blob: 97ef663bb7bd18e5c187ccb77e9734fb66e97d10 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrYUVEffect.h"
#include "GrCoordTransform.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "GrProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
namespace {
static const float kJPEGConversionMatrix[16] = {
1.0f, 0.0f, 1.402f, -0.701f,
1.0f, -0.34414f, -0.71414f, 0.529f,
1.0f, 1.772f, 0.0f, -0.886f,
0.0f, 0.0f, 0.0f, 1.0
};
static const float kRec601ConversionMatrix[16] = {
1.164f, 0.0f, 1.596f, -0.87075f,
1.164f, -0.391f, -0.813f, 0.52925f,
1.164f, 2.018f, 0.0f, -1.08175f,
0.0f, 0.0f, 0.0f, 1.0}
;
static const float kRec709ConversionMatrix[16] = {
1.164f, 0.0f, 1.793f, -0.96925f,
1.164f, -0.213f, -0.533f, 0.30025f,
1.164f, 2.112f, 0.0f, -1.12875f,
0.0f, 0.0f, 0.0f, 1.0f}
;
static const float kJPEGInverseConversionMatrix[16] = {
0.299001f, 0.586998f, 0.114001f, 0.0000821798f,
-0.168736f, -0.331263f, 0.499999f, 0.499954f,
0.499999f, -0.418686f, -0.0813131f, 0.499941f,
0.f, 0.f, 0.f, 1.f
};
static const float kRec601InverseConversionMatrix[16] = {
0.256951f, 0.504421f, 0.0977346f, 0.0625f,
-0.148212f, -0.290954f, 0.439166f, 0.5f,
0.439166f, -0.367886f, -0.0712802f, 0.5f,
0.f, 0.f, 0.f, 1.f
};
static const float kRec709InverseConversionMatrix[16] = {
0.182663f, 0.614473f, 0.061971f, 0.0625f,
-0.100672f, -0.338658f, 0.43933f, 0.5f,
0.439142f, -0.39891f, -0.040231f, 0.5f,
0.f, 0.f, 0.f, 1.
};
class YUVtoRGBEffect : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create(GrTexture* yTexture, GrTexture* uTexture,
GrTexture* vTexture, const SkISize sizes[3],
SkYUVColorSpace colorSpace) {
SkScalar w[3], h[3];
w[0] = SkIntToScalar(sizes[0].fWidth) / SkIntToScalar(yTexture->width());
h[0] = SkIntToScalar(sizes[0].fHeight) / SkIntToScalar(yTexture->height());
w[1] = SkIntToScalar(sizes[1].fWidth) / SkIntToScalar(uTexture->width());
h[1] = SkIntToScalar(sizes[1].fHeight) / SkIntToScalar(uTexture->height());
w[2] = SkIntToScalar(sizes[2].fWidth) / SkIntToScalar(vTexture->width());
h[2] = SkIntToScalar(sizes[2].fHeight) / SkIntToScalar(vTexture->height());
SkMatrix yuvMatrix[3];
yuvMatrix[0] = GrCoordTransform::MakeDivByTextureWHMatrix(yTexture);
yuvMatrix[1] = yuvMatrix[0];
yuvMatrix[1].preScale(w[1] / w[0], h[1] / h[0]);
yuvMatrix[2] = yuvMatrix[0];
yuvMatrix[2].preScale(w[2] / w[0], h[2] / h[0]);
GrTextureParams::FilterMode uvFilterMode =
((sizes[1].fWidth != sizes[0].fWidth) ||
(sizes[1].fHeight != sizes[0].fHeight) ||
(sizes[2].fWidth != sizes[0].fWidth) ||
(sizes[2].fHeight != sizes[0].fHeight)) ?
GrTextureParams::kBilerp_FilterMode :
GrTextureParams::kNone_FilterMode;
return new YUVtoRGBEffect(yTexture, uTexture, vTexture, yuvMatrix, uvFilterMode,
colorSpace);
}
const char* name() const override { return "YUV to RGB"; }
SkYUVColorSpace getColorSpace() const { return fColorSpace; }
class GLSLProcessor : public GrGLSLFragmentProcessor {
public:
// this class always generates the same code.
static void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*) {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const char* colorSpaceMatrix = nullptr;
fMatrixUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kMat44f_GrSLType, kDefault_GrSLPrecision,
"ColorSpaceMatrix", &colorSpaceMatrix);
fragBuilder->codeAppendf("%s = vec4(", args.fOutputColor);
fragBuilder->appendTextureLookup(args.fTexSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fragBuilder->codeAppend(".r,");
fragBuilder->appendTextureLookup(args.fTexSamplers[1], args.fCoords[1].c_str(),
args.fCoords[1].getType());
fragBuilder->codeAppend(".r,");
fragBuilder->appendTextureLookup(args.fTexSamplers[2], args.fCoords[2].c_str(),
args.fCoords[2].getType());
fragBuilder->codeAppendf(".r, 1.0) * %s;", colorSpaceMatrix);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& processor) override {
const YUVtoRGBEffect& yuvEffect = processor.cast<YUVtoRGBEffect>();
switch (yuvEffect.getColorSpace()) {
case kJPEG_SkYUVColorSpace:
pdman.setMatrix4f(fMatrixUni, kJPEGConversionMatrix);
break;
case kRec601_SkYUVColorSpace:
pdman.setMatrix4f(fMatrixUni, kRec601ConversionMatrix);
break;
case kRec709_SkYUVColorSpace:
pdman.setMatrix4f(fMatrixUni, kRec709ConversionMatrix);
break;
}
}
private:
GrGLSLProgramDataManager::UniformHandle fMatrixUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
private:
YUVtoRGBEffect(GrTexture* yTexture, GrTexture* uTexture, GrTexture* vTexture,
const SkMatrix yuvMatrix[3], GrTextureParams::FilterMode uvFilterMode,
SkYUVColorSpace colorSpace)
: fYTransform(kLocal_GrCoordSet, yuvMatrix[0], yTexture, GrTextureParams::kNone_FilterMode)
, fYAccess(yTexture)
, fUTransform(kLocal_GrCoordSet, yuvMatrix[1], uTexture, uvFilterMode)
, fUAccess(uTexture, uvFilterMode)
, fVTransform(kLocal_GrCoordSet, yuvMatrix[2], vTexture, uvFilterMode)
, fVAccess(vTexture, uvFilterMode)
, fColorSpace(colorSpace) {
this->initClassID<YUVtoRGBEffect>();
this->addCoordTransform(&fYTransform);
this->addTextureAccess(&fYAccess);
this->addCoordTransform(&fUTransform);
this->addTextureAccess(&fUAccess);
this->addCoordTransform(&fVTransform);
this->addTextureAccess(&fVAccess);
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
return new GLSLProcessor;
}
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GLSLProcessor::GenKey(*this, caps, b);
}
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const YUVtoRGBEffect& s = sBase.cast<YUVtoRGBEffect>();
return fColorSpace == s.getColorSpace();
}
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
// YUV is opaque
inout->setToOther(kA_GrColorComponentFlag, 0xFF << GrColor_SHIFT_A,
GrInvariantOutput::kWillNot_ReadInput);
}
GrCoordTransform fYTransform;
GrTextureAccess fYAccess;
GrCoordTransform fUTransform;
GrTextureAccess fUAccess;
GrCoordTransform fVTransform;
GrTextureAccess fVAccess;
SkYUVColorSpace fColorSpace;
typedef GrFragmentProcessor INHERITED;
};
class RGBToYUVEffect : public GrFragmentProcessor {
public:
enum OutputChannels {
// output color r = y, g = u, b = v, a = a
kYUV_OutputChannels,
// output color rgba = y
kY_OutputChannels,
// output color r = u, g = v, b = 0, a = a
kUV_OutputChannels,
// output color rgba = u
kU_OutputChannels,
// output color rgba = v
kV_OutputChannels
};
RGBToYUVEffect(const GrFragmentProcessor* rgbFP, SkYUVColorSpace colorSpace,
OutputChannels output)
: fColorSpace(colorSpace)
, fOutputChannels(output) {
this->initClassID<RGBToYUVEffect>();
this->registerChildProcessor(rgbFP);
}
const char* name() const override { return "RGBToYUV"; }
SkYUVColorSpace getColorSpace() const { return fColorSpace; }
OutputChannels outputChannels() const { return fOutputChannels; }
class GLSLProcessor : public GrGLSLFragmentProcessor {
public:
GLSLProcessor() : fLastColorSpace(-1), fLastOutputChannels(-1) {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
OutputChannels oc = args.fFp.cast<RGBToYUVEffect>().outputChannels();
SkString outputColor("rgbColor");
this->emitChild(0, args.fInputColor, &outputColor, args);
const char* uniName;
switch (oc) {
case kYUV_OutputChannels:
fRGBToYUVUni = args.fUniformHandler->addUniformArray(
kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"RGBToYUV", 3, &uniName);
fragBuilder->codeAppendf("%s = vec4(dot(rgbColor.rgb, %s[0].rgb) + %s[0].a,"
"dot(rgbColor.rgb, %s[1].rgb) + %s[1].a,"
"dot(rgbColor.rgb, %s[2].rgb) + %s[2].a,"
"rgbColor.a);",
args.fOutputColor, uniName, uniName, uniName, uniName,
uniName, uniName);
break;
case kUV_OutputChannels:
fRGBToYUVUni = args.fUniformHandler->addUniformArray(
kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"RGBToUV", 2, &uniName);
fragBuilder->codeAppendf("%s = vec4(dot(rgbColor.rgb, %s[0].rgb) + %s[0].a,"
"dot(rgbColor.rgb, %s[1].rgb) + %s[1].a,"
"0.0,"
"rgbColor.a);",
args.fOutputColor, uniName, uniName, uniName, uniName);
break;
case kY_OutputChannels:
case kU_OutputChannels:
case kV_OutputChannels:
fRGBToYUVUni = args.fUniformHandler->addUniform(
kFragment_GrShaderFlag,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"RGBToYUorV", &uniName);
fragBuilder->codeAppendf("%s = vec4(dot(rgbColor.rgb, %s.rgb) + %s.a);\n",
args.fOutputColor, uniName, uniName);
break;
}
}
private:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& processor) override {
const RGBToYUVEffect& effect = processor.cast<RGBToYUVEffect>();
OutputChannels oc = effect.outputChannels();
if (effect.getColorSpace() != fLastColorSpace || oc != fLastOutputChannels) {
const float* matrix = nullptr;
switch (effect.getColorSpace()) {
case kJPEG_SkYUVColorSpace:
matrix = kJPEGInverseConversionMatrix;
break;
case kRec601_SkYUVColorSpace:
matrix = kRec601InverseConversionMatrix;
break;
case kRec709_SkYUVColorSpace:
matrix = kRec709InverseConversionMatrix;
break;
}
switch (oc) {
case kYUV_OutputChannels:
pdman.set4fv(fRGBToYUVUni, 3, matrix);
break;
case kUV_OutputChannels:
pdman.set4fv(fRGBToYUVUni, 2, matrix + 4);
break;
case kY_OutputChannels:
pdman.set4fv(fRGBToYUVUni, 1, matrix);
break;
case kU_OutputChannels:
pdman.set4fv(fRGBToYUVUni, 1, matrix + 4);
break;
case kV_OutputChannels:
pdman.set4fv(fRGBToYUVUni, 1, matrix + 8);
break;
}
fLastColorSpace = effect.getColorSpace();
}
}
GrGLSLProgramDataManager::UniformHandle fRGBToYUVUni;
int fLastColorSpace;
int fLastOutputChannels;
typedef GrGLSLFragmentProcessor INHERITED;
};
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
return new GLSLProcessor;
}
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
// kY, kU, and kV all generate the same code, just upload different coefficients.
if (kU_OutputChannels == fOutputChannels || kV_OutputChannels == fOutputChannels) {
b->add32(kY_OutputChannels);
} else {
b->add32(fOutputChannels);
}
}
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
const RGBToYUVEffect& s = sBase.cast<RGBToYUVEffect>();
return fColorSpace == s.getColorSpace() && fOutputChannels == s.outputChannels();
}
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput);
}
GrCoordTransform fTransform;
GrTextureAccess fAccess;
SkYUVColorSpace fColorSpace;
OutputChannels fOutputChannels;
typedef GrFragmentProcessor INHERITED;
};
}
//////////////////////////////////////////////////////////////////////////////
const GrFragmentProcessor*
GrYUVEffect::CreateYUVToRGB(GrTexture* yTexture, GrTexture* uTexture, GrTexture* vTexture,
const SkISize sizes[3], SkYUVColorSpace colorSpace) {
SkASSERT(yTexture && uTexture && vTexture && sizes);
return YUVtoRGBEffect::Create(yTexture, uTexture, vTexture, sizes, colorSpace);
}
const GrFragmentProcessor*
GrYUVEffect::CreateRGBToYUV(const GrFragmentProcessor* rgbFP, SkYUVColorSpace colorSpace) {
SkASSERT(rgbFP);
return new RGBToYUVEffect(rgbFP, colorSpace, RGBToYUVEffect::kYUV_OutputChannels);
}
const GrFragmentProcessor*
GrYUVEffect::CreateRGBToY(const GrFragmentProcessor* rgbFP, SkYUVColorSpace colorSpace) {
SkASSERT(rgbFP);
return new RGBToYUVEffect(rgbFP, colorSpace, RGBToYUVEffect::kY_OutputChannels);
}
const GrFragmentProcessor*
GrYUVEffect::CreateRGBToUV(const GrFragmentProcessor* rgbFP, SkYUVColorSpace colorSpace) {
SkASSERT(rgbFP);
return new RGBToYUVEffect(rgbFP, colorSpace, RGBToYUVEffect::kUV_OutputChannels);
}
const GrFragmentProcessor*
GrYUVEffect::CreateRGBToU(const GrFragmentProcessor* rgbFP, SkYUVColorSpace colorSpace) {
SkASSERT(rgbFP);
return new RGBToYUVEffect(rgbFP, colorSpace, RGBToYUVEffect::kU_OutputChannels);
}
const GrFragmentProcessor*
GrYUVEffect::CreateRGBToV(const GrFragmentProcessor* rgbFP, SkYUVColorSpace colorSpace) {
SkASSERT(rgbFP);
return new RGBToYUVEffect(rgbFP, colorSpace, RGBToYUVEffect::kV_OutputChannels);
}