blob: 37e13deef14c77f81103c23b3c8fdbcca8e93d51 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "fuzz/Fuzz.h"
#include "include/codec/SkCodec.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageEncoder.h"
#include "include/core/SkMallocPixelRef.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkStream.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTextBlob.h"
#include "src/core/SkFontMgrPriv.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkReadBuffer.h"
#include "src/utils/SkOSPath.h"
#include "tools/ToolUtils.h"
#include "tools/flags/CommandLineFlags.h"
#include "tools/fonts/TestFontMgr.h"
#include <iostream>
#include <map>
#include <regex>
#include <signal.h>
static DEFINE_string2(bytes, b, "", "A path to a file or a directory. If a file, the "
"contents will be used as the fuzz bytes. If a directory, all files "
"in the directory will be used as fuzz bytes for the fuzzer, one at a "
"time.");
static DEFINE_string2(name, n, "", "If --type is 'api', fuzz the API with this name.");
static DEFINE_string2(dump, d, "", "If not empty, dump 'image*' or 'skp' types as a "
"PNG with this name.");
static DEFINE_int(loops, 1, "Run the fuzzer on each input this many times.");
DEFINE_bool2(verbose, v, false, "Print more information while fuzzing.");
// This cannot be inlined in DEFINE_string2 due to interleaved ifdefs
static constexpr char g_type_message[] = "How to interpret --bytes, one of:\n"
"android_codec\n"
"animated_image_decode\n"
"api\n"
"color_deserialize\n"
"filter_fuzz (equivalent to Chrome's filter_fuzz_stub)\n"
"image_decode\n"
"image_decode_incremental\n"
"image_mode\n"
"image_scale\n"
"json\n"
"path_deserialize\n"
"region_deserialize\n"
"region_set_path\n"
"skdescriptor_deserialize\n"
"skp\n"
"skruntimeeffect\n"
"sksl2glsl\n"
"svg_dom\n"
"sksl2metal\n"
"sksl2pipeline\n"
"sksl2spirv\n"
#if defined(SK_ENABLE_SKOTTIE)
"skottie_json\n"
#endif
"textblob";
static DEFINE_string2(type, t, "", g_type_message);
static int fuzz_file(SkString path, SkString type);
static uint8_t calculate_option(SkData*);
static SkString try_auto_detect(SkString path, SkString* name);
static void fuzz_android_codec(sk_sp<SkData>);
static void fuzz_animated_img(sk_sp<SkData>);
static void fuzz_api(sk_sp<SkData> bytes, SkString name);
static void fuzz_color_deserialize(sk_sp<SkData>);
static void fuzz_filter_fuzz(sk_sp<SkData>);
static void fuzz_image_decode(sk_sp<SkData>);
static void fuzz_image_decode_incremental(sk_sp<SkData>);
static void fuzz_img(sk_sp<SkData>, uint8_t, uint8_t);
static void fuzz_json(sk_sp<SkData>);
static void fuzz_path_deserialize(sk_sp<SkData>);
static void fuzz_region_deserialize(sk_sp<SkData>);
static void fuzz_region_set_path(sk_sp<SkData>);
static void fuzz_skdescriptor_deserialize(sk_sp<SkData>);
static void fuzz_skp(sk_sp<SkData>);
static void fuzz_skruntimeeffect(sk_sp<SkData>);
static void fuzz_sksl2glsl(sk_sp<SkData>);
static void fuzz_sksl2metal(sk_sp<SkData>);
static void fuzz_sksl2pipeline(sk_sp<SkData>);
static void fuzz_sksl2spirv(sk_sp<SkData>);
static void fuzz_svg_dom(sk_sp<SkData>);
static void fuzz_textblob_deserialize(sk_sp<SkData>);
static void print_api_names();
#if defined(SK_ENABLE_SKOTTIE)
static void fuzz_skottie_json(sk_sp<SkData>);
#endif
int main(int argc, char** argv) {
CommandLineFlags::SetUsage(
"Usage: fuzz -t <type> -b <path/to/file> [-n api-to-fuzz]\n"
" fuzz -b <path/to/file>\n"
"--help lists the valid types. If type is not specified,\n"
"fuzz will make a guess based on the name of the file.\n");
CommandLineFlags::Parse(argc, argv);
gSkFontMgr_DefaultFactory = &ToolUtils::MakePortableFontMgr;
SkString path = SkString(FLAGS_bytes.isEmpty() ? argv[0] : FLAGS_bytes[0]);
SkString type = SkString(FLAGS_type.isEmpty() ? "" : FLAGS_type[0]);
int loopCount = std::max(FLAGS_loops, 1);
if (!sk_isdir(path.c_str())) {
for (int i = 0; i < loopCount; ++i) {
int rv = fuzz_file(path, type);
if (rv != 0) {
return rv;
}
}
return 0;
}
SkOSFile::Iter it(path.c_str());
for (SkString file; it.next(&file); ) {
SkString p = SkOSPath::Join(path.c_str(), file.c_str());
SkDebugf("Fuzzing %s\n", p.c_str());
for (int i = 0; i < loopCount; ++i) {
int rv = fuzz_file(p, type);
if (rv != 0) {
return rv;
}
}
}
return 0;
}
static int fuzz_file(SkString path, SkString type) {
sk_sp<SkData> bytes(SkData::MakeFromFileName(path.c_str()));
if (!bytes) {
SkDebugf("Could not read %s\n", path.c_str());
return 1;
}
SkString name = SkString(FLAGS_name.isEmpty() ? "" : FLAGS_name[0]);
if (type.isEmpty()) {
type = try_auto_detect(path, &name);
}
if (type.isEmpty()) {
SkDebugf("Could not autodetect type of %s\n", path.c_str());
return 1;
}
if (type.equals("android_codec")) {
fuzz_android_codec(bytes);
return 0;
}
if (type.equals("animated_image_decode")) {
fuzz_animated_img(bytes);
return 0;
}
if (type.equals("api")) {
fuzz_api(bytes, name);
return 0;
}
if (type.equals("color_deserialize")) {
fuzz_color_deserialize(bytes);
return 0;
}
if (type.equals("filter_fuzz")) {
fuzz_filter_fuzz(bytes);
return 0;
}
if (type.equals("image_decode")) {
fuzz_image_decode(bytes);
return 0;
}
if (type.equals("image_decode_incremental")) {
fuzz_image_decode_incremental(bytes);
return 0;
}
if (type.equals("image_scale")) {
uint8_t option = calculate_option(bytes.get());
fuzz_img(bytes, option, 0);
return 0;
}
if (type.equals("image_mode")) {
uint8_t option = calculate_option(bytes.get());
fuzz_img(bytes, 0, option);
return 0;
}
if (type.equals("json")) {
fuzz_json(bytes);
return 0;
}
if (type.equals("path_deserialize")) {
fuzz_path_deserialize(bytes);
return 0;
}
if (type.equals("region_deserialize")) {
fuzz_region_deserialize(bytes);
return 0;
}
if (type.equals("region_set_path")) {
fuzz_region_set_path(bytes);
return 0;
}
if (type.equals("pipe")) {
SkDebugf("I would prefer not to.\n");
return 0;
}
if (type.equals("skdescriptor_deserialize")) {
fuzz_skdescriptor_deserialize(bytes);
return 0;
}
#if defined(SK_ENABLE_SKOTTIE)
if (type.equals("skottie_json")) {
fuzz_skottie_json(bytes);
return 0;
}
#endif
if (type.equals("skp")) {
fuzz_skp(bytes);
return 0;
}
if (type.equals("skruntimeeffect")) {
fuzz_skruntimeeffect(bytes);
return 0;
}
if (type.equals("sksl2glsl")) {
fuzz_sksl2glsl(bytes);
return 0;
}
if (type.equals("sksl2metal")) {
fuzz_sksl2metal(bytes);
return 0;
}
if (type.equals("sksl2spirv")) {
fuzz_sksl2spirv(bytes);
return 0;
}
if (type.equals("sksl2pipeline")) {
fuzz_sksl2pipeline(bytes);
return 0;
}
if (type.equals("svg_dom")) {
fuzz_svg_dom(bytes);
return 0;
}
if (type.equals("textblob")) {
fuzz_textblob_deserialize(bytes);
return 0;
}
SkDebugf("Unknown type %s\n", type.c_str());
CommandLineFlags::PrintUsage();
return 1;
}
static std::map<std::string, std::string> cf_api_map = {
{"api_create_ddl", "CreateDDL"},
{"api_draw_functions", "DrawFunctions"},
{"api_gradients", "Gradients"},
{"api_image_filter", "ImageFilter"},
{"api_mock_gpu_canvas", "MockGPUCanvas"},
{"api_null_canvas", "NullCanvas"},
{"api_path_measure", "PathMeasure"},
{"api_pathop", "Pathop"},
{"api_polyutils", "PolyUtils"},
{"api_raster_n32_canvas", "RasterN32Canvas"},
{"api_svg_canvas", "SVGCanvas"},
{"jpeg_encoder", "JPEGEncoder"},
{"png_encoder", "PNGEncoder"},
{"skia_pathop_fuzzer", "LegacyChromiumPathop"},
{"webp_encoder", "WEBPEncoder"}
};
// maps clusterfuzz/oss-fuzz -> Skia's name
static std::map<std::string, std::string> cf_map = {
{"android_codec", "android_codec"},
{"animated_image_decode", "animated_image_decode"},
{"image_decode", "image_decode"},
{"image_decode_incremental", "image_decode_incremental"},
{"image_filter_deserialize", "filter_fuzz"},
{"image_filter_deserialize_width", "filter_fuzz"},
{"path_deserialize", "path_deserialize"},
{"region_deserialize", "region_deserialize"},
{"region_set_path", "region_set_path"},
{"skdescriptor_deserialize", "skdescriptor_deserialize"},
{"skjson", "json"},
{"skp", "skp"},
{"skruntimeeffect", "skruntimeeffect"},
{"sksl2glsl", "sksl2glsl"},
{"sksl2metal", "sksl2metal"},
{"sksl2spirv", "sksl2spirv"},
{"sksl2pipeline", "sksl2pipeline"},
#if defined(SK_ENABLE_SKOTTIE)
{"skottie_json", "skottie_json"},
#endif
{"svg_dom", "svg_dom"},
{"textblob_deserialize", "textblob"}
};
static SkString try_auto_detect(SkString path, SkString* name) {
std::cmatch m;
std::regex clusterfuzz("clusterfuzz-testcase(-minimized)?-([a-z0-9_]+)-[\\d]+");
std::regex skiafuzzer("(api-)?(\\w+)-[a-f0-9]+");
if (std::regex_search(path.c_str(), m, clusterfuzz)) {
std::string type = m.str(2);
if (cf_api_map.find(type) != cf_api_map.end()) {
*name = SkString(cf_api_map[type].c_str());
return SkString("api");
} else {
if (cf_map.find(type) != cf_map.end()) {
return SkString(cf_map[type].c_str());
}
}
} else if (std::regex_search(path.c_str(), m, skiafuzzer)) {
std::string a1 = m.str(1);
std::string typeOrName = m.str(2);
if (a1.length() > 0) {
// it's an api fuzzer
*name = SkString(typeOrName.c_str());
return SkString("api");
} else {
return SkString(typeOrName.c_str());
}
}
return SkString("");
}
void FuzzJSON(sk_sp<SkData> bytes);
static void fuzz_json(sk_sp<SkData> bytes){
FuzzJSON(bytes);
SkDebugf("[terminated] Done parsing!\n");
}
#if defined(SK_ENABLE_SKOTTIE)
void FuzzSkottieJSON(sk_sp<SkData> bytes);
static void fuzz_skottie_json(sk_sp<SkData> bytes){
FuzzSkottieJSON(bytes);
SkDebugf("[terminated] Done animating!\n");
}
#endif
void FuzzSVG(sk_sp<SkData> bytes);
static void fuzz_svg_dom(sk_sp<SkData> bytes){
FuzzSVG(bytes);
SkDebugf("[terminated] Done DOM!\n");
}
// This adds up the first 1024 bytes and returns it as an 8 bit integer. This allows afl-fuzz to
// deterministically excercise different paths, or *options* (such as different scaling sizes or
// different image modes) without needing to introduce a parameter. This way we don't need a
// image_scale1, image_scale2, image_scale4, etc fuzzer, we can just have a image_scale fuzzer.
// Clients are expected to transform this number into a different range, e.g. with modulo (%).
static uint8_t calculate_option(SkData* bytes) {
uint8_t total = 0;
const uint8_t* data = bytes->bytes();
for (size_t i = 0; i < 1024 && i < bytes->size(); i++) {
total += data[i];
}
return total;
}
static void print_api_names(){
SkDebugf("When using --type api, please choose an API to fuzz with --name/-n:\n");
for (const Fuzzable& fuzzable : sk_tools::Registry<Fuzzable>::Range()) {
SkDebugf("\t%s\n", fuzzable.name);
}
}
static void fuzz_api(sk_sp<SkData> bytes, SkString name) {
for (const Fuzzable& fuzzable : sk_tools::Registry<Fuzzable>::Range()) {
if (name.equals(fuzzable.name)) {
SkDebugf("Fuzzing %s...\n", fuzzable.name);
Fuzz fuzz(std::move(bytes));
fuzzable.fn(&fuzz);
SkDebugf("[terminated] Success!\n");
return;
}
}
print_api_names();
}
static void dump_png(SkBitmap bitmap) {
if (!FLAGS_dump.isEmpty()) {
ToolUtils::EncodeImageToFile(FLAGS_dump[0], bitmap, SkEncodedImageFormat::kPNG, 100);
SkDebugf("Dumped to %s\n", FLAGS_dump[0]);
}
}
bool FuzzAnimatedImage(sk_sp<SkData> bytes);
static void fuzz_animated_img(sk_sp<SkData> bytes) {
if (FuzzAnimatedImage(bytes)) {
SkDebugf("[terminated] Success from decoding/drawing animated image!\n");
return;
}
SkDebugf("[terminated] Could not decode or draw animated image.\n");
}
bool FuzzImageDecode(sk_sp<SkData> bytes);
static void fuzz_image_decode(sk_sp<SkData> bytes) {
if (FuzzImageDecode(bytes)) {
SkDebugf("[terminated] Success from decoding/drawing image!\n");
return;
}
SkDebugf("[terminated] Could not decode or draw image.\n");
}
bool FuzzIncrementalImageDecode(sk_sp<SkData> bytes);
static void fuzz_image_decode_incremental(sk_sp<SkData> bytes) {
if (FuzzIncrementalImageDecode(bytes)) {
SkDebugf("[terminated] Success using incremental decode!\n");
return;
}
SkDebugf("[terminated] Could not incrementally decode and image.\n");
}
bool FuzzAndroidCodec(sk_sp<SkData> bytes, uint8_t sampleSize);
static void fuzz_android_codec(sk_sp<SkData> bytes) {
Fuzz fuzz(bytes);
uint8_t sampleSize;
fuzz.nextRange(&sampleSize, 1, 64);
bytes = SkData::MakeSubset(bytes.get(), 1, bytes->size() - 1);
if (FuzzAndroidCodec(bytes, sampleSize)) {
SkDebugf("[terminated] Success on Android Codec sampleSize=%u!\n", sampleSize);
return;
}
SkDebugf("[terminated] Could not use Android Codec sampleSize=%u!\n", sampleSize);
}
// This is a "legacy" fuzzer that likely does too much. It was based off of how
// DM reads in images. image_decode, image_decode_incremental and android_codec
// are more targeted fuzzers that do a subset of what this one does.
static void fuzz_img(sk_sp<SkData> bytes, uint8_t scale, uint8_t mode) {
// We can scale 1x, 2x, 4x, 8x, 16x
scale = scale % 5;
float fscale = (float)pow(2.0f, scale);
SkDebugf("Scaling factor: %f\n", fscale);
// We have 5 different modes of decoding.
mode = mode % 5;
SkDebugf("Mode: %d\n", mode);
// This is mostly copied from DMSrcSink's CodecSrc::draw method.
SkDebugf("Decoding\n");
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(bytes));
if (nullptr == codec) {
SkDebugf("[terminated] Couldn't create codec.\n");
return;
}
SkImageInfo decodeInfo = codec->getInfo();
SkISize size = codec->getScaledDimensions(fscale);
decodeInfo = decodeInfo.makeDimensions(size);
SkBitmap bitmap;
SkCodec::Options options;
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
if (!bitmap.tryAllocPixelsFlags(decodeInfo, SkBitmap::kZeroPixels_AllocFlag)) {
SkDebugf("[terminated] Could not allocate memory. Image might be too large (%d x %d)",
decodeInfo.width(), decodeInfo.height());
return;
}
switch (mode) {
case 0: {//kCodecZeroInit_Mode, kCodec_Mode
switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), &options)) {
case SkCodec::kSuccess:
SkDebugf("[terminated] Success!\n");
break;
case SkCodec::kIncompleteInput:
SkDebugf("[terminated] Partial Success\n");
break;
case SkCodec::kErrorInInput:
SkDebugf("[terminated] Partial Success with error\n");
break;
case SkCodec::kInvalidConversion:
SkDebugf("Incompatible colortype conversion\n");
// Crash to allow afl-fuzz to know this was a bug.
raise(SIGSEGV);
break;
default:
SkDebugf("[terminated] Couldn't getPixels.\n");
return;
}
break;
}
case 1: {//kScanline_Mode
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)) {
SkDebugf("[terminated] Could not start scanline decoder\n");
return;
}
void* dst = bitmap.getAddr(0, 0);
size_t rowBytes = bitmap.rowBytes();
uint32_t height = decodeInfo.height();
// We do not need to check the return value. On an incomplete
// image, memory will be filled with a default value.
codec->getScanlines(dst, height, rowBytes);
SkDebugf("[terminated] Success!\n");
break;
}
case 2: { //kStripe_Mode
const int height = decodeInfo.height();
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
// does not align with image blocks.
const int stripeHeight = 37;
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
// Decode odd stripes
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo)
|| SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) {
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
// to run this test for image types that do not have this scanline ordering.
SkDebugf("[terminated] Could not start top-down scanline decoder\n");
return;
}
for (int i = 0; i < numStripes; i += 2) {
// Skip a stripe
const int linesToSkip = std::min(stripeHeight, height - i * stripeHeight);
codec->skipScanlines(linesToSkip);
// Read a stripe
const int startY = (i + 1) * stripeHeight;
const int linesToRead = std::min(stripeHeight, height - startY);
if (linesToRead > 0) {
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
}
}
// Decode even stripes
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo);
if (SkCodec::kSuccess != startResult) {
SkDebugf("[terminated] Failed to restart scanline decoder with same parameters.\n");
return;
}
for (int i = 0; i < numStripes; i += 2) {
// Read a stripe
const int startY = i * stripeHeight;
const int linesToRead = std::min(stripeHeight, height - startY);
codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes());
// Skip a stripe
const int linesToSkip = std::min(stripeHeight, height - (i + 1) * stripeHeight);
if (linesToSkip > 0) {
codec->skipScanlines(linesToSkip);
}
}
SkDebugf("[terminated] Success!\n");
break;
}
case 3: { //kSubset_Mode
// Arbitrarily choose a divisor.
int divisor = 2;
// Total width/height of the image.
const int W = codec->getInfo().width();
const int H = codec->getInfo().height();
if (divisor > W || divisor > H) {
SkDebugf("[terminated] Cannot codec subset: divisor %d is too big "
"with dimensions (%d x %d)\n", divisor, W, H);
return;
}
// subset dimensions
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
const int w = SkAlign2(W / divisor);
const int h = SkAlign2(H / divisor);
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = &subset;
SkBitmap subsetBm;
// We will reuse pixel memory from bitmap.
void* pixels = bitmap.getPixels();
// Keep track of left and top (for drawing subsetBm into canvas). We could use
// fscale * x and fscale * y, but we want integers such that the next subset will start
// where the last one ended. So we'll add decodeInfo.width() and height().
int left = 0;
for (int x = 0; x < W; x += w) {
int top = 0;
for (int y = 0; y < H; y+= h) {
// Do not make the subset go off the edge of the image.
const int preScaleW = std::min(w, W - x);
const int preScaleH = std::min(h, H - y);
subset.setXYWH(x, y, preScaleW, preScaleH);
// And fscale
// FIXME: Should we have a version of getScaledDimensions that takes a subset
// into account?
decodeInfo = decodeInfo.makeWH(
std::max(1, SkScalarRoundToInt(preScaleW * fscale)),
std::max(1, SkScalarRoundToInt(preScaleH * fscale)));
size_t rowBytes = decodeInfo.minRowBytes();
if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes)) {
SkDebugf("[terminated] Could not install pixels.\n");
return;
}
const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes,
&opts);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
case SkCodec::kErrorInInput:
SkDebugf("okay\n");
break;
case SkCodec::kInvalidConversion:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
SkDebugf("[terminated] Incompatible colortype conversion\n");
return;
}
// If the first subset succeeded, a later one should not fail.
[[fallthrough]];
case SkCodec::kUnimplemented:
if (0 == (x|y)) {
// First subset is okay to return unimplemented.
SkDebugf("[terminated] subset codec not supported\n");
return;
}
// If the first subset succeeded, why would a later one fail?
[[fallthrough]];
default:
SkDebugf("[terminated] subset codec failed to decode (%d, %d, %d, %d) "
"with dimensions (%d x %d)\t error %d\n",
x, y, decodeInfo.width(), decodeInfo.height(),
W, H, result);
return;
}
// translate by the scaled height.
top += decodeInfo.height();
}
// translate by the scaled width.
left += decodeInfo.width();
}
SkDebugf("[terminated] Success!\n");
break;
}
case 4: { //kAnimated_Mode
std::vector<SkCodec::FrameInfo> frameInfos = codec->getFrameInfo();
if (frameInfos.size() == 0) {
SkDebugf("[terminated] Not an animated image\n");
break;
}
for (size_t i = 0; i < frameInfos.size(); i++) {
options.fFrameIndex = i;
auto result = codec->startIncrementalDecode(decodeInfo, bitmap.getPixels(),
bitmap.rowBytes(), &options);
if (SkCodec::kSuccess != result) {
SkDebugf("[terminated] failed to start incremental decode "
"in frame %d with error %d\n", i, result);
return;
}
result = codec->incrementalDecode();
if (result == SkCodec::kIncompleteInput || result == SkCodec::kErrorInInput) {
SkDebugf("okay\n");
// Frames beyond this one will not decode.
break;
}
if (result == SkCodec::kSuccess) {
SkDebugf("okay - decoded frame %d\n", i);
} else {
SkDebugf("[terminated] incremental decode failed with "
"error %d\n", result);
return;
}
}
SkDebugf("[terminated] Success!\n");
break;
}
default:
SkDebugf("[terminated] Mode not implemented yet\n");
}
dump_png(bitmap);
}
void FuzzSKP(sk_sp<SkData> bytes);
static void fuzz_skp(sk_sp<SkData> bytes) {
FuzzSKP(bytes);
SkDebugf("[terminated] Finished SKP\n");
}
static void fuzz_color_deserialize(sk_sp<SkData> bytes) {
sk_sp<SkColorSpace> space(SkColorSpace::Deserialize(bytes->data(), bytes->size()));
if (!space) {
SkDebugf("[terminated] Couldn't deserialize Colorspace.\n");
return;
}
SkDebugf("[terminated] Success! deserialized Colorspace.\n");
}
void FuzzPathDeserialize(SkReadBuffer& buf);
static void fuzz_path_deserialize(sk_sp<SkData> bytes) {
SkReadBuffer buf(bytes->data(), bytes->size());
FuzzPathDeserialize(buf);
SkDebugf("[terminated] path_deserialize didn't crash!\n");
}
bool FuzzRegionDeserialize(sk_sp<SkData> bytes);
static void fuzz_region_deserialize(sk_sp<SkData> bytes) {
if (!FuzzRegionDeserialize(bytes)) {
SkDebugf("[terminated] Couldn't initialize SkRegion.\n");
return;
}
SkDebugf("[terminated] Success! Initialized SkRegion.\n");
}
void FuzzTextBlobDeserialize(SkReadBuffer& buf);
static void fuzz_textblob_deserialize(sk_sp<SkData> bytes) {
SkReadBuffer buf(bytes->data(), bytes->size());
FuzzTextBlobDeserialize(buf);
SkDebugf("[terminated] textblob didn't crash!\n");
}
void FuzzRegionSetPath(Fuzz* fuzz);
static void fuzz_region_set_path(sk_sp<SkData> bytes) {
Fuzz fuzz(bytes);
FuzzRegionSetPath(&fuzz);
SkDebugf("[terminated] region_set_path didn't crash!\n");
}
void FuzzImageFilterDeserialize(sk_sp<SkData> bytes);
static void fuzz_filter_fuzz(sk_sp<SkData> bytes) {
FuzzImageFilterDeserialize(bytes);
SkDebugf("[terminated] filter_fuzz didn't crash!\n");
}
bool FuzzSkRuntimeEffect(sk_sp<SkData> bytes);
static void fuzz_skruntimeeffect(sk_sp<SkData> bytes) {
if (FuzzSkRuntimeEffect(bytes)) {
SkDebugf("[terminated] Success! Compiled and Executed sksl code.\n");
} else {
SkDebugf("[terminated] Could not Compile or Execute sksl code.\n");
}
}
bool FuzzSKSL2GLSL(sk_sp<SkData> bytes);
static void fuzz_sksl2glsl(sk_sp<SkData> bytes) {
if (FuzzSKSL2GLSL(bytes)) {
SkDebugf("[terminated] Success! Compiled input to GLSL.\n");
} else {
SkDebugf("[terminated] Could not compile input to GLSL.\n");
}
}
bool FuzzSKSL2SPIRV(sk_sp<SkData> bytes);
static void fuzz_sksl2spirv(sk_sp<SkData> bytes) {
if (FuzzSKSL2SPIRV(bytes)) {
SkDebugf("[terminated] Success! Compiled input to SPIRV.\n");
} else {
SkDebugf("[terminated] Could not compile input to SPIRV.\n");
}
}
bool FuzzSKSL2Metal(sk_sp<SkData> bytes);
static void fuzz_sksl2metal(sk_sp<SkData> bytes) {
if (FuzzSKSL2Metal(bytes)) {
SkDebugf("[terminated] Success! Compiled input to Metal.\n");
} else {
SkDebugf("[terminated] Could not compile input to Metal.\n");
}
}
bool FuzzSKSL2Pipeline(sk_sp<SkData> bytes);
static void fuzz_sksl2pipeline(sk_sp<SkData> bytes) {
if (FuzzSKSL2Pipeline(bytes)) {
SkDebugf("[terminated] Success! Compiled input to pipeline stage.\n");
} else {
SkDebugf("[terminated] Could not compile input to pipeline stage.\n");
}
}
void FuzzSkDescriptorDeserialize(sk_sp<SkData> bytes);
static void fuzz_skdescriptor_deserialize(sk_sp<SkData> bytes) {
FuzzSkDescriptorDeserialize(bytes);
SkDebugf("[terminated] Did not crash while deserializing an SkDescriptor.\n");
}