| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkOpts.h" |
| |
| #define SK_OPTS_NS sk_sse41 |
| #include "SkBlurImageFilter_opts.h" |
| |
| #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| |
| // This file deals mostly with unpacked 8-bit values, |
| // i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top. |
| |
| // So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. |
| struct m128ix2 { __m128i lo, hi; }; |
| |
| // unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels. |
| static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } |
| static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); } |
| |
| // pack() converts back, from 4 unpacked pixels to 4 packed pixels. |
| static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); } |
| |
| // These nextN() functions abstract over the difference between iterating over |
| // an array of values and returning a constant value, for uint8_t and uint32_t. |
| // The nextN() taking pointers increment that pointer past where they read. |
| // |
| // nextN() returns N unpacked pixels or 4N unpacked coverage values. |
| |
| static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); } |
| static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); } |
| static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; } |
| |
| static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); } |
| static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); } |
| static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; } |
| |
| static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); } |
| static inline __m128i next2(const uint8_t*& ptr) { |
| auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr); |
| ptr += 2; |
| const int _ = ~0; |
| return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)); |
| } |
| static inline m128ix2 next4(const uint8_t*& ptr) { |
| auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); |
| ptr += 4; |
| const int _ = ~0; |
| auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)), |
| hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_)); |
| return { lo, hi }; |
| } |
| |
| static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); } |
| static inline __m128i next2(const uint32_t*& ptr) { |
| auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr)); |
| ptr += 2; |
| return r; |
| } |
| static inline m128ix2 next4(const uint32_t*& ptr) { |
| auto packed = _mm_loadu_si128((const __m128i*)ptr); |
| ptr += 4; |
| return { unpacklo(packed), unpackhi(packed) }; |
| } |
| |
| // Divide by 255 with rounding. |
| // (x+127)/255 == ((x+128)*257)>>16. |
| // Sometimes we can be more efficient by breaking this into two parts. |
| static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } |
| static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } |
| static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
| |
| // (x*y+127)/255, a byte multiply. |
| static inline __m128i scale(__m128i x, __m128i y) { |
| return div255(_mm_mullo_epi16(x, y)); |
| } |
| |
| // (255 - x). |
| static inline __m128i inv(__m128i x) { |
| return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16. |
| } |
| |
| // ARGB argb -> AAAA aaaa |
| static inline __m128i alphas(__m128i px) { |
| const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
| const int _ = ~0; |
| return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); |
| } |
| |
| // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
| template <typename Dst, typename Src, typename Cov, typename Fn> |
| static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
| // We don't want to muck with the callers' pointers, so we make them const and copy here. |
| Dst d = dst; |
| Src s = src; |
| Cov c = cov; |
| |
| // Writing this as a single while-loop helps hoist loop invariants from fn. |
| while (n) { |
| if (n >= 4) { |
| auto d4 = next4(d), |
| s4 = next4(s), |
| c4 = next4(c); |
| auto lo = fn(d4.lo, s4.lo, c4.lo), |
| hi = fn(d4.hi, s4.hi, c4.hi); |
| _mm_storeu_si128((__m128i*)t, pack(lo,hi)); |
| t += 4; |
| n -= 4; |
| continue; |
| } |
| if (n & 2) { |
| auto r = fn(next2(d), next2(s), next2(c)); |
| _mm_storel_epi64((__m128i*)t, pack(r,r)); |
| t += 2; |
| } |
| if (n & 1) { |
| auto r = fn(next1(d), next1(s), next1(c)); |
| *t = _mm_cvtsi128_si32(pack(r,r)); |
| } |
| return; |
| } |
| } |
| |
| namespace sk_sse41 { |
| |
| // SrcOver, with a constant source and full coverage. |
| static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
| // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
| // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. |
| |
| // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
| // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
| __m128i s = next2(src), |
| s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), |
| A = inv(alphas(s)); |
| |
| const uint8_t cov = 0xff; |
| loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { |
| return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
| }); |
| } |
| |
| // SrcOver, with a constant source and variable coverage. |
| // If the source is opaque, SrcOver becomes Src. |
| static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* cov, size_t covRB, |
| SkColor color, int w, int h) { |
| if (SkColorGetA(color) == 0xFF) { |
| const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
| while (h --> 0) { |
| loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { |
| // Src blend mode: a simple lerp from d to s by c. |
| // TODO: try a pmaddubsw version? |
| return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s))); |
| }); |
| dst += dstRB / sizeof(*dst); |
| cov += covRB / sizeof(*cov); |
| } |
| } else { |
| const SkPMColor src = SkPreMultiplyColor(color); |
| while (h --> 0) { |
| loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { |
| // SrcOver blend mode, with coverage folded into source alpha. |
| __m128i sc = scale(s,c), |
| AC = inv(alphas(sc)); |
| return _mm_add_epi16(sc, scale(d,AC)); |
| }); |
| dst += dstRB / sizeof(*dst); |
| cov += covRB / sizeof(*cov); |
| } |
| } |
| } |
| |
| } // namespace sk_sse41 |
| #endif |
| |
| namespace SkOpts { |
| void Init_sse41() { |
| box_blur_xx = sk_sse41::box_blur_xx; |
| box_blur_xy = sk_sse41::box_blur_xy; |
| box_blur_yx = sk_sse41::box_blur_yx; |
| |
| #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| blit_row_color32 = sk_sse41::blit_row_color32; |
| blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; |
| #endif |
| } |
| } |