| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkPathOpsLine.h" |
| |
| SkDLine SkDLine::subDivide(double t1, double t2) const { |
| SkDVector delta = tangent(); |
| SkDLine dst = {{{ |
| fPts[0].fX - t1 * delta.fX, fPts[0].fY - t1 * delta.fY}, { |
| fPts[0].fX - t2 * delta.fX, fPts[0].fY - t2 * delta.fY}}}; |
| return dst; |
| } |
| |
| // may have this below somewhere else already: |
| // copying here because I thought it was clever |
| |
| // Copyright 2001, softSurfer (www.softsurfer.com) |
| // This code may be freely used and modified for any purpose |
| // providing that this copyright notice is included with it. |
| // SoftSurfer makes no warranty for this code, and cannot be held |
| // liable for any real or imagined damage resulting from its use. |
| // Users of this code must verify correctness for their application. |
| |
| // Assume that a class is already given for the object: |
| // Point with coordinates {float x, y;} |
| //=================================================================== |
| |
| // isLeft(): tests if a point is Left|On|Right of an infinite line. |
| // Input: three points P0, P1, and P2 |
| // Return: >0 for P2 left of the line through P0 and P1 |
| // =0 for P2 on the line |
| // <0 for P2 right of the line |
| // See: the January 2001 Algorithm on Area of Triangles |
| // return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y)); |
| double SkDLine::isLeft(const SkDPoint& pt) const { |
| SkDVector p0 = fPts[1] - fPts[0]; |
| SkDVector p2 = pt - fPts[0]; |
| return p0.cross(p2); |
| } |
| |
| SkDPoint SkDLine::xyAtT(double t) const { |
| double one_t = 1 - t; |
| SkDPoint result = { one_t * fPts[0].fX + t * fPts[1].fX, one_t * fPts[0].fY + t * fPts[1].fY }; |
| return result; |
| } |