blob: 03bd645c30703717d0dd315a49ad7c3308331f6c [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/Test.h"
#include <array>
#include <memory>
#include <vector>
#include "include/core/SkBitmap.h"
#include "include/gpu/GrDirectContext.h"
#include "include/private/GrResourceKey.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGeometryProcessor.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrOpsRenderPass.h"
#include "src/gpu/GrProgramInfo.h"
#include "src/gpu/GrRenderTargetContext.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
#include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h"
#if 0
#include "tools/ToolUtils.h"
#define WRITE_PNG_CONTEXT_TYPE kANGLE_D3D11_ES3_ContextType
#endif
GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey);
static constexpr int kBoxSize = 2;
static constexpr int kBoxCountY = 8;
static constexpr int kBoxCountX = 8;
static constexpr int kBoxCount = kBoxCountY * kBoxCountX;
static constexpr int kImageWidth = kBoxCountY * kBoxSize;
static constexpr int kImageHeight = kBoxCountX * kBoxSize;
static constexpr int kIndexPatternRepeatCount = 3;
constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3};
class DrawMeshHelper {
public:
DrawMeshHelper(GrOpFlushState* state) : fState(state) {}
sk_sp<const GrBuffer> getIndexBuffer();
sk_sp<const GrBuffer> makeIndexBuffer(const uint16_t[], int count);
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) {
return this->makeVertexBuffer(data.begin(), data.count());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) {
return this->makeVertexBuffer(data.data(), data.size());
}
template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count);
GrMeshDrawOp::Target* target() { return fState; }
sk_sp<const GrBuffer> fIndexBuffer;
sk_sp<const GrBuffer> fIndexBuffer2;
sk_sp<const GrBuffer> fInstBuffer;
sk_sp<const GrBuffer> fVertBuffer;
sk_sp<const GrBuffer> fVertBuffer2;
sk_sp<const GrBuffer> fDrawIndirectBuffer;
size_t fDrawIndirectBufferOffset;
GrOpsRenderPass* bindPipeline(GrPrimitiveType, bool isInstanced, bool hasVertexBuffer);
private:
GrOpFlushState* fState;
};
struct Box {
float fX, fY;
GrColor fColor;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* This is a GPU-backend specific test. It tries to test all possible usecases of
* GrOpsRenderPass::draw*. The test works by drawing checkerboards of colored boxes, reading back
* the pixels, and comparing with expected results. The boxes are drawn on integer boundaries and
* the (opaque) colors are chosen from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to
* produce exact matches.
*/
static void run_test(GrDirectContext*, const char* testName, skiatest::Reporter*,
const std::unique_ptr<GrRenderTargetContext>&, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn);
#ifdef WRITE_PNG_CONTEXT_TYPE
static bool IsContextTypeForOutputPNGs(skiatest::GrContextFactoryContextType type) {
return type == skiatest::GrContextFactoryContextType::WRITE_PNG_CONTEXT_TYPE;
}
DEF_GPUTEST_FOR_CONTEXTS(GrMeshTest, IsContextTypeForOutputPNGs, reporter, ctxInfo, nullptr) {
#else
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) {
#endif
auto dContext = ctxInfo.directContext();
auto rtc = GrRenderTargetContext::Make(
dContext, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kImageWidth, kImageHeight});
if (!rtc) {
ERRORF(reporter, "could not create render target context.");
return;
}
SkTArray<Box> boxes;
SkTArray<std::array<Box, 4>> vertexData;
SkBitmap gold;
// ---- setup ----------
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
gold.allocN32Pixels(kImageWidth, kImageHeight);
SkCanvas goldCanvas(gold);
for (int y = 0; y < kBoxCountY; ++y) {
for (int x = 0; x < kBoxCountX; ++x) {
int c = y + x;
int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff};
const Box box = boxes.push_back() = {
float(x * kBoxSize),
float(y * kBoxSize),
GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255)
};
std::array<Box, 4>& boxVertices = vertexData.push_back();
for (int i = 0; i < 4; ++i) {
boxVertices[i] = {
box.fX + (i / 2) * kBoxSize,
box.fY + (i % 2) * kBoxSize,
box.fColor
};
}
paint.setARGB(255, rgb[0], rgb[1], rgb[2]);
goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint);
}
}
// ---- tests ----------
#define VALIDATE(buff) \
do { \
if (!buff) { \
ERRORF(reporter, #buff " is null."); \
return; \
} \
} while (0)
run_test(dContext, "draw", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
SkTArray<Box> expandedVertexData;
for (int i = 0; i < kBoxCount; ++i) {
for (int j = 0; j < 6; ++j) {
expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]);
}
}
// Draw boxes one line at a time to exercise base vertex.
helper->fVertBuffer = helper->makeVertexBuffer(expandedVertexData);
VALIDATE(helper->fVertBuffer);
},
[&](DrawMeshHelper* helper) {
for (int y = 0; y < kBoxCountY; ++y) {
auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true);
pass->bindBuffers(nullptr, nullptr, helper->fVertBuffer);
pass->draw(kBoxCountX * 6, y * kBoxCountX * 6);
}
});
run_test(dContext, "drawIndexed", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
helper->fIndexBuffer = helper->getIndexBuffer();
VALIDATE(helper->fIndexBuffer);
helper->fVertBuffer = helper->makeVertexBuffer(vertexData);
VALIDATE(helper->fVertBuffer);
},
[&](DrawMeshHelper* helper) {
int baseRepetition = 0;
int i = 0;
// Start at various repetitions within the patterned index buffer to exercise base
// index.
while (i < kBoxCount) {
static_assert(kIndexPatternRepeatCount >= 3);
int repetitionCount = std::min(3 - baseRepetition, kBoxCount - i);
auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true);
pass->bindBuffers(helper->fIndexBuffer, nullptr, helper->fVertBuffer);
pass->drawIndexed(repetitionCount * 6, baseRepetition * 6, baseRepetition * 4,
(baseRepetition + repetitionCount) * 4 - 1,
(i - baseRepetition) * 4);
baseRepetition = (baseRepetition + 1) % 3;
i += repetitionCount;
}
});
run_test(dContext, "drawIndexPattern", reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
helper->fIndexBuffer = helper->getIndexBuffer();
VALIDATE(helper->fIndexBuffer);
helper->fVertBuffer = helper->makeVertexBuffer(vertexData);
VALIDATE(helper->fVertBuffer);
},
[&](DrawMeshHelper* helper) {
// Draw boxes one line at a time to exercise base vertex. drawIndexPattern does
// not support a base index.
for (int y = 0; y < kBoxCountY; ++y) {
auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true);
pass->bindBuffers(helper->fIndexBuffer, nullptr, helper->fVertBuffer);
pass->drawIndexPattern(6, kBoxCountX, kIndexPatternRepeatCount, 4,
y * kBoxCountX * 4);
}
});
for (bool indexed : {false, true}) {
if (!dContext->priv().caps()->drawInstancedSupport()) {
break;
}
run_test(dContext, indexed ? "drawIndexedInstanced" : "drawInstanced",
reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
helper->fIndexBuffer = indexed ? helper->getIndexBuffer() : nullptr;
SkTArray<uint16_t> baseIndexData;
baseIndexData.push_back(kBoxCountX/2 * 6); // for testing base index.
for (int i = 0; i < 6; ++i) {
baseIndexData.push_back(kIndexPattern[i]);
}
helper->fIndexBuffer2 = helper->makeIndexBuffer(baseIndexData.begin(),
baseIndexData.count());
helper->fInstBuffer = helper->makeVertexBuffer(boxes);
VALIDATE(helper->fInstBuffer);
helper->fVertBuffer =
helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1});
VALIDATE(helper->fVertBuffer);
helper->fVertBuffer2 = helper->makeVertexBuffer( // for testing base vertex.
std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1});
VALIDATE(helper->fVertBuffer2);
},
[&](DrawMeshHelper* helper) {
// Draw boxes one line at a time to exercise base instance, base vertex, and
// null vertex buffer.
for (int y = 0; y < kBoxCountY; ++y) {
sk_sp<const GrBuffer> vertexBuffer;
int baseVertex = 0;
switch (y % 3) {
case 0:
if (dContext->priv().caps()->shaderCaps()->vertexIDSupport()) {
break;
}
[[fallthrough]];
case 1:
vertexBuffer = helper->fVertBuffer;
break;
case 2:
vertexBuffer = helper->fVertBuffer2;
baseVertex = 2;
break;
}
GrPrimitiveType primitiveType = indexed ? GrPrimitiveType::kTriangles
: GrPrimitiveType::kTriangleStrip;
auto pass = helper->bindPipeline(primitiveType, true,
SkToBool(vertexBuffer));
if (indexed) {
sk_sp<const GrBuffer> indexBuffer = (y % 2) ?
helper->fIndexBuffer2 : helper->fIndexBuffer;
VALIDATE(indexBuffer);
int baseIndex = (y % 2);
pass->bindBuffers(std::move(indexBuffer), helper->fInstBuffer,
std::move(vertexBuffer));
pass->drawIndexedInstanced(6, baseIndex, kBoxCountX, y * kBoxCountX,
baseVertex);
} else {
pass->bindBuffers(nullptr, helper->fInstBuffer,
std::move(vertexBuffer));
pass->drawInstanced(kBoxCountX, y * kBoxCountY, 4, baseVertex);
}
}
});
}
for (bool indexed : {false, true}) {
if (!dContext->priv().caps()->drawInstancedSupport()) {
break;
}
run_test(dContext, (indexed) ? "drawIndexedIndirect" : "drawIndirect",
reporter, rtc, gold,
[&](DrawMeshHelper* helper) {
SkTArray<uint16_t> baseIndexData;
baseIndexData.push_back(kBoxCountX/2 * 6); // for testing base index.
for (int j = 0; j < kBoxCountY; ++j) {
for (int i = 0; i < 6; ++i) {
baseIndexData.push_back(kIndexPattern[i]);
}
}
helper->fIndexBuffer2 = helper->makeIndexBuffer(baseIndexData.begin(),
baseIndexData.count());
VALIDATE(helper->fIndexBuffer2);
helper->fInstBuffer = helper->makeVertexBuffer(boxes);
VALIDATE(helper->fInstBuffer);
helper->fVertBuffer = helper->makeVertexBuffer(std::vector<float>{
-1,-1, 0,0, 0,1, 1,0, 1,1, -1,-1, 0,0, 1,0, 0,1, 1,1});
VALIDATE(helper->fVertBuffer);
GrDrawIndirectCommand* drawIndirect = nullptr;
GrDrawIndexedIndirectCommand* drawIndexedIndirect = nullptr;
if (indexed) {
// Make helper->fDrawIndirectBufferOffset nonzero.
sk_sp<const GrBuffer> dummyBuff;
size_t dummyOffset;
// Make a superfluous call to makeDrawIndirectSpace in order to test
// "offsetInBytes!=0" for the actual call to makeDrawIndexedIndirectSpace.
helper->target()->makeDrawIndirectSpace(29, &dummyBuff, &dummyOffset);
drawIndexedIndirect = helper->target()->makeDrawIndexedIndirectSpace(
kBoxCountY, &helper->fDrawIndirectBuffer,
&helper->fDrawIndirectBufferOffset);
} else {
// Make helper->fDrawIndirectBufferOffset nonzero.
sk_sp<const GrBuffer> dummyBuff;
size_t dummyOffset;
// Make a superfluous call to makeDrawIndexedIndirectSpace in order to test
// "offsetInBytes!=0" for the actual call to makeDrawIndirectSpace.
helper->target()->makeDrawIndexedIndirectSpace(7, &dummyBuff, &dummyOffset);
drawIndirect = helper->target()->makeDrawIndirectSpace(
kBoxCountY, &helper->fDrawIndirectBuffer,
&helper->fDrawIndirectBufferOffset);
}
// Draw boxes one line at a time to exercise multiple draws.
for (int y = 0; y < kBoxCountY; ++y) {
int baseVertex = (y % 2) ? 1 : 6;
if (indexed) {
int baseIndex = 1 + y * 6;
drawIndexedIndirect->fIndexCount = 6;
drawIndexedIndirect->fBaseIndex = baseIndex;
drawIndexedIndirect->fInstanceCount = kBoxCountX;
drawIndexedIndirect->fBaseInstance = y * kBoxCountX;
drawIndexedIndirect->fBaseVertex = baseVertex;
++drawIndexedIndirect;
} else {
drawIndirect->fInstanceCount = kBoxCountX;
drawIndirect->fBaseInstance = y * kBoxCountX;
drawIndirect->fVertexCount = 4;
drawIndirect->fBaseVertex = baseVertex;
++drawIndirect;
}
}
},
[&](DrawMeshHelper* helper) {
GrOpsRenderPass* pass;
if (indexed) {
pass = helper->bindPipeline(GrPrimitiveType::kTriangles, true, true);
pass->bindBuffers(helper->fIndexBuffer2, helper->fInstBuffer,
helper->fVertBuffer);
for (int i = 0; i < 3; ++i) {
int start = kBoxCountY * i / 3;
int end = kBoxCountY * (i + 1) / 3;
size_t offset = helper->fDrawIndirectBufferOffset + start *
sizeof(GrDrawIndexedIndirectCommand);
pass->drawIndexedIndirect(helper->fDrawIndirectBuffer.get(), offset,
end - start);
}
} else {
pass = helper->bindPipeline(GrPrimitiveType::kTriangleStrip, true, true);
pass->bindBuffers(nullptr, helper->fInstBuffer, helper->fVertBuffer);
for (int i = 0; i < 2; ++i) {
int start = kBoxCountY * i / 2;
int end = kBoxCountY * (i + 1) / 2;
size_t offset = helper->fDrawIndirectBufferOffset + start *
sizeof(GrDrawIndirectCommand);
pass->drawIndirect(helper->fDrawIndirectBuffer.get(), offset,
end - start);
}
}
});
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
class GrMeshTestOp : public GrDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(GrRecordingContext* rContext,
std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn) {
GrOpMemoryPool* pool = rContext->priv().opMemoryPool();
return pool->allocate<GrMeshTestOp>(prepareFn, executeFn);
}
private:
friend class GrOpMemoryPool; // for ctor
GrMeshTestOp(std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn)
: INHERITED(ClassID())
, fPrepareFn(prepareFn)
, fExecuteFn(executeFn){
this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight),
HasAABloat::kNo, IsHairline::kNo);
}
const char* name() const override { return "GrMeshTestOp"; }
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*,
bool hasMixedSampledCoverage, GrClampType) override {
return GrProcessorSet::EmptySetAnalysis();
}
void onPrePrepare(GrRecordingContext*,
const GrSurfaceProxyView* writeView,
GrAppliedClip*,
const GrXferProcessor::DstProxyView&,
GrXferBarrierFlags renderPassXferBarriers) override {}
void onPrepare(GrOpFlushState* state) override {
fHelper = std::make_unique<DrawMeshHelper>(state);
fPrepareFn(fHelper.get());
}
void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override {
fExecuteFn(fHelper.get());
}
std::unique_ptr<DrawMeshHelper> fHelper;
std::function<void(DrawMeshHelper*)> fPrepareFn;
std::function<void(DrawMeshHelper*)> fExecuteFn;
using INHERITED = GrDrawOp;
};
class GrMeshTestProcessor : public GrGeometryProcessor {
public:
static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool instanced, bool hasVertexBuffer) {
return arena->make<GrMeshTestProcessor>(instanced, hasVertexBuffer);
}
const char* name() const override { return "GrMeshTestProcessor"; }
const Attribute& inColor() const {
return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor;
}
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final {
b->add32(fInstanceLocation.isInitialized());
b->add32(fVertexPosition.isInitialized());
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final;
private:
friend class GLSLMeshTestProcessor;
friend class ::SkArenaAlloc; // for access to ctor
GrMeshTestProcessor(bool instanced, bool hasVertexBuffer)
: INHERITED(kGrMeshTestProcessor_ClassID) {
if (instanced) {
fInstanceLocation = {"location", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setInstanceAttributes(&fInstanceLocation, 2);
if (hasVertexBuffer) {
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
this->setVertexAttributes(&fVertexPosition, 1);
}
} else {
fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType};
fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType};
this->setVertexAttributes(&fVertexPosition, 2);
}
}
Attribute fVertexPosition;
Attribute fVertexColor;
Attribute fInstanceLocation;
Attribute fInstanceColor;
using INHERITED = GrGeometryProcessor;
};
class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor {
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&) final {}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>();
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
varyingHandler->emitAttributes(mp);
varyingHandler->addPassThroughAttribute(mp.inColor(), args.fOutputColor);
GrGLSLVertexBuilder* v = args.fVertBuilder;
if (!mp.fInstanceLocation.isInitialized()) {
v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name());
} else {
if (mp.fVertexPosition.isInitialized()) {
v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name());
} else {
v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);");
}
v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(),
kBoxSize);
}
gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
};
GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const {
return new GLSLMeshTestProcessor;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<const GrBuffer> DrawMeshHelper::makeIndexBuffer(const uint16_t indices[], int count) {
return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer(
count * sizeof(uint16_t), GrGpuBufferType::kIndex, kDynamic_GrAccessPattern, indices));
}
template<typename T>
sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) {
return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer(
count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data));
}
sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() {
GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey);
return fState->resourceProvider()->findOrCreatePatternedIndexBuffer(
kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey);
}
GrOpsRenderPass* DrawMeshHelper::bindPipeline(GrPrimitiveType primitiveType, bool isInstanced,
bool hasVertexBuffer) {
GrProcessorSet processorSet(SkBlendMode::kSrc);
// TODO: add a GrProcessorSet testing helper to make this easier
SkPMColor4f overrideColor;
processorSet.finalize(GrProcessorAnalysisColor(),
GrProcessorAnalysisCoverage::kNone,
fState->appliedClip(),
nullptr,
false,
fState->caps(),
GrClampType::kAuto,
&overrideColor);
auto pipeline = GrSimpleMeshDrawOpHelper::CreatePipeline(fState,
std::move(processorSet),
GrPipeline::InputFlags::kNone);
GrGeometryProcessor* mtp = GrMeshTestProcessor::Make(fState->allocator(), isInstanced,
hasVertexBuffer);
GrProgramInfo programInfo(fState->proxy()->numSamples(), fState->proxy()->numStencilSamples(),
fState->proxy()->backendFormat(), fState->writeView()->origin(),
pipeline, &GrUserStencilSettings::kUnused, mtp, primitiveType, 0,
fState->renderPassBarriers());
fState->opsRenderPass()->bindPipeline(programInfo, SkRect::MakeIWH(kImageWidth, kImageHeight));
return fState->opsRenderPass();
}
static void run_test(GrDirectContext* dContext, const char* testName,
skiatest::Reporter* reporter,
const std::unique_ptr<GrRenderTargetContext>& rtc, const SkBitmap& gold,
std::function<void(DrawMeshHelper*)> prepareFn,
std::function<void(DrawMeshHelper*)> executeFn) {
const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes();
const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels());
if (h != rtc->height() || w != rtc->width()) {
ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName);
return;
}
if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) {
ERRORF(reporter, "[%s] unexpected row bytes in gold image", testName);
return;
}
SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes);
rtc->clear(SkPMColor4f::FromBytes_RGBA(0xbaaaaaad));
rtc->priv().testingOnly_addDrawOp(GrMeshTestOp::Make(dContext, prepareFn, executeFn));
rtc->readPixels(dContext, gold.info(), resultPx, rowBytes, {0, 0});
#ifdef WRITE_PNG_CONTEXT_TYPE
#define STRINGIFY(X) #X
#define TOSTRING(X) STRINGIFY(X)
SkString filename;
filename.printf("GrMeshTest_%s_%s.png", TOSTRING(WRITE_PNG_CONTEXT_TYPE), testName);
SkDebugf("writing %s...\n", filename.c_str());
ToolUtils::EncodeImageToFile(filename.c_str(), SkPixmap(gold.info(), resultPx, rowBytes),
SkEncodedImageFormat::kPNG, 100);
#endif
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
uint32_t expected = goldPx[y * kImageWidth + x];
uint32_t actual = resultPx[y * kImageWidth + x];
if (expected != actual) {
ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x",
testName, x, y, actual, expected);
return;
}
}
}
}