| /* |
| * Copyright 2012 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #define LOG_TAG "PathRenderer" |
| #define LOG_NDEBUG 1 |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #define VERTEX_DEBUG 0 |
| |
| #include <SkPath.h> |
| #include <SkStrokeRec.h> |
| |
| #include <stdlib.h> |
| #include <stdint.h> |
| #include <sys/types.h> |
| |
| #include <SkTypes.h> |
| #include <SkTrace.h> |
| #include <SkMatrix.h> |
| #include <SkPoint.h> |
| |
| #ifdef VERBOSE |
| #define ALOGV SkDebugf |
| #else |
| #define ALOGV(x, ...) |
| #endif |
| |
| #include "AndroidPathRenderer.h" |
| #include "Vertex.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| #define THRESHOLD 0.5f |
| |
| SkRect PathRenderer::ComputePathBounds(const SkPath& path, const SkPaint* paint) { |
| SkRect bounds = path.getBounds(); |
| if (paint->getStyle() != SkPaint::kFill_Style) { |
| float outset = paint->getStrokeWidth() * 0.5f; |
| bounds.outset(outset, outset); |
| } |
| return bounds; |
| } |
| |
| inline void computeInverseScales(const SkMatrix* transform, float &inverseScaleX, float& inverseScaleY) { |
| if (transform && transform->getType() & (SkMatrix::kScale_Mask|SkMatrix::kAffine_Mask|SkMatrix::kPerspective_Mask)) { |
| float m00 = transform->getScaleX(); |
| float m01 = transform->getSkewY(); |
| float m10 = transform->getSkewX(); |
| float m11 = transform->getScaleY(); |
| float scaleX = sk_float_sqrt(m00 * m00 + m01 * m01); |
| float scaleY = sk_float_sqrt(m10 * m10 + m11 * m11); |
| inverseScaleX = (scaleX != 0) ? (1.0f / scaleX) : 1.0f; |
| inverseScaleY = (scaleY != 0) ? (1.0f / scaleY) : 1.0f; |
| } else { |
| inverseScaleX = 1.0f; |
| inverseScaleY = 1.0f; |
| } |
| } |
| |
| inline void copyVertex(Vertex* destPtr, const Vertex* srcPtr) { |
| Vertex::set(destPtr, srcPtr->position[0], srcPtr->position[1]); |
| } |
| |
| inline void copyAlphaVertex(AlphaVertex* destPtr, const AlphaVertex* srcPtr) { |
| AlphaVertex::set(destPtr, srcPtr->position[0], srcPtr->position[1], srcPtr->alpha); |
| } |
| |
| /** |
| * Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset |
| * from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices |
| * will be offset by 1.0 |
| * |
| * Note that we can't add and normalize the two vectors, that would result in a rectangle having an |
| * offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1) |
| * |
| * NOTE: assumes angles between normals 90 degrees or less |
| */ |
| inline SkVector totalOffsetFromNormals(const SkVector& normalA, const SkVector& normalB) { |
| SkVector pseudoNormal = normalA + normalB; |
| pseudoNormal.scale(1.0f / (1.0f + sk_float_abs(normalA.dot(normalB)))); |
| return pseudoNormal; |
| } |
| |
| inline void scaleOffsetForStrokeWidth(SkVector& offset, float halfStrokeWidth, |
| float inverseScaleX, float inverseScaleY) { |
| if (halfStrokeWidth == 0.0f) { |
| // hairline - compensate for scale |
| offset.fX *= 0.5f * inverseScaleX; |
| offset.fY *= 0.5f * inverseScaleY; |
| } else { |
| offset.scale(halfStrokeWidth); |
| } |
| } |
| |
| static void getFillVerticesFromPerimeter(const SkTArray<Vertex, true>& perimeter, VertexBuffer* vertexBuffer) { |
| Vertex* buffer = vertexBuffer->alloc<Vertex>(perimeter.count()); |
| |
| int currentIndex = 0; |
| // zig zag between all previous points on the inside of the hull to create a |
| // triangle strip that fills the hull |
| int srcAindex = 0; |
| int srcBindex = perimeter.count() - 1; |
| while (srcAindex <= srcBindex) { |
| copyVertex(&buffer[currentIndex++], &perimeter[srcAindex]); |
| if (srcAindex == srcBindex) break; |
| copyVertex(&buffer[currentIndex++], &perimeter[srcBindex]); |
| srcAindex++; |
| srcBindex--; |
| } |
| } |
| |
| static void getStrokeVerticesFromPerimeter(const SkTArray<Vertex, true>& perimeter, float halfStrokeWidth, |
| VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { |
| Vertex* buffer = vertexBuffer->alloc<Vertex>(perimeter.count() * 2 + 2); |
| |
| int currentIndex = 0; |
| const Vertex* last = &(perimeter[perimeter.count() - 1]); |
| const Vertex* current = &(perimeter[0]); |
| SkVector lastNormal; |
| lastNormal.set(current->position[1] - last->position[1], |
| last->position[0] - current->position[0]); |
| lastNormal.normalize(); |
| for (int i = 0; i < perimeter.count(); i++) { |
| const Vertex* next = &(perimeter[i + 1 >= perimeter.count() ? 0 : i + 1]); |
| SkVector nextNormal; |
| nextNormal.set(next->position[1] - current->position[1], |
| current->position[0] - next->position[0]); |
| nextNormal.normalize(); |
| |
| SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| |
| Vertex::set(&buffer[currentIndex++], |
| current->position[0] + totalOffset.fX, |
| current->position[1] + totalOffset.fY); |
| |
| Vertex::set(&buffer[currentIndex++], |
| current->position[0] - totalOffset.fX, |
| current->position[1] - totalOffset.fY); |
| |
| last = current; |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // wrap around to beginning |
| copyVertex(&buffer[currentIndex++], &buffer[0]); |
| copyVertex(&buffer[currentIndex++], &buffer[1]); |
| } |
| |
| static void getStrokeVerticesFromUnclosedVertices(const SkTArray<Vertex, true>& vertices, float halfStrokeWidth, |
| VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { |
| Vertex* buffer = vertexBuffer->alloc<Vertex>(vertices.count() * 2); |
| |
| int currentIndex = 0; |
| const Vertex* current = &(vertices[0]); |
| SkVector lastNormal; |
| for (int i = 0; i < vertices.count() - 1; i++) { |
| const Vertex* next = &(vertices[i + 1]); |
| SkVector nextNormal; |
| nextNormal.set(next->position[1] - current->position[1], |
| current->position[0] - next->position[0]); |
| nextNormal.normalize(); |
| |
| SkVector totalOffset; |
| if (i == 0) { |
| totalOffset = nextNormal; |
| } else { |
| totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| } |
| scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| |
| Vertex::set(&buffer[currentIndex++], |
| current->position[0] + totalOffset.fX, |
| current->position[1] + totalOffset.fY); |
| |
| Vertex::set(&buffer[currentIndex++], |
| current->position[0] - totalOffset.fX, |
| current->position[1] - totalOffset.fY); |
| |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| SkVector totalOffset = lastNormal; |
| scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| |
| Vertex::set(&buffer[currentIndex++], |
| current->position[0] + totalOffset.fX, |
| current->position[1] + totalOffset.fY); |
| Vertex::set(&buffer[currentIndex++], |
| current->position[0] - totalOffset.fX, |
| current->position[1] - totalOffset.fY); |
| #if VERTEX_DEBUG |
| for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { |
| SkDebugf("point at %f %f", buffer[i].position[0], buffer[i].position[1]); |
| } |
| #endif |
| } |
| |
| static void getFillVerticesFromPerimeterAA(const SkTArray<Vertex, true>& perimeter, VertexBuffer* vertexBuffer, |
| float inverseScaleX, float inverseScaleY) { |
| AlphaVertex* buffer = vertexBuffer->alloc<AlphaVertex>(perimeter.count() * 3 + 2); |
| |
| // generate alpha points - fill Alpha vertex gaps in between each point with |
| // alpha 0 vertex, offset by a scaled normal. |
| int currentIndex = 0; |
| const Vertex* last = &(perimeter[perimeter.count() - 1]); |
| const Vertex* current = &(perimeter[0]); |
| SkVector lastNormal; |
| lastNormal.set(current->position[1] - last->position[1], |
| last->position[0] - current->position[0]); |
| lastNormal.normalize(); |
| for (int i = 0; i < perimeter.count(); i++) { |
| const Vertex* next = &(perimeter[i + 1 >= perimeter.count() ? 0 : i + 1]); |
| SkVector nextNormal; |
| nextNormal.set(next->position[1] - current->position[1], |
| current->position[0] - next->position[0]); |
| nextNormal.normalize(); |
| |
| // AA point offset from original point is that point's normal, such that each side is offset |
| // by .5 pixels |
| SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| totalOffset.fX *= 0.5f * inverseScaleX; |
| totalOffset.fY *= 0.5f * inverseScaleY; |
| |
| AlphaVertex::set(&buffer[currentIndex++], |
| current->position[0] + totalOffset.fX, |
| current->position[1] + totalOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[currentIndex++], |
| current->position[0] - totalOffset.fX, |
| current->position[1] - totalOffset.fY, |
| 1.0f); |
| |
| last = current; |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // wrap around to beginning |
| copyAlphaVertex(&buffer[currentIndex++], &buffer[0]); |
| copyAlphaVertex(&buffer[currentIndex++], &buffer[1]); |
| |
| // zig zag between all previous points on the inside of the hull to create a |
| // triangle strip that fills the hull, repeating the first inner point to |
| // create degenerate tris to start inside path |
| int srcAindex = 0; |
| int srcBindex = perimeter.count() - 1; |
| while (srcAindex <= srcBindex) { |
| copyAlphaVertex(&buffer[currentIndex++], &buffer[srcAindex * 2 + 1]); |
| if (srcAindex == srcBindex) break; |
| copyAlphaVertex(&buffer[currentIndex++], &buffer[srcBindex * 2 + 1]); |
| srcAindex++; |
| srcBindex--; |
| } |
| |
| #if VERTEX_DEBUG |
| for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { |
| SkDebugf("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); |
| } |
| #endif |
| } |
| |
| |
| static void getStrokeVerticesFromUnclosedVerticesAA(const SkTArray<Vertex, true>& vertices, float halfStrokeWidth, |
| VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { |
| AlphaVertex* buffer = vertexBuffer->alloc<AlphaVertex>(6 * vertices.count() + 2); |
| |
| // avoid lines smaller than hairline since they break triangle based sampling. instead reducing |
| // alpha value (TODO: support different X/Y scale) |
| float maxAlpha = 1.0f; |
| if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && |
| halfStrokeWidth * inverseScaleX < 0.5f) { |
| maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; |
| halfStrokeWidth = 0.0f; |
| } |
| |
| // there is no outer/inner here, using them for consistency with below approach |
| int offset = 2 * (vertices.count() - 2); |
| int currentAAOuterIndex = 2; |
| int currentAAInnerIndex = 2 * offset + 5; // reversed |
| int currentStrokeIndex = currentAAInnerIndex + 7; |
| |
| const Vertex* last = &(vertices[0]); |
| const Vertex* current = &(vertices[1]); |
| SkVector lastNormal; |
| lastNormal.set(current->position[1] - last->position[1], |
| last->position[0] - current->position[0]); |
| lastNormal.normalize(); |
| |
| { |
| // start cap |
| SkVector totalOffset = lastNormal; |
| SkVector AAOffset = totalOffset; |
| AAOffset.fX *= 0.5f * inverseScaleX; |
| AAOffset.fY *= 0.5f * inverseScaleY; |
| |
| SkVector innerOffset = totalOffset; |
| scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| SkVector outerOffset = innerOffset + AAOffset; |
| innerOffset -= AAOffset; |
| |
| // TODO: support square cap by changing this offset to incorporate halfStrokeWidth |
| SkVector capAAOffset; |
| capAAOffset.set(AAOffset.fY, -AAOffset.fX); |
| AlphaVertex::set(&buffer[0], |
| last->position[0] + outerOffset.fX + capAAOffset.fX, |
| last->position[1] + outerOffset.fY + capAAOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[1], |
| last->position[0] + innerOffset.fX - capAAOffset.fX, |
| last->position[1] + innerOffset.fY - capAAOffset.fY, |
| maxAlpha); |
| |
| AlphaVertex::set(&buffer[2 * offset + 6], |
| last->position[0] - outerOffset.fX + capAAOffset.fX, |
| last->position[1] - outerOffset.fY + capAAOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[2 * offset + 7], |
| last->position[0] - innerOffset.fX - capAAOffset.fX, |
| last->position[1] - innerOffset.fY - capAAOffset.fY, |
| maxAlpha); |
| copyAlphaVertex(&buffer[2 * offset + 8], &buffer[0]); |
| copyAlphaVertex(&buffer[2 * offset + 9], &buffer[1]); |
| copyAlphaVertex(&buffer[2 * offset + 10], &buffer[1]); // degenerate tris (the only two!) |
| copyAlphaVertex(&buffer[2 * offset + 11], &buffer[2 * offset + 7]); |
| } |
| |
| for (int i = 1; i < vertices.count() - 1; i++) { |
| const Vertex* next = &(vertices[i + 1]); |
| SkVector nextNormal; |
| nextNormal.set(next->position[1] - current->position[1], |
| current->position[0] - next->position[0]); |
| nextNormal.normalize(); |
| |
| SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| SkVector AAOffset = totalOffset; |
| AAOffset.fX *= 0.5f * inverseScaleX; |
| AAOffset.fY *= 0.5f * inverseScaleY; |
| |
| SkVector innerOffset = totalOffset; |
| scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| SkVector outerOffset = innerOffset + AAOffset; |
| innerOffset -= AAOffset; |
| |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], |
| current->position[0] + outerOffset.fX, |
| current->position[1] + outerOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], |
| current->position[0] + innerOffset.fX, |
| current->position[1] + innerOffset.fY, |
| maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentStrokeIndex++], |
| current->position[0] + innerOffset.fX, |
| current->position[1] + innerOffset.fY, |
| maxAlpha); |
| AlphaVertex::set(&buffer[currentStrokeIndex++], |
| current->position[0] - innerOffset.fX, |
| current->position[1] - innerOffset.fY, |
| maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentAAInnerIndex--], |
| current->position[0] - innerOffset.fX, |
| current->position[1] - innerOffset.fY, |
| maxAlpha); |
| AlphaVertex::set(&buffer[currentAAInnerIndex--], |
| current->position[0] - outerOffset.fX, |
| current->position[1] - outerOffset.fY, |
| 0.0f); |
| |
| last = current; |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| { |
| // end cap |
| SkVector totalOffset = lastNormal; |
| SkVector AAOffset = totalOffset; |
| AAOffset.fX *= 0.5f * inverseScaleX; |
| AAOffset.fY *= 0.5f * inverseScaleY; |
| |
| SkVector innerOffset = totalOffset; |
| scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| SkVector outerOffset = innerOffset + AAOffset; |
| innerOffset -= AAOffset; |
| |
| // TODO: support square cap by changing this offset to incorporate halfStrokeWidth |
| SkVector capAAOffset; |
| capAAOffset.set(-AAOffset.fY, AAOffset.fX); |
| |
| AlphaVertex::set(&buffer[offset + 2], |
| current->position[0] + outerOffset.fX + capAAOffset.fX, |
| current->position[1] + outerOffset.fY + capAAOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[offset + 3], |
| current->position[0] + innerOffset.fX - capAAOffset.fX, |
| current->position[1] + innerOffset.fY - capAAOffset.fY, |
| maxAlpha); |
| |
| AlphaVertex::set(&buffer[offset + 4], |
| current->position[0] - outerOffset.fX + capAAOffset.fX, |
| current->position[1] - outerOffset.fY + capAAOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[offset + 5], |
| current->position[0] - innerOffset.fX - capAAOffset.fX, |
| current->position[1] - innerOffset.fY - capAAOffset.fY, |
| maxAlpha); |
| |
| copyAlphaVertex(&buffer[vertexBuffer->getSize() - 2], &buffer[offset + 3]); |
| copyAlphaVertex(&buffer[vertexBuffer->getSize() - 1], &buffer[offset + 5]); |
| } |
| |
| #if VERTEX_DEBUG |
| for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { |
| SkDebugf("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); |
| } |
| #endif |
| } |
| |
| |
| static void getStrokeVerticesFromPerimeterAA(const SkTArray<Vertex, true>& perimeter, float halfStrokeWidth, |
| VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { |
| AlphaVertex* buffer = vertexBuffer->alloc<AlphaVertex>(6 * perimeter.count() + 8); |
| |
| // avoid lines smaller than hairline since they break triangle based sampling. instead reducing |
| // alpha value (TODO: support different X/Y scale) |
| float maxAlpha = 1.0f; |
| if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && |
| halfStrokeWidth * inverseScaleX < 0.5f) { |
| maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; |
| halfStrokeWidth = 0.0f; |
| } |
| |
| int offset = 2 * perimeter.count() + 3; |
| int currentAAOuterIndex = 0; |
| int currentStrokeIndex = offset; |
| int currentAAInnerIndex = offset * 2; |
| |
| const Vertex* last = &(perimeter[perimeter.count() - 1]); |
| const Vertex* current = &(perimeter[0]); |
| SkVector lastNormal; |
| lastNormal.set(current->position[1] - last->position[1], |
| last->position[0] - current->position[0]); |
| lastNormal.normalize(); |
| for (int i = 0; i < perimeter.count(); i++) { |
| const Vertex* next = &(perimeter[i + 1 >= perimeter.count() ? 0 : i + 1]); |
| SkVector nextNormal; |
| nextNormal.set(next->position[1] - current->position[1], |
| current->position[0] - next->position[0]); |
| nextNormal.normalize(); |
| |
| SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| SkVector AAOffset = totalOffset; |
| AAOffset.fX *= 0.5f * inverseScaleX; |
| AAOffset.fY *= 0.5f * inverseScaleY; |
| |
| SkVector innerOffset = totalOffset; |
| scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); |
| SkVector outerOffset = innerOffset + AAOffset; |
| innerOffset -= AAOffset; |
| |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], |
| current->position[0] + outerOffset.fX, |
| current->position[1] + outerOffset.fY, |
| 0.0f); |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], |
| current->position[0] + innerOffset.fX, |
| current->position[1] + innerOffset.fY, |
| maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentStrokeIndex++], |
| current->position[0] + innerOffset.fX, |
| current->position[1] + innerOffset.fY, |
| maxAlpha); |
| AlphaVertex::set(&buffer[currentStrokeIndex++], |
| current->position[0] - innerOffset.fX, |
| current->position[1] - innerOffset.fY, |
| maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentAAInnerIndex++], |
| current->position[0] - innerOffset.fX, |
| current->position[1] - innerOffset.fY, |
| maxAlpha); |
| AlphaVertex::set(&buffer[currentAAInnerIndex++], |
| current->position[0] - outerOffset.fX, |
| current->position[1] - outerOffset.fY, |
| 0.0f); |
| |
| last = current; |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // wrap each strip around to beginning, creating degenerate tris to bridge strips |
| copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[0]); |
| copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]); |
| copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]); |
| |
| copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset]); |
| copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]); |
| copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]); |
| |
| copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset]); |
| copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset + 1]); |
| // don't need to create last degenerate tri |
| |
| #if VERTEX_DEBUG |
| for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { |
| SkDebugf("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); |
| } |
| #endif |
| } |
| |
| void PathRenderer::ConvexPathVertices(const SkPath &path, const SkStrokeRec& stroke, bool isAA, |
| const SkMatrix* transform, VertexBuffer* vertexBuffer) { |
| SK_TRACE_EVENT0("PathRenderer::convexPathVertices"); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| |
| float inverseScaleX, inverseScaleY; |
| computeInverseScales(transform, inverseScaleX, inverseScaleY); |
| |
| SkTArray<Vertex, true> tempVertices; |
| float threshInvScaleX = inverseScaleX; |
| float threshInvScaleY = inverseScaleY; |
| if (style == SkStrokeRec::kStroke_Style) { |
| // alter the bezier recursion threshold values we calculate in order to compensate for |
| // expansion done after the path vertices are found |
| SkRect bounds = path.getBounds(); |
| if (!bounds.isEmpty()) { |
| threshInvScaleX *= bounds.width() / (bounds.width() + stroke.getWidth()); |
| threshInvScaleY *= bounds.height() / (bounds.height() + stroke.getWidth()); |
| } |
| } |
| |
| // force close if we're filling the path, since fill path expects closed perimeter. |
| bool forceClose = style != SkStrokeRec::kStroke_Style; |
| bool wasClosed = ConvexPathPerimeterVertices(path, forceClose, threshInvScaleX * threshInvScaleX, |
| threshInvScaleY * threshInvScaleY, &tempVertices); |
| |
| if (!tempVertices.count()) { |
| // path was empty, return without allocating vertex buffer |
| return; |
| } |
| |
| #if VERTEX_DEBUG |
| for (unsigned int i = 0; i < tempVertices.count(); i++) { |
| SkDebugf("orig path: point at %f %f", tempVertices[i].position[0], tempVertices[i].position[1]); |
| } |
| #endif |
| |
| if (style == SkStrokeRec::kStroke_Style) { |
| float halfStrokeWidth = stroke.getWidth() * 0.5f; |
| if (!isAA) { |
| if (wasClosed) { |
| getStrokeVerticesFromPerimeter(tempVertices, halfStrokeWidth, vertexBuffer, |
| inverseScaleX, inverseScaleY); |
| } else { |
| getStrokeVerticesFromUnclosedVertices(tempVertices, halfStrokeWidth, vertexBuffer, |
| inverseScaleX, inverseScaleY); |
| } |
| |
| } else { |
| if (wasClosed) { |
| getStrokeVerticesFromPerimeterAA(tempVertices, halfStrokeWidth, vertexBuffer, |
| inverseScaleX, inverseScaleY); |
| } else { |
| getStrokeVerticesFromUnclosedVerticesAA(tempVertices, halfStrokeWidth, vertexBuffer, |
| inverseScaleX, inverseScaleY); |
| } |
| } |
| } else { |
| // For kStrokeAndFill style, the path should be adjusted externally, as it will be treated as a fill here. |
| if (!isAA) { |
| getFillVerticesFromPerimeter(tempVertices, vertexBuffer); |
| } else { |
| getFillVerticesFromPerimeterAA(tempVertices, vertexBuffer, inverseScaleX, inverseScaleY); |
| } |
| } |
| } |
| |
| |
| static void pushToVector(SkTArray<Vertex, true>* vertices, float x, float y) { |
| // TODO: make this not yuck |
| vertices->push_back(); |
| Vertex* newVertex = &((*vertices)[vertices->count() - 1]); |
| Vertex::set(newVertex, x, y); |
| } |
| |
| bool PathRenderer::ConvexPathPerimeterVertices(const SkPath& path, bool forceClose, |
| float sqrInvScaleX, float sqrInvScaleY, SkTArray<Vertex, true>* outputVertices) { |
| SK_TRACE_EVENT0("PathRenderer::convexPathPerimeterVertices"); |
| |
| |
| // TODO: to support joins other than sharp miter, join vertices should be labelled in the |
| // perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case. |
| SkPath::Iter iter(path, forceClose); |
| SkPoint pts[4]; |
| SkPath::Verb v; |
| |
| while (SkPath::kDone_Verb != (v = iter.next(pts))) { |
| switch (v) { |
| case SkPath::kMove_Verb: |
| pushToVector(outputVertices, pts[0].x(), pts[0].y()); |
| ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y()); |
| break; |
| case SkPath::kClose_Verb: |
| ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y()); |
| break; |
| case SkPath::kLine_Verb: |
| ALOGV("kLine_Verb %f %f -> %f %f", |
| pts[0].x(), pts[0].y(), |
| pts[1].x(), pts[1].y()); |
| |
| pushToVector(outputVertices, pts[1].x(), pts[1].y()); |
| break; |
| case SkPath::kQuad_Verb: |
| ALOGV("kQuad_Verb"); |
| RecursiveQuadraticBezierVertices( |
| pts[0].x(), pts[0].y(), |
| pts[2].x(), pts[2].y(), |
| pts[1].x(), pts[1].y(), |
| sqrInvScaleX, sqrInvScaleY, outputVertices); |
| break; |
| case SkPath::kCubic_Verb: |
| ALOGV("kCubic_Verb"); |
| RecursiveCubicBezierVertices( |
| pts[0].x(), pts[0].y(), |
| pts[1].x(), pts[1].y(), |
| pts[3].x(), pts[3].y(), |
| pts[2].x(), pts[2].y(), |
| sqrInvScaleX, sqrInvScaleY, outputVertices); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| int size = outputVertices->count(); |
| if (size >= 2 && (*outputVertices)[0].position[0] == (*outputVertices)[size - 1].position[0] && |
| (*outputVertices)[0].position[1] == (*outputVertices)[size - 1].position[1]) { |
| outputVertices->pop_back(); |
| return true; |
| } |
| return false; |
| } |
| |
| void PathRenderer::RecursiveCubicBezierVertices( |
| float p1x, float p1y, float c1x, float c1y, |
| float p2x, float p2y, float c2x, float c2y, |
| float sqrInvScaleX, float sqrInvScaleY, SkTArray<Vertex, true>* outputVertices) { |
| float dx = p2x - p1x; |
| float dy = p2y - p1y; |
| float d1 = sk_float_abs((c1x - p2x) * dy - (c1y - p2y) * dx); |
| float d2 = sk_float_abs((c2x - p2x) * dy - (c2y - p2y) * dx); |
| float d = d1 + d2; |
| |
| // multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors |
| |
| if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) { |
| // below thresh, draw line by adding endpoint |
| pushToVector(outputVertices, p2x, p2y); |
| } else { |
| float p1c1x = (p1x + c1x) * 0.5f; |
| float p1c1y = (p1y + c1y) * 0.5f; |
| float p2c2x = (p2x + c2x) * 0.5f; |
| float p2c2y = (p2y + c2y) * 0.5f; |
| |
| float c1c2x = (c1x + c2x) * 0.5f; |
| float c1c2y = (c1y + c2y) * 0.5f; |
| |
| float p1c1c2x = (p1c1x + c1c2x) * 0.5f; |
| float p1c1c2y = (p1c1y + c1c2y) * 0.5f; |
| |
| float p2c1c2x = (p2c2x + c1c2x) * 0.5f; |
| float p2c1c2y = (p2c2y + c1c2y) * 0.5f; |
| |
| float mx = (p1c1c2x + p2c1c2x) * 0.5f; |
| float my = (p1c1c2y + p2c1c2y) * 0.5f; |
| |
| RecursiveCubicBezierVertices( |
| p1x, p1y, p1c1x, p1c1y, |
| mx, my, p1c1c2x, p1c1c2y, |
| sqrInvScaleX, sqrInvScaleY, outputVertices); |
| RecursiveCubicBezierVertices( |
| mx, my, p2c1c2x, p2c1c2y, |
| p2x, p2y, p2c2x, p2c2y, |
| sqrInvScaleX, sqrInvScaleY, outputVertices); |
| } |
| } |
| |
| void PathRenderer::RecursiveQuadraticBezierVertices( |
| float ax, float ay, |
| float bx, float by, |
| float cx, float cy, |
| float sqrInvScaleX, float sqrInvScaleY, SkTArray<Vertex, true>* outputVertices) { |
| float dx = bx - ax; |
| float dy = by - ay; |
| float d = (cx - bx) * dy - (cy - by) * dx; |
| |
| if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) { |
| // below thresh, draw line by adding endpoint |
| pushToVector(outputVertices, bx, by); |
| } else { |
| float acx = (ax + cx) * 0.5f; |
| float bcx = (bx + cx) * 0.5f; |
| float acy = (ay + cy) * 0.5f; |
| float bcy = (by + cy) * 0.5f; |
| |
| // midpoint |
| float mx = (acx + bcx) * 0.5f; |
| float my = (acy + bcy) * 0.5f; |
| |
| RecursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy, |
| sqrInvScaleX, sqrInvScaleY, outputVertices); |
| RecursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy, |
| sqrInvScaleX, sqrInvScaleY, outputVertices); |
| } |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |