blob: 785e34161d8ae5be5afe381fdee8d369601902e3 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrConfigConversionEffect.h"
#include "../private/GrGLSL.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrRenderTargetContext.h"
#include "SkMatrix.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
class GrGLConfigConversionEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const GrConfigConversionEffect& cce = args.fFp.cast<GrConfigConversionEffect>();
GrConfigConversionEffect::PMConversion pmConversion = cce.pmConversion();
// Using highp for GLES here in order to avoid some precision issues on specific GPUs.
GrShaderVar tmpVar("tmpColor", kVec4f_GrSLType, 0, kHigh_GrSLPrecision);
SkString tmpDecl;
tmpVar.appendDecl(args.fShaderCaps, &tmpDecl);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s;", tmpDecl.c_str());
if (nullptr == args.fInputColor) {
// could optimize this case, but we aren't for now.
args.fInputColor = "vec4(1)";
}
fragBuilder->codeAppendf("%s = %s;", tmpVar.c_str(), args.fInputColor);
switch (pmConversion) {
case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion:
fragBuilder->codeAppendf(
"%s = vec4(ceil(%s.rgb * %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion:
// Add a compensation(0.001) here to avoid the side effect of the floor operation.
// In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0
// is less than the integer value converted from %s.r by 1 when the %s.r is
// converted from the integer value 2^n, such as 1, 2, 4, 8, etc.
fragBuilder->codeAppendf(
"%s = vec4(floor(%s.rgb * %s.a * 255.0 + 0.001) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str());
break;
case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion:
fragBuilder->codeAppendf(
"%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(),
tmpVar.c_str());
break;
case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion:
fragBuilder->codeAppendf(
"%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0) / 255.0, %s.a);",
tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(),
tmpVar.c_str());
break;
default:
SkFAIL("Unknown conversion op.");
break;
}
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, tmpVar.c_str());
SkString modulate;
GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor);
fragBuilder->codeAppend(modulate.c_str());
}
static inline void GenKey(const GrProcessor& processor, const GrShaderCaps&,
GrProcessorKeyBuilder* b) {
const GrConfigConversionEffect& cce = processor.cast<GrConfigConversionEffect>();
uint32_t key = cce.pmConversion();
b->add32(key);
}
private:
typedef GrGLSLFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
GrConfigConversionEffect::GrConfigConversionEffect(PMConversion pmConversion)
: INHERITED(kNone_OptimizationFlags)
, fPMConversion(pmConversion) {
this->initClassID<GrConfigConversionEffect>();
}
bool GrConfigConversionEffect::onIsEqual(const GrFragmentProcessor& s) const {
const GrConfigConversionEffect& other = s.cast<GrConfigConversionEffect>();
return other.fPMConversion == fPMConversion;
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConfigConversionEffect);
#if !defined(__clang__) && _MSC_FULL_VER >= 190024213
// Work around VS 2015 Update 3 optimizer bug that causes internal compiler error
//https://connect.microsoft.com/VisualStudio/feedback/details/3100520/internal-compiler-error
#pragma optimize("t", off)
#endif
#if GR_TEST_UTILS
sk_sp<GrFragmentProcessor> GrConfigConversionEffect::TestCreate(GrProcessorTestData* d) {
PMConversion pmConv = static_cast<PMConversion>(d->fRandom->nextULessThan(kPMConversionCnt));
return sk_sp<GrFragmentProcessor>(new GrConfigConversionEffect(pmConv));
}
#endif
#if !defined(__clang__) && _MSC_FULL_VER >= 190024213
// Restore optimization settings.
#pragma optimize("", on)
#endif
///////////////////////////////////////////////////////////////////////////////
void GrConfigConversionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLConfigConversionEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrConfigConversionEffect::onCreateGLSLInstance() const {
return new GrGLConfigConversionEffect();
}
void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context,
PMConversion* pmToUPMRule,
PMConversion* upmToPMRule) {
*pmToUPMRule = kPMConversionCnt;
*upmToPMRule = kPMConversionCnt;
static constexpr int kSize = 256;
static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig;
SkAutoTMalloc<uint32_t> data(kSize * kSize * 3);
uint32_t* srcData = data.get();
uint32_t* firstRead = data.get() + kSize * kSize;
uint32_t* secondRead = data.get() + 2 * kSize * kSize;
// Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate
// values in row y. We set r,g, and b to the same value since they are handled identically.
for (int y = 0; y < kSize; ++y) {
for (int x = 0; x < kSize; ++x) {
uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize*y + x]);
color[3] = y;
color[2] = SkTMin(x, y);
color[1] = SkTMin(x, y);
color[0] = SkTMin(x, y);
}
}
const SkImageInfo ii = SkImageInfo::Make(kSize, kSize,
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
sk_sp<GrRenderTargetContext> readRTC(context->makeRenderTargetContext(SkBackingFit::kExact,
kSize, kSize,
kConfig, nullptr));
sk_sp<GrRenderTargetContext> tempRTC(context->makeRenderTargetContext(SkBackingFit::kExact,
kSize, kSize,
kConfig, nullptr));
if (!readRTC || !tempRTC) {
return;
}
GrSurfaceDesc desc;
desc.fWidth = kSize;
desc.fHeight = kSize;
desc.fConfig = kConfig;
GrResourceProvider* resourceProvider = context->resourceProvider();
sk_sp<GrTextureProxy> dataProxy = GrSurfaceProxy::MakeDeferred(resourceProvider, desc,
SkBudgeted::kYes, data, 0);
if (!dataProxy) {
return;
}
static const PMConversion kConversionRules[][2] = {
{kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion},
{kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion},
};
bool failed = true;
for (size_t i = 0; i < SK_ARRAY_COUNT(kConversionRules) && failed; ++i) {
*pmToUPMRule = kConversionRules[i][0];
*upmToPMRule = kConversionRules[i][1];
static const SkRect kDstRect = SkRect::MakeIWH(kSize, kSize);
static const SkRect kSrcRect = SkRect::MakeIWH(kSize, kSize);
// We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw
// from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data.
// We then verify that two reads produced the same values.
if (!readRTC->asTexture()) {
continue;
}
GrPaint paint1;
GrPaint paint2;
GrPaint paint3;
sk_sp<GrFragmentProcessor> pmToUPM(new GrConfigConversionEffect(*pmToUPMRule));
sk_sp<GrFragmentProcessor> upmToPM(new GrConfigConversionEffect(*upmToPMRule));
paint1.addColorTextureProcessor(resourceProvider, dataProxy, nullptr, SkMatrix::I());
paint1.addColorFragmentProcessor(pmToUPM);
paint1.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kDstRect,
kSrcRect);
if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) {
continue;
}
paint2.addColorTextureProcessor(resourceProvider, readRTC->asTextureProxyRef(), nullptr,
SkMatrix::I());
paint2.addColorFragmentProcessor(std::move(upmToPM));
paint2.setPorterDuffXPFactory(SkBlendMode::kSrc);
tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kDstRect,
kSrcRect);
paint3.addColorTextureProcessor(resourceProvider, tempRTC->asTextureProxyRef(), nullptr,
SkMatrix::I());
paint3.addColorFragmentProcessor(std::move(pmToUPM));
paint3.setPorterDuffXPFactory(SkBlendMode::kSrc);
readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kDstRect,
kSrcRect);
if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) {
continue;
}
failed = false;
for (int y = 0; y < kSize && !failed; ++y) {
for (int x = 0; x <= y; ++x) {
if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) {
failed = true;
break;
}
}
}
}
if (failed) {
*pmToUPMRule = kPMConversionCnt;
*upmToPMRule = kPMConversionCnt;
}
}
sk_sp<GrFragmentProcessor> GrConfigConversionEffect::Make(sk_sp<GrFragmentProcessor> fp,
PMConversion pmConversion) {
if (!fp) {
return nullptr;
}
sk_sp<GrFragmentProcessor> ccFP(new GrConfigConversionEffect(pmConversion));
sk_sp<GrFragmentProcessor> fpPipeline[] = { fp, ccFP };
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}