Statement::Kind::kVarDeclaration);
VarDeclaration& varDecl = (VarDeclaration&) *stmt;
const Variable* var = varDecl.fVar;
// These haven't been implemented in our SPIR-V generator yet and we only currently use them
// in the OpenGL backend.
SkASSERT(!(var->fModifiers.fFlags & (Modifiers::kReadOnly_Flag |
Modifiers::kWriteOnly_Flag |
Modifiers::kCoherent_Flag |
Modifiers::kVolatile_Flag |
Modifiers::kRestrict_Flag)));
SpvId id = this->nextId();
fVariableMap[var] = id;
SpvId type = this->getPointerType(var->type(), SpvStorageClassFunction);
this->writeInstruction(SpvOpVariable, type, id, SpvStorageClassFunction, fVariableBuffer);
this->writeInstruction(SpvOpName, id, var->fName, fNameBuffer);
if (varDecl.fValue) {
SpvId value = this->writeExpression(*varDecl.fValue, out);
this->writeInstruction(SpvOpStore, id, value, out);
}
}
}
void SPIRVCodeGenerator::writeStatement(const Statement& s, OutputStream& out) {
switch (s.kind()) {
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
break;
case Statement::Kind::kBlock:
this->writeBlock((Block&) s, out);
break;
case Statement::Kind::kExpression:
this->writeExpression(*s.as<ExpressionStatement>().expression(), out);
break;
case Statement::Kind::kReturn:
this->writeReturnStatement(s.as<ReturnStatement>(), out);
break;
case Statement::Kind::kVarDeclarations:
this->writeVarDeclarations(*s.as<VarDeclarationsStatement>().fDeclaration, out);
break;
case Statement::Kind::kIf:
this->writeIfStatement(s.as<IfStatement>(), out);
break;
case Statement::Kind::kFor:
this->writeForStatement(s.as<ForStatement>(), out);
break;
case Statement::Kind::kWhile:
this->writeWhileStatement(s.as<WhileStatement>(), out);
break;
case Statement::Kind::kDo:
this->writeDoStatement(s.as<DoStatement>(), out);
break;
case Statement::Kind::kSwitch:
this->writeSwitchStatement(s.as<SwitchStatement>(), out);
break;
case Statement::Kind::kBreak:
this->writeInstruction(SpvOpBranch, fBreakTarget.top(), out);
break;
case Statement::Kind::kContinue:
this->writeInstruction(SpvOpBranch, fContinueTarget.top(), out);
break;
case Statement::Kind::kDiscard:
this->writeInstruction(SpvOpKill, out);
break;
default:
#ifdef SK_DEBUG
ABORT("unsupported statement: %s", s.description().c_str());
#endif
break;
}
}
void SPIRVCodeGenerator::writeBlock(const Block& b, OutputStream& out) {
for (const std::unique_ptr<Statement>& stmt : b.children()) {
this->writeStatement(*stmt, out);
}
}
void SPIRVCodeGenerator::writeIfStatement(const IfStatement& stmt, OutputStream& out) {
SpvId test = this->writeExpression(*stmt.fTest, out);
SpvId ifTrue = this->nextId();
SpvId ifFalse = this->nextId();
if (stmt.fIfFalse) {
SpvId end = this->nextId();
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out);
this->writeLabel(ifTrue, out);
this->writeStatement(*stmt.fIfTrue, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, end, out);
}
this->writeLabel(ifFalse, out);
this->writeStatement(*stmt.fIfFalse, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, end, out);
}
this->writeLabel(end, out);
} else {
this->writeInstruction(SpvOpSelectionMerge, ifFalse, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out);
this->writeLabel(ifTrue, out);
this->writeStatement(*stmt.fIfTrue, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, ifFalse, out);
}
this->writeLabel(ifFalse, out);
}
}
void SPIRVCodeGenerator::writeForStatement(const ForStatement& f, OutputStream& out) {
if (f.fInitializer) {
this->writeStatement(*f.fInitializer, out);
}
SpvId header = this->nextId();
SpvId start = this->nextId();
SpvId body = this->nextId();
SpvId next = this->nextId();
fContinueTarget.push(next);
SpvId end = this->nextId();
fBreakTarget.push(end);
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(header, out);
this->writeInstruction(SpvOpLoopMerge, end, next, SpvLoopControlMaskNone, out);
this->writeInstruction(SpvOpBranch, start, out);
this->writeLabel(start, out);
if (f.fTest) {
SpvId test = this->writeExpression(*f.fTest, out);
this->writeInstruction(SpvOpBranchConditional, test, body, end, out);
}
this->writeLabel(body, out);
this->writeStatement(*f.fStatement, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, next, out);
}
this->writeLabel(next, out);
if (f.fNext) {
this->writeExpression(*f.fNext, out);
}
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(end, out);
fBreakTarget.pop();
fContinueTarget.pop();
}
void SPIRVCodeGenerator::writeWhileStatement(const WhileStatement& w, OutputStream& out) {
SpvId header = this->nextId();
SpvId start = this->nextId();
SpvId body = this->nextId();
SpvId continueTarget = this->nextId();
fContinueTarget.push(continueTarget);
SpvId end = this->nextId();
fBreakTarget.push(end);
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(header, out);
this->writeInstruction(SpvOpLoopMerge, end, continueTarget, SpvLoopControlMaskNone, out);
this->writeInstruction(SpvOpBranch, start, out);
this->writeLabel(start, out);
SpvId test = this->writeExpression(*w.fTest, out);
this->writeInstruction(SpvOpBranchConditional, test, body, end, out);
this->writeLabel(body, out);
this->writeStatement(*w.fStatement, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, continueTarget, out);
}
this->writeLabel(continueTarget, out);
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(end, out);
fBreakTarget.pop();
fContinueTarget.pop();
}
void SPIRVCodeGenerator::writeDoStatement(const DoStatement& d, OutputStream& out) {
SpvId header = this->nextId();
SpvId start = this->nextId();
SpvId next = this->nextId();
SpvId continueTarget = this->nextId();
fContinueTarget.push(continueTarget);
SpvId end = this->nextId();
fBreakTarget.push(end);
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(header, out);
this->writeInstruction(SpvOpLoopMerge, end, continueTarget, SpvLoopControlMaskNone, out);
this->writeInstruction(SpvOpBranch, start, out);
this->writeLabel(start, out);
this->writeStatement(*d.statement(), out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, next, out);
}
this->writeLabel(next, out);
SpvId test = this->writeExpression(*d.test(), out);
this->writeInstruction(SpvOpBranchConditional, test, continueTarget, end, out);
this->writeLabel(continueTarget, out);
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(end, out);
fBreakTarget.pop();
fContinueTarget.pop();
}
void SPIRVCodeGenerator::writeSwitchStatement(const SwitchStatement& s, OutputStream& out) {
SpvId value = this->writeExpression(*s.fValue, out);
std::vector<SpvId> labels;
SpvId end = this->nextId();
SpvId defaultLabel = end;
fBreakTarget.push(end);
int size = 3;
for (const auto& c : s.fCases) {
SpvId label = this->nextId();
labels.push_back(label);
if (c->fValue) {
size += 2;
} else {
defaultLabel = label;
}
}
labels.push_back(end);
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeOpCode(SpvOpSwitch, size, out);
this->writeWord(value, out);
this->writeWord(defaultLabel, out);
for (size_t i = 0; i < s.fCases.size(); ++i) {
if (!s.fCases[i]->fValue) {
continue;
}
this->writeWord(s.fCases[i]->fValue->as<IntLiteral>().value(), out);
this->writeWord(labels[i], out);
}
for (size_t i = 0; i < s.fCases.size(); ++i) {
this->writeLabel(labels[i], out);
for (const auto& stmt : s.fCases[i]->fStatements) {
this->writeStatement(*stmt, out);
}
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, labels[i + 1], out);
}
}
this->writeLabel(end, out);
fBreakTarget.pop();
}
void SPIRVCodeGenerator::writeReturnStatement(const ReturnStatement& r, OutputStream& out) {
if (r.fExpression) {
this->writeInstruction(SpvOpReturnValue, this->writeExpression(*r.fExpression, out),
out);
} else {
this->writeInstruction(SpvOpReturn, out);
}
}
void SPIRVCodeGenerator::writeGeometryShaderExecutionMode(SpvId entryPoint, OutputStream& out) {
SkASSERT(fProgram.fKind == Program::kGeometry_Kind);
int invocations = 1;
for (const auto& e : fProgram) {
if (e.kind() == ProgramElement::Kind::kModifiers) {
const Modifiers& m = ((ModifiersDeclaration&) e).fModifiers;
if (m.fFlags & Modifiers::kIn_Flag) {
if (m.fLayout.fInvocations != -1) {
invocations = m.fLayout.fInvocations;
}
SpvId input;
switch (m.fLayout.fPrimitive) {
case Layout::kPoints_Primitive:
input = SpvExecutionModeInputPoints;
break;
case Layout::kLines_Primitive:
input = SpvExecutionModeInputLines;
break;
case Layout::kLinesAdjacency_Primitive:
input = SpvExecutionModeInputLinesAdjacency;
break;
case Layout::kTriangles_Primitive:
input = SpvExecutionModeTriangles;
break;
case Layout::kTrianglesAdjacency_Primitive:
input = SpvExecutionModeInputTrianglesAdjacency;
break;
default:
input = 0;
break;
}
update_sk_in_count(m, &fSkInCount);
if (input) {
this->writeInstruction(SpvOpExecutionMode, entryPoint, input, out);
}
} else if (m.fFlags & Modifiers::kOut_Flag) {
SpvId output;
switch (m.fLayout.fPrimitive) {
case Layout::kPoints_Primitive:
output = SpvExecutionModeOutputPoints;
break;
case Layout::kLineStrip_Primitive:
output = SpvExecutionModeOutputLineStrip;
break;
case Layout::kTriangleStrip_Primitive:
output = SpvExecutionModeOutputTriangleStrip;
break;
default:
output = 0;
break;
}
if (output) {
this->writeInstruction(SpvOpExecutionMode, entryPoint, output, out);
}
if (m.fLayout.fMaxVertices != -1) {
this->writeInstruction(SpvOpExecutionMode, entryPoint,
SpvExecutionModeOutputVertices, m.fLayout.fMaxVertices,
out);
}
}
}
}
this->writeInstruction(SpvOpExecutionMode, entryPoint, SpvExecutionModeInvocations,
invocations, out);
}
void SPIRVCodeGenerator::writeInstructions(const Program& program, OutputStream& out) {
fGLSLExtendedInstructions = this->nextId();
StringStream body;
std::set<SpvId> interfaceVars;
// assign IDs to functions, determine sk_in size
int skInSize = -1;
for (const auto& e : program) {
switch (e.kind()) {
case ProgramElement::Kind::kFunction: {
FunctionDefinition& f = (FunctionDefinition&) e;
fFunctionMap[&f.fDeclaration] = this->nextId();
break;
}
case ProgramElement::Kind::kModifiers: {
Modifiers& m = ((ModifiersDeclaration&) e).fModifiers;
if (m.fFlags & Modifiers::kIn_Flag) {
switch (m.fLayout.fPrimitive) {
case Layout::kPoints_Primitive: // break
case Layout::kLines_Primitive:
skInSize = 1;
break;
case Layout::kLinesAdjacency_Primitive: // break
skInSize = 2;
break;
case Layout::kTriangles_Primitive: // break
case Layout::kTrianglesAdjacency_Primitive:
skInSize = 3;
break;
default:
break;
}
}
break;
}
default:
break;
}
}
for (const auto& e : program) {
if (e.kind() == ProgramElement::Kind::kInterfaceBlock) {
InterfaceBlock& intf = (InterfaceBlock&) e;
if (SK_IN_BUILTIN == intf.fVariable.fModifiers.fLayout.fBuiltin) {
SkASSERT(skInSize != -1);
intf.fSizes.emplace_back(new IntLiteral(fContext, -1, skInSize));
}
SpvId id = this->writeInterfaceBlock(intf);
if (((intf.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) ||
(intf.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) &&
intf.fVariable.fModifiers.fLayout.fBuiltin == -1 &&
!is_dead(intf.fVariable)) {
interfaceVars.insert(id);
}
}
}
for (const auto& e : program) {
if (e.kind() == ProgramElement::Kind::kVar) {
this->writeGlobalVars(program.fKind, ((VarDeclarations&) e), body);
}
}
for (const auto& e : program) {
if (e.kind() == ProgramElement::Kind::kFunction) {
this->writeFunction(((FunctionDefinition&) e), body);
}
}
const FunctionDeclaration* main = nullptr;
for (auto entry : fFunctionMap) {
if (entry.first->fName == "main") {
main = entry.first;
}
}
if (!main) {
fErrors.error(0, "program does not contain a main() function");
return;
}
for (auto entry : fVariableMap) {
const Variable* var = entry.first;
if (var->fStorage == Variable::kGlobal_Storage &&
((var->fModifiers.fFlags & Modifiers::kIn_Flag) ||
(var->fModifiers.fFlags & Modifiers::kOut_Flag)) && !is_dead(*var)) {
interfaceVars.insert(entry.second);
}
}
this->writeCapabilities(out);
this->writeInstruction(SpvOpExtInstImport, fGLSLExtendedInstructions, "GLSL.std.450", out);
this->writeInstruction(SpvOpMemoryModel, SpvAddressingModelLogical, SpvMemoryModelGLSL450, out);
this->writeOpCode(SpvOpEntryPoint, (SpvId) (3 + (main->fName.fLength + 4) / 4) +
(int32_t) interfaceVars.size(), out);
switch (program.fKind) {
case Program::kVertex_Kind:
this->writeWord(SpvExecutionModelVertex, out);
break;
case Program::kFragment_Kind:
this->writeWord(SpvExecutionModelFragment, out);
break;
case Program::kGeometry_Kind:
this->writeWord(SpvExecutionModelGeometry, out);
break;
default:
ABORT("cannot write this kind of program to SPIR-V\n");
}
SpvId entryPoint = fFunctionMap[main];
this->writeWord(entryPoint, out);
this->writeString(main->fName.fChars, main->fName.fLength, out);
for (int var : interfaceVars) {
this->writeWord(var, out);
}
if (program.fKind == Program::kGeometry_Kind) {
this->writeGeometryShaderExecutionMode(entryPoint, out);
}
if (program.fKind == Program::kFragment_Kind) {
this->writeInstruction(SpvOpExecutionMode,
fFunctionMap[main],
SpvExecutionModeOriginUpperLeft,
out);
}
for (const auto& e : program) {
if (e.kind() == ProgramElement::Kind::kExtension) {
this->writeInstruction(SpvOpSourceExtension, ((Extension&) e).name().c_str(), out);
}
}
write_stringstream(fExtraGlobalsBuffer, out);
write_stringstream(fNameBuffer, out);
write_stringstream(fDecorationBuffer, out);
write_stringstream(fConstantBuffer, out);
write_stringstream(fExternalFunctionsBuffer, out);
write_stringstream(body, out);
}
bool SPIRVCodeGenerator::generateCode() {
SkASSERT(!fErrors.errorCount());
this->writeWord(SpvMagicNumber, *fOut);
this->writeWord(SpvVersion, *fOut);
this->writeWord(SKSL_MAGIC, *fOut);
StringStream buffer;
this->writeInstructions(fProgram, buffer);
this->writeWord(fIdCount, *fOut);
this->writeWord(0, *fOut); // reserved, always zero
write_stringstream(buffer, *fOut);
return 0 == fErrors.errorCount();
}
} // namespace SkSL