| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SKVX_DEFINED |
| #define SKVX_DEFINED |
| |
| // skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>. |
| // |
| // This time we're leaning a bit less on platform-specific intrinsics and a bit |
| // more on Clang/GCC vector extensions, but still keeping the option open to |
| // drop in platform-specific intrinsics, actually more easily than before. |
| // |
| // We've also fixed a few of the caveats that used to make SkNx awkward to work |
| // with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size |
| // and alignment[1][2] and is safe to use across translation units freely. |
| // |
| // [1] Ideally we'd only align to T, but that tanks ARMv7 NEON codegen. |
| // [2] Some compilers barf if we try to use N*sizeof(T), so instead we leave them at T. |
| |
| // Please try to keep this file independent of Skia headers. |
| #include <algorithm> // std::min, std::max |
| #include <cmath> // std::ceil, std::floor, std::trunc, std::round, std::sqrt, etc. |
| #include <cstdint> // intXX_t |
| #include <cstring> // memcpy() |
| #include <initializer_list> // std::initializer_list |
| |
| #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) |
| #include <immintrin.h> |
| #elif defined(__ARM_NEON) |
| #include <arm_neon.h> |
| #endif |
| |
| #if !defined(__clang__) && defined(__GNUC__) && defined(__mips64) |
| // GCC 7 hits an internal compiler error when targeting MIPS64. |
| #define SKVX_ALIGNMENT |
| #elif !defined(__clang__) && defined(_MSC_VER) && defined(_M_IX86) |
| // Our SkVx unit tests fail when built by MSVC for 32-bit x86. |
| #define SKVX_ALIGNMENT |
| #else |
| #define SKVX_ALIGNMENT alignas(N * sizeof(T)) |
| #endif |
| |
| #if defined(__GNUC__) && !defined(__clang__) && defined(__SSE__) |
| // GCC warns about ABI changes when returning >= 32 byte vectors when -mavx is not enabled. |
| // This only happens for types like VExt whose ABI we don't care about, not for Vec itself. |
| #pragma GCC diagnostic ignored "-Wpsabi" |
| #endif |
| |
| // To avoid ODR violations, all methods must be force-inlined, |
| // and all standalone functions must be static, perhaps using these helpers. |
| #if defined(_MSC_VER) |
| #define SKVX_ALWAYS_INLINE __forceinline |
| #else |
| #define SKVX_ALWAYS_INLINE __attribute__((always_inline)) |
| #endif |
| |
| #define SIT template < typename T> static inline |
| #define SINT template <int N, typename T> static inline |
| #define SINTU template <int N, typename T, typename U, \ |
| typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> \ |
| static inline |
| |
| namespace skvx { |
| |
| // All Vec have the same simple memory layout, the same as `T vec[N]`. |
| template <int N, typename T> |
| struct SKVX_ALIGNMENT Vec { |
| static_assert((N & (N-1)) == 0, "N must be a power of 2."); |
| static_assert(sizeof(T) >= alignof(T), "What kind of crazy T is this?"); |
| |
| Vec<N/2,T> lo, hi; |
| |
| // Methods belong here in the class declaration of Vec only if: |
| // - they must be here, like constructors or operator[]; |
| // - they'll definitely never want a specialized implementation. |
| // Other operations on Vec should be defined outside the type. |
| |
| SKVX_ALWAYS_INLINE Vec() = default; |
| |
| template <typename U, |
| typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> |
| SKVX_ALWAYS_INLINE |
| Vec(U x) : lo(x), hi(x) {} |
| |
| SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) { |
| T vals[N] = {0}; |
| memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); |
| |
| lo = Vec<N/2,T>::Load(vals + 0); |
| hi = Vec<N/2,T>::Load(vals + N/2); |
| } |
| |
| SKVX_ALWAYS_INLINE T operator[](int i) const { return i < N/2 ? lo[i] : hi[i-N/2]; } |
| SKVX_ALWAYS_INLINE T& operator[](int i) { return i < N/2 ? lo[i] : hi[i-N/2]; } |
| |
| SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
| Vec v; |
| memcpy(&v, ptr, sizeof(Vec)); |
| return v; |
| } |
| SKVX_ALWAYS_INLINE void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| }; |
| |
| template <typename T> |
| struct Vec<1,T> { |
| T val; |
| |
| SKVX_ALWAYS_INLINE Vec() = default; |
| |
| template <typename U, |
| typename=typename std::enable_if<std::is_convertible<U,T>::value>::type> |
| SKVX_ALWAYS_INLINE |
| Vec(U x) : val(x) {} |
| |
| SKVX_ALWAYS_INLINE Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {} |
| |
| SKVX_ALWAYS_INLINE T operator[](int) const { return val; } |
| SKVX_ALWAYS_INLINE T& operator[](int) { return val; } |
| |
| SKVX_ALWAYS_INLINE static Vec Load(const void* ptr) { |
| Vec v; |
| memcpy(&v, ptr, sizeof(Vec)); |
| return v; |
| } |
| SKVX_ALWAYS_INLINE void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| }; |
| |
| template <typename D, typename S> |
| static inline D bit_pun(const S& s) { |
| static_assert(sizeof(D) == sizeof(S), ""); |
| D d; |
| memcpy(&d, &s, sizeof(D)); |
| return d; |
| } |
| |
| // Translate from a value type T to its corresponding Mask, the result of a comparison. |
| template <typename T> struct Mask { using type = T; }; |
| template <> struct Mask<float > { using type = int32_t; }; |
| template <> struct Mask<double> { using type = int64_t; }; |
| template <typename T> using M = typename Mask<T>::type; |
| |
| // Join two Vec<N,T> into one Vec<2N,T>. |
| SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) { |
| Vec<2*N,T> v; |
| v.lo = lo; |
| v.hi = hi; |
| return v; |
| } |
| |
| // We have two default strategies for implementing most operations: |
| // 1) lean on Clang/GCC vector extensions when available; |
| // 2) recurse to scalar portable implementations when not. |
| // At the end we can drop in platform-specific implementations that override either default. |
| |
| #if !defined(SKNX_NO_SIMD) && (defined(__clang__) || defined(__GNUC__)) |
| |
| // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly. |
| // N.B. VExt<N,T> alignment is N*alignof(T), stricter than Vec<N,T>'s alignof(T). |
| #if defined(__clang__) |
| template <int N, typename T> |
| using VExt = T __attribute__((ext_vector_type(N))); |
| |
| #elif defined(__GNUC__) |
| template <int N, typename T> |
| struct VExtHelper { |
| typedef T __attribute__((vector_size(N*sizeof(T)))) type; |
| }; |
| |
| template <int N, typename T> |
| using VExt = typename VExtHelper<N,T>::type; |
| |
| // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic |
| // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help... |
| static inline Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun<Vec<4,float>>(v); } |
| #endif |
| |
| SINT VExt<N,T> to_vext(const Vec<N,T>& v) { return bit_pun<VExt<N,T>>(v); } |
| SINT Vec <N,T> to_vec(const VExt<N,T>& v) { return bit_pun<Vec <N,T>>(v); } |
| |
| SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) + to_vext(y)); } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) - to_vext(y)); } |
| SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) * to_vext(y)); } |
| SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) / to_vext(y)); } |
| |
| SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) ^ to_vext(y)); } |
| SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) & to_vext(y)); } |
| SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { return to_vec<N,T>(to_vext(x) | to_vext(y)); } |
| |
| SINT Vec<N,T> operator!(const Vec<N,T>& x) { return to_vec<N,T>(!to_vext(x)); } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x) { return to_vec<N,T>(-to_vext(x)); } |
| SINT Vec<N,T> operator~(const Vec<N,T>& x) { return to_vec<N,T>(~to_vext(x)); } |
| |
| SINT Vec<N,T> operator<<(const Vec<N,T>& x, int bits) { return to_vec<N,T>(to_vext(x) << bits); } |
| SINT Vec<N,T> operator>>(const Vec<N,T>& x, int bits) { return to_vec<N,T>(to_vext(x) >> bits); } |
| |
| SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) == to_vext(y)); } |
| SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) != to_vext(y)); } |
| SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) <= to_vext(y)); } |
| SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) >= to_vext(y)); } |
| SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) < to_vext(y)); } |
| SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) > to_vext(y)); } |
| |
| #else |
| |
| // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. |
| // We'll implement things portably, in a way that should be easily autovectorizable. |
| |
| // N == 1 scalar implementations. |
| SIT Vec<1,T> operator+(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val + y.val; } |
| SIT Vec<1,T> operator-(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val - y.val; } |
| SIT Vec<1,T> operator*(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val * y.val; } |
| SIT Vec<1,T> operator/(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val / y.val; } |
| |
| SIT Vec<1,T> operator^(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val ^ y.val; } |
| SIT Vec<1,T> operator&(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val & y.val; } |
| SIT Vec<1,T> operator|(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val | y.val; } |
| |
| SIT Vec<1,T> operator!(const Vec<1,T>& x) { return !x.val; } |
| SIT Vec<1,T> operator-(const Vec<1,T>& x) { return -x.val; } |
| SIT Vec<1,T> operator~(const Vec<1,T>& x) { return ~x.val; } |
| |
| SIT Vec<1,T> operator<<(const Vec<1,T>& x, int bits) { return x.val << bits; } |
| SIT Vec<1,T> operator>>(const Vec<1,T>& x, int bits) { return x.val >> bits; } |
| |
| SIT Vec<1,M<T>> operator==(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val == y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator!=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val != y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator<=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val <= y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator>=(const Vec<1,T>& x, const Vec<1,T>& y) { return x.val >= y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator< (const Vec<1,T>& x, const Vec<1,T>& y) { return x.val < y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator> (const Vec<1,T>& x, const Vec<1,T>& y) { return x.val > y.val ? ~0 : 0; } |
| |
| // All default N != 1 implementations just recurse on lo and hi halves. |
| SINT Vec<N,T> operator+(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo + y.lo, x.hi + y.hi); } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo - y.lo, x.hi - y.hi); } |
| SINT Vec<N,T> operator*(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo * y.lo, x.hi * y.hi); } |
| SINT Vec<N,T> operator/(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo / y.lo, x.hi / y.hi); } |
| |
| SINT Vec<N,T> operator^(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo ^ y.lo, x.hi ^ y.hi); } |
| SINT Vec<N,T> operator&(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo & y.lo, x.hi & y.hi); } |
| SINT Vec<N,T> operator|(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo | y.lo, x.hi | y.hi); } |
| |
| SINT Vec<N,T> operator!(const Vec<N,T>& x) { return join(!x.lo, !x.hi); } |
| SINT Vec<N,T> operator-(const Vec<N,T>& x) { return join(-x.lo, -x.hi); } |
| SINT Vec<N,T> operator~(const Vec<N,T>& x) { return join(~x.lo, ~x.hi); } |
| |
| SINT Vec<N,T> operator<<(const Vec<N,T>& x, int bits) { return join(x.lo << bits, x.hi << bits); } |
| SINT Vec<N,T> operator>>(const Vec<N,T>& x, int bits) { return join(x.lo >> bits, x.hi >> bits); } |
| |
| SINT Vec<N,M<T>> operator==(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo == y.lo, x.hi == y.hi); } |
| SINT Vec<N,M<T>> operator!=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo != y.lo, x.hi != y.hi); } |
| SINT Vec<N,M<T>> operator<=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo <= y.lo, x.hi <= y.hi); } |
| SINT Vec<N,M<T>> operator>=(const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo >= y.lo, x.hi >= y.hi); } |
| SINT Vec<N,M<T>> operator< (const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo < y.lo, x.hi < y.hi); } |
| SINT Vec<N,M<T>> operator> (const Vec<N,T>& x, const Vec<N,T>& y) { return join(x.lo > y.lo, x.hi > y.hi); } |
| #endif |
| |
| // Some operations we want are not expressible with Clang/GCC vector |
| // extensions, so we implement them using the recursive approach. |
| |
| // N == 1 scalar implementations. |
| SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) { |
| auto t_bits = bit_pun<M<T>>(t), |
| e_bits = bit_pun<M<T>>(e); |
| return bit_pun<T>( (cond.val & t_bits) | (~cond.val & e_bits) ); |
| } |
| |
| SIT bool any(const Vec<1,T>& x) { return x.val != 0; } |
| SIT bool all(const Vec<1,T>& x) { return x.val != 0; } |
| |
| SIT T min(const Vec<1,T>& x) { return x.val; } |
| SIT T max(const Vec<1,T>& x) { return x.val; } |
| |
| SIT Vec<1,T> min(const Vec<1,T>& x, const Vec<1,T>& y) { return std::min(x.val, y.val); } |
| SIT Vec<1,T> max(const Vec<1,T>& x, const Vec<1,T>& y) { return std::max(x.val, y.val); } |
| SIT Vec<1,T> pow(const Vec<1,T>& x, const Vec<1,T>& y) { return std::pow(x.val, y.val); } |
| |
| SIT Vec<1,T> atan(const Vec<1,T>& x) { return std:: atan(x.val); } |
| SIT Vec<1,T> ceil(const Vec<1,T>& x) { return std:: ceil(x.val); } |
| SIT Vec<1,T> floor(const Vec<1,T>& x) { return std::floor(x.val); } |
| SIT Vec<1,T> trunc(const Vec<1,T>& x) { return std::trunc(x.val); } |
| SIT Vec<1,T> round(const Vec<1,T>& x) { return std::round(x.val); } |
| SIT Vec<1,T> sqrt(const Vec<1,T>& x) { return std:: sqrt(x.val); } |
| SIT Vec<1,T> abs(const Vec<1,T>& x) { return std:: abs(x.val); } |
| SIT Vec<1,T> sin(const Vec<1,T>& x) { return std:: sin(x.val); } |
| SIT Vec<1,T> cos(const Vec<1,T>& x) { return std:: cos(x.val); } |
| SIT Vec<1,T> tan(const Vec<1,T>& x) { return std:: tan(x.val); } |
| |
| SIT Vec<1,int> lrint(const Vec<1,T>& x) { return (int)std::lrint(x.val); } |
| |
| SIT Vec<1,T> rcp(const Vec<1,T>& x) { return 1 / x.val; } |
| SIT Vec<1,T> rsqrt(const Vec<1,T>& x) { return rcp(sqrt(x)); } |
| SIT Vec<1,T> mad(const Vec<1,T>& f, |
| const Vec<1,T>& m, |
| const Vec<1,T>& a) { return f*m+a; } |
| |
| // All default N != 1 implementations just recurse on lo and hi halves. |
| SINT Vec<N,T> if_then_else(const Vec<N,M<T>>& cond, const Vec<N,T>& t, const Vec<N,T>& e) { |
| return join(if_then_else(cond.lo, t.lo, e.lo), |
| if_then_else(cond.hi, t.hi, e.hi)); |
| } |
| |
| SINT bool any(const Vec<N,T>& x) { return any(x.lo) || any(x.hi); } |
| SINT bool all(const Vec<N,T>& x) { return all(x.lo) && all(x.hi); } |
| |
| SINT T min(const Vec<N,T>& x) { return std::min(min(x.lo), min(x.hi)); } |
| SINT T max(const Vec<N,T>& x) { return std::max(max(x.lo), max(x.hi)); } |
| |
| SINT Vec<N,T> min(const Vec<N,T>& x, const Vec<N,T>& y) { return join(min(x.lo, y.lo), min(x.hi, y.hi)); } |
| SINT Vec<N,T> max(const Vec<N,T>& x, const Vec<N,T>& y) { return join(max(x.lo, y.lo), max(x.hi, y.hi)); } |
| SINT Vec<N,T> pow(const Vec<N,T>& x, const Vec<N,T>& y) { return join(pow(x.lo, y.lo), pow(x.hi, y.hi)); } |
| |
| SINT Vec<N,T> atan(const Vec<N,T>& x) { return join( atan(x.lo), atan(x.hi)); } |
| SINT Vec<N,T> ceil(const Vec<N,T>& x) { return join( ceil(x.lo), ceil(x.hi)); } |
| SINT Vec<N,T> floor(const Vec<N,T>& x) { return join(floor(x.lo), floor(x.hi)); } |
| SINT Vec<N,T> trunc(const Vec<N,T>& x) { return join(trunc(x.lo), trunc(x.hi)); } |
| SINT Vec<N,T> round(const Vec<N,T>& x) { return join(round(x.lo), round(x.hi)); } |
| SINT Vec<N,T> sqrt(const Vec<N,T>& x) { return join( sqrt(x.lo), sqrt(x.hi)); } |
| SINT Vec<N,T> abs(const Vec<N,T>& x) { return join( abs(x.lo), abs(x.hi)); } |
| SINT Vec<N,T> sin(const Vec<N,T>& x) { return join( sin(x.lo), sin(x.hi)); } |
| SINT Vec<N,T> cos(const Vec<N,T>& x) { return join( cos(x.lo), cos(x.hi)); } |
| SINT Vec<N,T> tan(const Vec<N,T>& x) { return join( tan(x.lo), tan(x.hi)); } |
| |
| SINT Vec<N,int> lrint(const Vec<N,T>& x) { return join(lrint(x.lo), lrint(x.hi)); } |
| |
| SINT Vec<N,T> rcp(const Vec<N,T>& x) { return join( rcp(x.lo), rcp(x.hi)); } |
| SINT Vec<N,T> rsqrt(const Vec<N,T>& x) { return join(rsqrt(x.lo), rsqrt(x.hi)); } |
| SINT Vec<N,T> mad(const Vec<N,T>& f, |
| const Vec<N,T>& m, |
| const Vec<N,T>& a) { return join(mad(f.lo, m.lo, a.lo), mad(f.hi, m.hi, a.hi)); } |
| |
| |
| // Scalar/vector operations just splat the scalar to a vector... |
| SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; } |
| SINTU Vec<N,T> operator- (U x, const Vec<N,T>& y) { return Vec<N,T>(x) - y; } |
| SINTU Vec<N,T> operator* (U x, const Vec<N,T>& y) { return Vec<N,T>(x) * y; } |
| SINTU Vec<N,T> operator/ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) / y; } |
| SINTU Vec<N,T> operator^ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) ^ y; } |
| SINTU Vec<N,T> operator& (U x, const Vec<N,T>& y) { return Vec<N,T>(x) & y; } |
| SINTU Vec<N,T> operator| (U x, const Vec<N,T>& y) { return Vec<N,T>(x) | y; } |
| SINTU Vec<N,M<T>> operator==(U x, const Vec<N,T>& y) { return Vec<N,T>(x) == y; } |
| SINTU Vec<N,M<T>> operator!=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) != y; } |
| SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y; } |
| SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; } |
| SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; } |
| SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; } |
| SINTU Vec<N,T> min(U x, const Vec<N,T>& y) { return min(Vec<N,T>(x), y); } |
| SINTU Vec<N,T> max(U x, const Vec<N,T>& y) { return max(Vec<N,T>(x), y); } |
| SINTU Vec<N,T> pow(U x, const Vec<N,T>& y) { return pow(Vec<N,T>(x), y); } |
| |
| // ... and same deal for vector/scalar operations. |
| SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); } |
| SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); } |
| SINTU Vec<N,T> operator* (const Vec<N,T>& x, U y) { return x * Vec<N,T>(y); } |
| SINTU Vec<N,T> operator/ (const Vec<N,T>& x, U y) { return x / Vec<N,T>(y); } |
| SINTU Vec<N,T> operator^ (const Vec<N,T>& x, U y) { return x ^ Vec<N,T>(y); } |
| SINTU Vec<N,T> operator& (const Vec<N,T>& x, U y) { return x & Vec<N,T>(y); } |
| SINTU Vec<N,T> operator| (const Vec<N,T>& x, U y) { return x | Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator==(const Vec<N,T>& x, U y) { return x == Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator!=(const Vec<N,T>& x, U y) { return x != Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); } |
| SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); } |
| SINTU Vec<N,T> min(const Vec<N,T>& x, U y) { return min(x, Vec<N,T>(y)); } |
| SINTU Vec<N,T> max(const Vec<N,T>& x, U y) { return max(x, Vec<N,T>(y)); } |
| SINTU Vec<N,T> pow(const Vec<N,T>& x, U y) { return pow(x, Vec<N,T>(y)); } |
| |
| // All vector/scalar combinations for mad() with at least one vector. |
| SINTU Vec<N,T> mad(U f, const Vec<N,T>& m, const Vec<N,T>& a) { return Vec<N,T>(f)*m + a; } |
| SINTU Vec<N,T> mad(const Vec<N,T>& f, U m, const Vec<N,T>& a) { return f*Vec<N,T>(m) + a; } |
| SINTU Vec<N,T> mad(const Vec<N,T>& f, const Vec<N,T>& m, U a) { return f*m + Vec<N,T>(a); } |
| SINTU Vec<N,T> mad(const Vec<N,T>& f, U m, U a) { return f*Vec<N,T>(m) + Vec<N,T>(a); } |
| SINTU Vec<N,T> mad(U f, const Vec<N,T>& m, U a) { return Vec<N,T>(f)*m + Vec<N,T>(a); } |
| SINTU Vec<N,T> mad(U f, U m, const Vec<N,T>& a) { return Vec<N,T>(f)*Vec<N,T>(m) + a; } |
| |
| // The various op= operators, for vectors... |
| SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); } |
| SINT Vec<N,T>& operator-=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x - y); } |
| SINT Vec<N,T>& operator*=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x * y); } |
| SINT Vec<N,T>& operator/=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x / y); } |
| SINT Vec<N,T>& operator^=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x ^ y); } |
| SINT Vec<N,T>& operator&=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x & y); } |
| SINT Vec<N,T>& operator|=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x | y); } |
| |
| // ... for scalars... |
| SINTU Vec<N,T>& operator+=(Vec<N,T>& x, U y) { return (x = x + Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator-=(Vec<N,T>& x, U y) { return (x = x - Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator*=(Vec<N,T>& x, U y) { return (x = x * Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator/=(Vec<N,T>& x, U y) { return (x = x / Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator^=(Vec<N,T>& x, U y) { return (x = x ^ Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator&=(Vec<N,T>& x, U y) { return (x = x & Vec<N,T>(y)); } |
| SINTU Vec<N,T>& operator|=(Vec<N,T>& x, U y) { return (x = x | Vec<N,T>(y)); } |
| |
| // ... and for shifts. |
| SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); } |
| SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); } |
| |
| // cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane. |
| template <typename D, typename S> |
| static inline Vec<1,D> cast(const Vec<1,S>& src) { return (D)src.val; } |
| |
| template <typename D, int N, typename S> |
| static inline Vec<N,D> cast(const Vec<N,S>& src) { |
| #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
| return to_vec(__builtin_convertvector(to_vext(src), VExt<N,D>)); |
| #else |
| return join(cast<D>(src.lo), cast<D>(src.hi)); |
| #endif |
| } |
| |
| // Shuffle values from a vector pretty arbitrarily: |
| // skvx::Vec<4,float> rgba = {R,G,B,A}; |
| // shuffle<2,1,0,3> (rgba) ~> {B,G,R,A} |
| // shuffle<2,1> (rgba) ~> {B,G} |
| // shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G} |
| // shuffle<3,3,3,3> (rgba) ~> {A,A,A,A} |
| // The only real restriction is that the output also be a legal N=power-of-two sknx::Vec. |
| template <int... Ix, int N, typename T> |
| static inline Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) { |
| #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
| return to_vec<sizeof...(Ix),T>(__builtin_shufflevector(to_vext(x), to_vext(x), Ix...)); |
| #else |
| return { x[Ix]... }; |
| #endif |
| } |
| |
| // fma() delivers a fused mul-add, even if that's really expensive. Call it when you know it's not. |
| static inline Vec<1,float> fma(const Vec<1,float>& x, |
| const Vec<1,float>& y, |
| const Vec<1,float>& z) { |
| return std::fma(x.val, y.val, z.val); |
| } |
| template <int N> |
| static inline Vec<N,float> fma(const Vec<N,float>& x, |
| const Vec<N,float>& y, |
| const Vec<N,float>& z) { |
| return join(fma(x.lo, y.lo, z.lo), |
| fma(x.hi, y.hi, z.hi)); |
| } |
| |
| template <int N> |
| static inline Vec<N,float> fract(const Vec<N,float>& x) { |
| return x - floor(x); |
| } |
| |
| |
| // div255(x) = (x + 127) / 255 is a bit-exact rounding divide-by-255, packing down to 8-bit. |
| template <int N> |
| static inline Vec<N,uint8_t> div255(const Vec<N,uint16_t>& x) { |
| return cast<uint8_t>( (x+127)/255 ); |
| } |
| |
| // approx_scale(x,y) approximates div255(cast<uint16_t>(x)*cast<uint16_t>(y)) within a bit, |
| // and is always perfect when x or y is 0 or 255. |
| template <int N> |
| static inline Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y) { |
| // All of (x*y+x)/256, (x*y+y)/256, and (x*y+255)/256 meet the criteria above. |
| // We happen to have historically picked (x*y+x)/256. |
| auto X = cast<uint16_t>(x), |
| Y = cast<uint16_t>(y); |
| return cast<uint8_t>( (X*Y+X)/256 ); |
| } |
| |
| #if !defined(SKNX_NO_SIMD) && defined(__ARM_NEON) |
| // With NEON we can do eight u8*u8 -> u16 in one instruction, vmull_u8 (read, mul-long). |
| static inline Vec<8,uint16_t> mull(const Vec<8,uint8_t>& x, |
| const Vec<8,uint8_t>& y) { |
| return to_vec<8,uint16_t>(vmull_u8(to_vext(x), |
| to_vext(y))); |
| } |
| |
| template <int N> |
| static inline typename std::enable_if<(N < 8), |
| Vec<N,uint16_t>>::type mull(const Vec<N,uint8_t>& x, |
| const Vec<N,uint8_t>& y) { |
| // N < 8 --> double up data until N == 8, returning the part we need. |
| return mull(join(x,x), |
| join(y,y)).lo; |
| } |
| |
| template <int N> |
| static inline typename std::enable_if<(N > 8), |
| Vec<N,uint16_t>>::type mull(const Vec<N,uint8_t>& x, |
| const Vec<N,uint8_t>& y) { |
| // N > 8 --> usual join(lo,hi) strategy to recurse down to N == 8. |
| return join(mull(x.lo, y.lo), |
| mull(x.hi, y.hi)); |
| } |
| #else |
| // Nothing special when we don't have NEON... just cast up to 16-bit and multiply. |
| template <int N> |
| static inline Vec<N,uint16_t> mull(const Vec<N,uint8_t>& x, |
| const Vec<N,uint8_t>& y) { |
| return cast<uint16_t>(x) |
| * cast<uint16_t>(y); |
| } |
| #endif |
| |
| #if !defined(SKNX_NO_SIMD) |
| |
| // Platform-specific specializations and overloads can now drop in here. |
| |
| #if defined(__AVX__) |
| static inline Vec<8,float> sqrt(const Vec<8,float>& x) { |
| return bit_pun<Vec<8,float>>(_mm256_sqrt_ps(bit_pun<__m256>(x))); |
| } |
| static inline Vec<8,float> rsqrt(const Vec<8,float>& x) { |
| return bit_pun<Vec<8,float>>(_mm256_rsqrt_ps(bit_pun<__m256>(x))); |
| } |
| static inline Vec<8,float> rcp(const Vec<8,float>& x) { |
| return bit_pun<Vec<8,float>>(_mm256_rcp_ps(bit_pun<__m256>(x))); |
| } |
| static inline Vec<8,int> lrint(const Vec<8,float>& x) { |
| return bit_pun<Vec<8,int>>(_mm256_cvtps_epi32(bit_pun<__m256>(x))); |
| } |
| #endif |
| |
| #if defined(__SSE__) |
| static inline Vec<4,float> sqrt(const Vec<4,float>& x) { |
| return bit_pun<Vec<4,float>>(_mm_sqrt_ps(bit_pun<__m128>(x))); |
| } |
| static inline Vec<4,float> rsqrt(const Vec<4,float>& x) { |
| return bit_pun<Vec<4,float>>(_mm_rsqrt_ps(bit_pun<__m128>(x))); |
| } |
| static inline Vec<4,float> rcp(const Vec<4,float>& x) { |
| return bit_pun<Vec<4,float>>(_mm_rcp_ps(bit_pun<__m128>(x))); |
| } |
| static inline Vec<4,int> lrint(const Vec<4,float>& x) { |
| return bit_pun<Vec<4,int>>(_mm_cvtps_epi32(bit_pun<__m128>(x))); |
| } |
| |
| static inline Vec<2,float> sqrt(const Vec<2,float>& x) { |
| return shuffle<0,1>( sqrt(shuffle<0,1,0,1>(x))); |
| } |
| static inline Vec<2,float> rsqrt(const Vec<2,float>& x) { |
| return shuffle<0,1>(rsqrt(shuffle<0,1,0,1>(x))); |
| } |
| static inline Vec<2,float> rcp(const Vec<2,float>& x) { |
| return shuffle<0,1>( rcp(shuffle<0,1,0,1>(x))); |
| } |
| static inline Vec<2,int> lrint(const Vec<2,float>& x) { |
| return shuffle<0,1>(lrint(shuffle<0,1,0,1>(x))); |
| } |
| #endif |
| |
| #if defined(__SSE4_1__) |
| static inline Vec<4,float> if_then_else(const Vec<4,int >& c, |
| const Vec<4,float>& t, |
| const Vec<4,float>& e) { |
| return bit_pun<Vec<4,float>>(_mm_blendv_ps(bit_pun<__m128>(e), |
| bit_pun<__m128>(t), |
| bit_pun<__m128>(c))); |
| } |
| #elif defined(__SSE__) |
| static inline Vec<4,float> if_then_else(const Vec<4,int >& c, |
| const Vec<4,float>& t, |
| const Vec<4,float>& e) { |
| return bit_pun<Vec<4,float>>(_mm_or_ps(_mm_and_ps (bit_pun<__m128>(c), |
| bit_pun<__m128>(t)), |
| _mm_andnot_ps(bit_pun<__m128>(c), |
| bit_pun<__m128>(e)))); |
| } |
| #elif defined(__ARM_NEON) |
| static inline Vec<4,float> if_then_else(const Vec<4,int >& c, |
| const Vec<4,float>& t, |
| const Vec<4,float>& e) { |
| return bit_pun<Vec<4,float>>(vbslq_f32(bit_pun<uint32x4_t> (c), |
| bit_pun<float32x4_t>(t), |
| bit_pun<float32x4_t>(e))); |
| } |
| #endif |
| |
| #if defined(__AVX2__) |
| static inline Vec<4,float> fma(const Vec<4,float>& x, |
| const Vec<4,float>& y, |
| const Vec<4,float>& z) { |
| return bit_pun<Vec<4,float>>(_mm_fmadd_ps(bit_pun<__m128>(x), |
| bit_pun<__m128>(y), |
| bit_pun<__m128>(z))); |
| } |
| |
| static inline Vec<8,float> fma(const Vec<8,float>& x, |
| const Vec<8,float>& y, |
| const Vec<8,float>& z) { |
| return bit_pun<Vec<8,float>>(_mm256_fmadd_ps(bit_pun<__m256>(x), |
| bit_pun<__m256>(y), |
| bit_pun<__m256>(z))); |
| } |
| #elif defined(__aarch64__) |
| static inline Vec<4,float> fma(const Vec<4,float>& x, |
| const Vec<4,float>& y, |
| const Vec<4,float>& z) { |
| // These instructions tend to work like z += xy, so the order here is z,x,y. |
| return bit_pun<Vec<4,float>>(vfmaq_f32(bit_pun<float32x4_t>(z), |
| bit_pun<float32x4_t>(x), |
| bit_pun<float32x4_t>(y))); |
| } |
| #endif |
| |
| #endif // !defined(SKNX_NO_SIMD) |
| |
| } // namespace skvx |
| |
| #undef SINTU |
| #undef SINT |
| #undef SIT |
| #undef SKVX_ALIGNMENT |
| |
| #endif//SKVX_DEFINED |