| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGpuDevice.h" |
| |
| #include "effects/GrGradientEffects.h" |
| |
| #include "GrContext.h" |
| #include "GrTextContext.h" |
| |
| #include "SkGrTexturePixelRef.h" |
| |
| #include "SkColorFilter.h" |
| #include "SkDrawProcs.h" |
| #include "SkGlyphCache.h" |
| #include "SkImageFilter.h" |
| #include "SkTLazy.h" |
| #include "SkUtils.h" |
| |
| #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 |
| |
| #if 0 |
| extern bool (*gShouldDrawProc)(); |
| #define CHECK_SHOULD_DRAW(draw) \ |
| do { \ |
| if (gShouldDrawProc && !gShouldDrawProc()) return; \ |
| this->prepareRenderTarget(draw); \ |
| GrAssert(!fNeedClear) \ |
| } while (0) |
| #else |
| #define CHECK_SHOULD_DRAW(draw) this->prepareRenderTarget(draw); \ |
| GrAssert(!fNeedClear) |
| #endif |
| |
| // we use the same texture slot on GrPaint for bitmaps and shaders |
| // (since drawBitmap, drawSprite, and drawDevice ignore skia's shader) |
| enum { |
| kBitmapTextureIdx = 0, |
| kShaderTextureIdx = 0 |
| }; |
| |
| |
| #define MAX_BLUR_SIGMA 4.0f |
| // FIXME: This value comes from from SkBlurMaskFilter.cpp. |
| // Should probably be put in a common header someplace. |
| #define MAX_BLUR_RADIUS SkIntToScalar(128) |
| // This constant approximates the scaling done in the software path's |
| // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). |
| // IMHO, it actually should be 1: we blur "less" than we should do |
| // according to the CSS and canvas specs, simply because Safari does the same. |
| // Firefox used to do the same too, until 4.0 where they fixed it. So at some |
| // point we should probably get rid of these scaling constants and rebaseline |
| // all the blur tests. |
| #define BLUR_SIGMA_SCALE 0.6f |
| // This constant represents the screen alignment criterion in texels for |
| // requiring texture domain clamping to prevent color bleeding when drawing |
| // a sub region of a larger source image. |
| #define COLOR_BLEED_TOLERANCE SkFloatToScalar(0.001f) |
| |
| #define DO_DEFERRED_CLEAR \ |
| do { \ |
| if (fNeedClear) { \ |
| this->clear(0x0); \ |
| fNeedClear = false; \ |
| } \ |
| } while (false) \ |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define CHECK_FOR_NODRAW_ANNOTATION(paint) \ |
| do { if (paint.isNoDrawAnnotation()) { return; } } while (0) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { |
| public: |
| SkAutoCachedTexture() { } |
| SkAutoCachedTexture(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrSamplerState* sampler, |
| GrTexture** texture) { |
| GrAssert(texture); |
| *texture = this->set(device, bitmap, sampler); |
| } |
| |
| ~SkAutoCachedTexture() { |
| if (fTex.texture()) { |
| fDevice->unlockCachedTexture(fTex); |
| } |
| } |
| |
| GrTexture* set(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrSamplerState* sampler) { |
| if (fTex.texture()) { |
| fDevice->unlockCachedTexture(fTex); |
| } |
| fDevice = device; |
| GrTexture* texture = (GrTexture*)bitmap.getTexture(); |
| if (texture) { |
| // return the native texture |
| fTex.reset(); |
| } else { |
| // look it up in our cache |
| fTex = device->lockCachedTexture(bitmap, sampler); |
| texture = fTex.texture(); |
| } |
| return texture; |
| } |
| |
| private: |
| SkGpuDevice* fDevice; |
| GrContext::TextureCacheEntry fTex; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool gDoTraceDraw; |
| |
| struct GrSkDrawProcs : public SkDrawProcs { |
| public: |
| GrContext* fContext; |
| GrTextContext* fTextContext; |
| GrFontScaler* fFontScaler; // cached in the skia glyphcache |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) { |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| *isOpaque = false; |
| return SkBitmap::kA8_Config; |
| case kRGB_565_GrPixelConfig: |
| *isOpaque = true; |
| return SkBitmap::kRGB_565_Config; |
| case kRGBA_4444_GrPixelConfig: |
| *isOpaque = false; |
| return SkBitmap::kARGB_4444_Config; |
| case kSkia8888_PM_GrPixelConfig: |
| // we don't currently have a way of knowing whether |
| // a 8888 is opaque based on the config. |
| *isOpaque = false; |
| return SkBitmap::kARGB_8888_Config; |
| default: |
| *isOpaque = false; |
| return SkBitmap::kNo_Config; |
| } |
| } |
| |
| static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { |
| GrPixelConfig config = renderTarget->config(); |
| |
| bool isOpaque; |
| SkBitmap bitmap; |
| bitmap.setConfig(grConfig2skConfig(config, &isOpaque), |
| renderTarget->width(), renderTarget->height()); |
| bitmap.setIsOpaque(isOpaque); |
| return bitmap; |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture) |
| : SkDevice(make_bitmap(context, texture->asRenderTarget())) |
| , fClipStack(NULL) { |
| this->initFromRenderTarget(context, texture->asRenderTarget()); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget) |
| : SkDevice(make_bitmap(context, renderTarget)) |
| , fClipStack(NULL) { |
| this->initFromRenderTarget(context, renderTarget); |
| } |
| |
| void SkGpuDevice::initFromRenderTarget(GrContext* context, |
| GrRenderTarget* renderTarget) { |
| fNeedPrepareRenderTarget = false; |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fTexture = NULL; |
| fRenderTarget = NULL; |
| fNeedClear = false; |
| |
| GrAssert(NULL != renderTarget); |
| fRenderTarget = renderTarget; |
| fRenderTarget->ref(); |
| // if this RT is also a texture, hold a ref on it |
| fTexture = fRenderTarget->asTexture(); |
| SkSafeRef(fTexture); |
| |
| // Create a pixel ref for the underlying SkBitmap. We prefer a texture pixel |
| // ref to a render target pixel reft. The pixel ref may get ref'ed outside |
| // the device via accessBitmap. This external ref may outlive the device. |
| // Since textures own their render targets (but not vice-versa) we |
| // are ensuring that both objects will live as long as the pixel ref. |
| SkPixelRef* pr; |
| if (fTexture) { |
| pr = SkNEW_ARGS(SkGrTexturePixelRef, (fTexture)); |
| } else { |
| pr = SkNEW_ARGS(SkGrRenderTargetPixelRef, (fRenderTarget)); |
| } |
| this->setPixelRef(pr, 0)->unref(); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, |
| SkBitmap::Config config, |
| int width, |
| int height) |
| : SkDevice(config, width, height, false /*isOpaque*/) |
| , fClipStack(NULL) { |
| fNeedPrepareRenderTarget = false; |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fTexture = NULL; |
| fRenderTarget = NULL; |
| fNeedClear = false; |
| |
| if (config != SkBitmap::kRGB_565_Config) { |
| config = SkBitmap::kARGB_8888_Config; |
| } |
| SkBitmap bm; |
| bm.setConfig(config, width, height); |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = SkGr::BitmapConfig2PixelConfig(bm.config()); |
| |
| fTexture = fContext->createUncachedTexture(desc, NULL, 0); |
| |
| if (NULL != fTexture) { |
| fRenderTarget = fTexture->asRenderTarget(); |
| fRenderTarget->ref(); |
| |
| GrAssert(NULL != fRenderTarget); |
| |
| // wrap the bitmap with a pixelref to expose our texture |
| SkGrTexturePixelRef* pr = SkNEW_ARGS(SkGrTexturePixelRef, (fTexture)); |
| this->setPixelRef(pr, 0)->unref(); |
| } else { |
| GrPrintf("--- failed to create gpu-offscreen [%d %d]\n", |
| width, height); |
| GrAssert(false); |
| } |
| } |
| |
| SkGpuDevice::~SkGpuDevice() { |
| if (fDrawProcs) { |
| delete fDrawProcs; |
| } |
| |
| // The SkGpuDevice gives the context the render target (e.g., in gainFocus) |
| // This call gives the context a chance to relinquish it |
| fContext->setRenderTarget(NULL); |
| |
| SkSafeUnref(fTexture); |
| SkSafeUnref(fRenderTarget); |
| if (fCache.texture()) { |
| GrAssert(NULL != fTexture); |
| GrAssert(fRenderTarget == fTexture->asRenderTarget()); |
| fContext->unlockTexture(fCache); |
| } |
| fContext->unref(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::makeRenderTargetCurrent() { |
| DO_DEFERRED_CLEAR; |
| fContext->setRenderTarget(fRenderTarget); |
| fContext->flush(true); |
| fNeedPrepareRenderTarget = true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| GrPixelConfig config8888_to_gr_config(SkCanvas::Config8888 config8888) { |
| switch (config8888) { |
| case SkCanvas::kNative_Premul_Config8888: |
| return kSkia8888_PM_GrPixelConfig; |
| case SkCanvas::kNative_Unpremul_Config8888: |
| return kSkia8888_UPM_GrPixelConfig; |
| case SkCanvas::kBGRA_Premul_Config8888: |
| return kBGRA_8888_PM_GrPixelConfig; |
| case SkCanvas::kBGRA_Unpremul_Config8888: |
| return kBGRA_8888_UPM_GrPixelConfig; |
| case SkCanvas::kRGBA_Premul_Config8888: |
| return kRGBA_8888_PM_GrPixelConfig; |
| case SkCanvas::kRGBA_Unpremul_Config8888: |
| return kRGBA_8888_UPM_GrPixelConfig; |
| default: |
| GrCrash("Unexpected Config8888."); |
| return kSkia8888_PM_GrPixelConfig; |
| } |
| } |
| } |
| |
| bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap, |
| int x, int y, |
| SkCanvas::Config8888 config8888) { |
| DO_DEFERRED_CLEAR; |
| SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config()); |
| SkASSERT(!bitmap.isNull()); |
| SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()))); |
| |
| SkAutoLockPixels alp(bitmap); |
| GrPixelConfig config; |
| config = config8888_to_gr_config(config8888); |
| return fContext->readRenderTargetPixels(fRenderTarget, |
| x, y, |
| bitmap.width(), |
| bitmap.height(), |
| config, |
| bitmap.getPixels(), |
| bitmap.rowBytes()); |
| } |
| |
| void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y, |
| SkCanvas::Config8888 config8888) { |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| return; |
| } |
| |
| GrPixelConfig config; |
| if (SkBitmap::kARGB_8888_Config == bitmap.config()) { |
| config = config8888_to_gr_config(config8888); |
| } else { |
| config= SkGr::BitmapConfig2PixelConfig(bitmap.config()); |
| } |
| |
| fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(), |
| config, bitmap.getPixels(), bitmap.rowBytes()); |
| } |
| |
| void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { |
| INHERITED::onAttachToCanvas(canvas); |
| |
| // Canvas promises that this ptr is valid until onDetachFromCanvas is called |
| fClipStack = canvas->getClipStack(); |
| } |
| |
| void SkGpuDevice::onDetachFromCanvas() { |
| INHERITED::onDetachFromCanvas(); |
| |
| fClipStack = NULL; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static void convert_matrixclip(GrContext* context, const SkMatrix& matrix, |
| const SkClipStack& clipStack, |
| const SkRegion& clipRegion, |
| const SkIPoint& origin) { |
| context->setMatrix(matrix); |
| |
| SkGrClipIterator iter; |
| iter.reset(clipStack); |
| const SkIRect& skBounds = clipRegion.getBounds(); |
| GrRect bounds; |
| bounds.setLTRB(GrIntToScalar(skBounds.fLeft), |
| GrIntToScalar(skBounds.fTop), |
| GrIntToScalar(skBounds.fRight), |
| GrIntToScalar(skBounds.fBottom)); |
| GrClip grc(&iter, GrIntToScalar(-origin.x()), GrIntToScalar(-origin.y()), |
| bounds); |
| context->setClip(grc); |
| } |
| |
| // call this ever each draw call, to ensure that the context reflects our state, |
| // and not the state from some other canvas/device |
| void SkGpuDevice::prepareRenderTarget(const SkDraw& draw) { |
| GrAssert(NULL != fClipStack); |
| |
| if (fNeedPrepareRenderTarget || |
| fContext->getRenderTarget() != fRenderTarget) { |
| |
| fContext->setRenderTarget(fRenderTarget); |
| SkASSERT(draw.fClipStack && draw.fClipStack == fClipStack); |
| convert_matrixclip(fContext, *draw.fMatrix, |
| *fClipStack, *draw.fClip, this->getOrigin()); |
| fNeedPrepareRenderTarget = false; |
| } |
| } |
| |
| void SkGpuDevice::setMatrixClip(const SkMatrix& matrix, const SkRegion& clip, |
| const SkClipStack& clipStack) { |
| this->INHERITED::setMatrixClip(matrix, clip, clipStack); |
| // We don't need to set them now because the context may not reflect this device. |
| fNeedPrepareRenderTarget = true; |
| } |
| |
| void SkGpuDevice::gainFocus(const SkMatrix& matrix, const SkRegion& clip) { |
| |
| GrAssert(NULL != fClipStack); |
| |
| fContext->setRenderTarget(fRenderTarget); |
| |
| this->INHERITED::gainFocus(matrix, clip); |
| |
| convert_matrixclip(fContext, matrix, *fClipStack, clip, this->getOrigin()); |
| |
| DO_DEFERRED_CLEAR; |
| } |
| |
| SkGpuRenderTarget* SkGpuDevice::accessRenderTarget() { |
| DO_DEFERRED_CLEAR; |
| return (SkGpuRenderTarget*)fRenderTarget; |
| } |
| |
| bool SkGpuDevice::bindDeviceAsTexture(GrPaint* paint) { |
| if (NULL != fTexture) { |
| paint->setTexture(kBitmapTextureIdx, fTexture); |
| return true; |
| } |
| return false; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 5, shader_type_mismatch); |
| |
| namespace { |
| |
| // converts a SkPaint to a GrPaint, ignoring the skPaint's shader |
| // justAlpha indicates that skPaint's alpha should be used rather than the color |
| // Callers may subsequently modify the GrPaint. Setting constantColor indicates |
| // that the final paint will draw the same color at every pixel. This allows |
| // an optimization where the the color filter can be applied to the skPaint's |
| // color once while converting to GrPain and then ignored. |
| inline bool skPaint2GrPaintNoShader(const SkPaint& skPaint, |
| bool justAlpha, |
| bool constantColor, |
| GrPaint* grPaint) { |
| |
| grPaint->fDither = skPaint.isDither(); |
| grPaint->fAntiAlias = skPaint.isAntiAlias(); |
| grPaint->fCoverage = 0xFF; |
| |
| SkXfermode::Coeff sm = SkXfermode::kOne_Coeff; |
| SkXfermode::Coeff dm = SkXfermode::kISA_Coeff; |
| |
| SkXfermode* mode = skPaint.getXfermode(); |
| if (mode) { |
| if (!mode->asCoeff(&sm, &dm)) { |
| //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");) |
| #if 0 |
| return false; |
| #endif |
| } |
| } |
| grPaint->fSrcBlendCoeff = sk_blend_to_grblend(sm); |
| grPaint->fDstBlendCoeff = sk_blend_to_grblend(dm); |
| |
| if (justAlpha) { |
| uint8_t alpha = skPaint.getAlpha(); |
| grPaint->fColor = GrColorPackRGBA(alpha, alpha, alpha, alpha); |
| // justAlpha is currently set to true only if there is a texture, |
| // so constantColor should not also be true. |
| GrAssert(!constantColor); |
| } else { |
| grPaint->fColor = SkGr::SkColor2GrColor(skPaint.getColor()); |
| grPaint->setTexture(kShaderTextureIdx, NULL); |
| } |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| SkColor color; |
| SkXfermode::Mode filterMode; |
| SkScalar matrix[20]; |
| if (colorFilter != NULL && colorFilter->asColorMode(&color, &filterMode)) { |
| grPaint->fColorMatrixEnabled = false; |
| if (!constantColor) { |
| grPaint->fColorFilterColor = SkGr::SkColor2GrColor(color); |
| grPaint->fColorFilterXfermode = filterMode; |
| } else { |
| SkColor filtered = colorFilter->filterColor(skPaint.getColor()); |
| grPaint->fColor = SkGr::SkColor2GrColor(filtered); |
| grPaint->resetColorFilter(); |
| } |
| } else if (colorFilter != NULL && colorFilter->asColorMatrix(matrix)) { |
| grPaint->fColorMatrixEnabled = true; |
| memcpy(grPaint->fColorMatrix, matrix, sizeof(matrix)); |
| grPaint->fColorFilterXfermode = SkXfermode::kDst_Mode; |
| } else { |
| grPaint->resetColorFilter(); |
| } |
| return true; |
| } |
| |
| // This function is similar to skPaint2GrPaintNoShader but also converts |
| // skPaint's shader to a GrTexture/GrSamplerState if possible. The texture to |
| // be used is set on grPaint and returned in param act. constantColor has the |
| // same meaning as in skPaint2GrPaintNoShader. |
| inline bool skPaint2GrPaintShader(SkGpuDevice* dev, |
| const SkPaint& skPaint, |
| bool constantColor, |
| SkGpuDevice::SkAutoCachedTexture* act, |
| GrPaint* grPaint) { |
| |
| SkASSERT(NULL != act); |
| |
| SkShader* shader = skPaint.getShader(); |
| if (NULL == shader) { |
| return skPaint2GrPaintNoShader(skPaint, |
| false, |
| constantColor, |
| grPaint); |
| } else if (!skPaint2GrPaintNoShader(skPaint, true, false, grPaint)) { |
| return false; |
| } |
| |
| SkBitmap bitmap; |
| SkMatrix* matrix = grPaint->textureSampler(kShaderTextureIdx)->matrix(); |
| SkShader::TileMode tileModes[2]; |
| SkScalar twoPointParams[3]; |
| SkShader::BitmapType bmptype = shader->asABitmap(&bitmap, matrix, |
| tileModes, twoPointParams); |
| |
| if (SkShader::kNone_BitmapType == bmptype) { |
| SkShader::GradientInfo info; |
| SkColor color; |
| |
| info.fColors = &color; |
| info.fColorOffsets = NULL; |
| info.fColorCount = 1; |
| if (SkShader::kColor_GradientType == shader->asAGradient(&info)) { |
| SkPaint copy(skPaint); |
| copy.setShader(NULL); |
| // modulate the paint alpha by the shader's solid color alpha |
| U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha()); |
| copy.setColor(SkColorSetA(color, newA)); |
| return skPaint2GrPaintNoShader(copy, |
| false, |
| constantColor, |
| grPaint); |
| } |
| return false; |
| } |
| |
| GrSamplerState* sampler = grPaint->textureSampler(kShaderTextureIdx); |
| GrTexture* texture = act->set(dev, bitmap, sampler); |
| if (NULL == texture) { |
| SkDebugf("Couldn't convert bitmap to texture.\n"); |
| return false; |
| } |
| grPaint->setTexture(kShaderTextureIdx, texture); |
| |
| switch (bmptype) { |
| case SkShader::kRadial_BitmapType: |
| sampler->setCustomStage(SkNEW_ARGS(GrRadialGradient, (texture)))->unref(); |
| sampler->setFilter(GrSamplerState::kBilinear_Filter); |
| break; |
| case SkShader::kSweep_BitmapType: |
| sampler->setCustomStage(SkNEW_ARGS(GrSweepGradient, (texture)))->unref(); |
| sampler->setFilter(GrSamplerState::kBilinear_Filter); |
| break; |
| case SkShader::kTwoPointRadial_BitmapType: |
| sampler->setCustomStage(SkNEW_ARGS(GrRadial2Gradient, |
| (texture, |
| twoPointParams[0], |
| twoPointParams[1], |
| twoPointParams[2] < 0)))->unref(); |
| sampler->setFilter(GrSamplerState::kBilinear_Filter); |
| break; |
| case SkShader::kTwoPointConical_BitmapType: |
| sampler->setCustomStage(SkNEW_ARGS(GrConical2Gradient, |
| (texture, |
| twoPointParams[0], |
| twoPointParams[1], |
| twoPointParams[2])))->unref(); |
| sampler->setFilter(GrSamplerState::kBilinear_Filter); |
| break; |
| default: |
| if (skPaint.isFilterBitmap()) { |
| sampler->setFilter(GrSamplerState::kBilinear_Filter); |
| } else { |
| sampler->setFilter(GrSamplerState::kNearest_Filter); |
| } |
| break; |
| } |
| sampler->setWrapX(sk_tile_mode_to_grwrap(tileModes[0])); |
| sampler->setWrapY(sk_tile_mode_to_grwrap(tileModes[1])); |
| |
| // since our texture coords will be in local space, we wack the texture |
| // matrix to map them back into 0...1 before we load it |
| SkMatrix localM; |
| if (shader->getLocalMatrix(&localM)) { |
| SkMatrix inverse; |
| if (localM.invert(&inverse)) { |
| matrix->preConcat(inverse); |
| } |
| } |
| if (SkShader::kDefault_BitmapType == bmptype) { |
| GrScalar sx = SkFloatToScalar(1.f / bitmap.width()); |
| GrScalar sy = SkFloatToScalar(1.f / bitmap.height()); |
| matrix->postScale(sx, sy); |
| } else if (SkShader::kRadial_BitmapType == bmptype) { |
| GrScalar s = SkFloatToScalar(1.f / bitmap.width()); |
| matrix->postScale(s, s); |
| } |
| |
| return true; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| void SkGpuDevice::clear(SkColor color) { |
| fContext->clear(NULL, color, fRenderTarget); |
| } |
| |
| void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| |
| fContext->drawPaint(grPaint); |
| } |
| |
| // must be in SkCanvas::PointMode order |
| static const GrPrimitiveType gPointMode2PrimtiveType[] = { |
| kPoints_GrPrimitiveType, |
| kLines_GrPrimitiveType, |
| kLineStrip_GrPrimitiveType |
| }; |
| |
| void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkScalar width = paint.getStrokeWidth(); |
| if (width < 0) { |
| return; |
| } |
| |
| // we only handle hairlines and paints without path effects or mask filters, |
| // else we let the SkDraw call our drawPath() |
| if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { |
| draw.drawPoints(mode, count, pts, paint, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| |
| fContext->drawVertices(grPaint, |
| gPointMode2PrimtiveType[mode], |
| count, |
| (GrPoint*)pts, |
| NULL, |
| NULL, |
| NULL, |
| 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, |
| const SkPaint& paint) { |
| CHECK_FOR_NODRAW_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| bool doStroke = paint.getStyle() != SkPaint::kFill_Style; |
| SkScalar width = paint.getStrokeWidth(); |
| |
| /* |
| We have special code for hairline strokes, miter-strokes, and fills. |
| Anything else we just call our path code. |
| */ |
| bool usePath = doStroke && width > 0 && |
| paint.getStrokeJoin() != SkPaint::kMiter_Join; |
| // another two reasons we might need to call drawPath... |
| if (paint.getMaskFilter() || paint.getPathEffect()) { |
| usePath = true; |
| } |
| // until we aa rotated rects... |
| if (!usePath && paint.isAntiAlias() && !draw.fMatrix->rectStaysRect()) { |
| usePath = true; |
| } |
| // small miter limit means right angles show bevel... |
| if (SkPaint::kMiter_Join == paint.getStrokeJoin() && |
| paint.getStrokeMiter() < SK_ScalarSqrt2) |
| { |
| usePath = true; |
| } |
| // until we can both stroke and fill rectangles |
| if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addRect(rect); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| fContext->drawRect(grPaint, rect, doStroke ? width : -1); |
| } |
| |
| #include "SkMaskFilter.h" |
| #include "SkBounder.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // helpers for applying mask filters |
| namespace { |
| |
| GrPathFill skToGrFillType(SkPath::FillType fillType) { |
| switch (fillType) { |
| case SkPath::kWinding_FillType: |
| return kWinding_GrPathFill; |
| case SkPath::kEvenOdd_FillType: |
| return kEvenOdd_GrPathFill; |
| case SkPath::kInverseWinding_FillType: |
| return kInverseWinding_GrPathFill; |
| case SkPath::kInverseEvenOdd_FillType: |
| return kInverseEvenOdd_GrPathFill; |
| default: |
| SkDebugf("Unsupported path fill type\n"); |
| return kHairLine_GrPathFill; |
| } |
| } |
| |
| // We prefer to blur small rect with small radius via CPU. |
| #define MIN_GPU_BLUR_SIZE SkIntToScalar(64) |
| #define MIN_GPU_BLUR_RADIUS SkIntToScalar(32) |
| inline bool shouldDrawBlurWithCPU(const SkRect& rect, SkScalar radius) { |
| if (rect.width() <= MIN_GPU_BLUR_SIZE && |
| rect.height() <= MIN_GPU_BLUR_SIZE && |
| radius <= MIN_GPU_BLUR_RADIUS) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool drawWithGPUMaskFilter(GrContext* context, const SkPath& path, |
| SkMaskFilter* filter, const SkMatrix& matrix, |
| const SkRegion& clip, SkBounder* bounder, |
| GrPaint* grp, GrPathFill pathFillType) { |
| #ifdef SK_DISABLE_GPU_BLUR |
| return false; |
| #endif |
| SkMaskFilter::BlurInfo info; |
| SkMaskFilter::BlurType blurType = filter->asABlur(&info); |
| if (SkMaskFilter::kNone_BlurType == blurType) { |
| return false; |
| } |
| SkScalar radius = info.fIgnoreTransform ? info.fRadius |
| : matrix.mapRadius(info.fRadius); |
| radius = SkMinScalar(radius, MAX_BLUR_RADIUS); |
| if (radius <= 0) { |
| return false; |
| } |
| |
| SkRect srcRect = path.getBounds(); |
| if (shouldDrawBlurWithCPU(srcRect, radius)) { |
| return false; |
| } |
| |
| float sigma = SkScalarToFloat(radius) * BLUR_SIGMA_SCALE; |
| float sigma3 = sigma * 3.0f; |
| |
| SkRect clipRect; |
| clipRect.set(clip.getBounds()); |
| |
| // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area. |
| srcRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3)); |
| clipRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3)); |
| srcRect.intersect(clipRect); |
| SkRect finalRect = srcRect; |
| SkIRect finalIRect; |
| finalRect.roundOut(&finalIRect); |
| if (clip.quickReject(finalIRect)) { |
| return true; |
| } |
| if (bounder && !bounder->doIRect(finalIRect)) { |
| return true; |
| } |
| GrPoint offset = GrPoint::Make(-srcRect.fLeft, -srcRect.fTop); |
| srcRect.offset(offset); |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = SkScalarCeilToInt(srcRect.width()); |
| desc.fHeight = SkScalarCeilToInt(srcRect.height()); |
| // We actually only need A8, but it often isn't supported as a |
| // render target so default to RGBA_8888 |
| desc.fConfig = kRGBA_8888_PM_GrPixelConfig; |
| |
| if (context->isConfigRenderable(kAlpha_8_GrPixelConfig)) { |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| } |
| |
| GrAutoScratchTexture pathEntry(context, desc); |
| GrTexture* pathTexture = pathEntry.texture(); |
| if (NULL == pathTexture) { |
| return false; |
| } |
| GrRenderTarget* oldRenderTarget = context->getRenderTarget(); |
| // Once this code moves into GrContext, this should be changed to use |
| // an AutoClipRestore. |
| GrClip oldClip = context->getClip(); |
| context->setRenderTarget(pathTexture->asRenderTarget()); |
| |
| GrClip newClip(srcRect); |
| context->setClip(newClip); |
| |
| context->clear(NULL, 0); |
| GrPaint tempPaint; |
| tempPaint.reset(); |
| |
| GrContext::AutoMatrix avm(context, GrMatrix::I()); |
| tempPaint.fAntiAlias = grp->fAntiAlias; |
| if (tempPaint.fAntiAlias) { |
| // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst |
| // blend coeff of zero requires dual source blending support in order |
| // to properly blend partially covered pixels. This means the AA |
| // code path may not be taken. So we use a dst blend coeff of ISA. We |
| // could special case AA draws to a dst surface with known alpha=0 to |
| // use a zero dst coeff when dual source blending isn't available. |
| tempPaint.fSrcBlendCoeff = kOne_GrBlendCoeff; |
| tempPaint.fDstBlendCoeff = kISC_GrBlendCoeff; |
| } |
| // Draw hard shadow to pathTexture with path topleft at origin 0,0. |
| context->drawPath(tempPaint, path, pathFillType, &offset); |
| |
| GrAutoScratchTexture temp1, temp2; |
| // If we're doing a normal blur, we can clobber the pathTexture in the |
| // gaussianBlur. Otherwise, we need to save it for later compositing. |
| bool isNormalBlur = blurType == SkMaskFilter::kNormal_BlurType; |
| GrTexture* blurTexture = context->gaussianBlur(pathTexture, |
| &temp1, |
| isNormalBlur ? NULL : &temp2, |
| srcRect, sigma, sigma); |
| |
| if (!isNormalBlur) { |
| GrPaint paint; |
| paint.reset(); |
| paint.textureSampler(0)->setFilter(GrSamplerState::kNearest_Filter); |
| paint.textureSampler(0)->matrix()->setIDiv(pathTexture->width(), |
| pathTexture->height()); |
| // Blend pathTexture over blurTexture. |
| context->setRenderTarget(blurTexture->asRenderTarget()); |
| paint.setTexture(0, pathTexture); |
| if (SkMaskFilter::kInner_BlurType == blurType) { |
| // inner: dst = dst * src |
| paint.fSrcBlendCoeff = kDC_GrBlendCoeff; |
| paint.fDstBlendCoeff = kZero_GrBlendCoeff; |
| } else if (SkMaskFilter::kSolid_BlurType == blurType) { |
| // solid: dst = src + dst - src * dst |
| // = (1 - dst) * src + 1 * dst |
| paint.fSrcBlendCoeff = kIDC_GrBlendCoeff; |
| paint.fDstBlendCoeff = kOne_GrBlendCoeff; |
| } else if (SkMaskFilter::kOuter_BlurType == blurType) { |
| // outer: dst = dst * (1 - src) |
| // = 0 * src + (1 - src) * dst |
| paint.fSrcBlendCoeff = kZero_GrBlendCoeff; |
| paint.fDstBlendCoeff = kISC_GrBlendCoeff; |
| } |
| context->drawRect(paint, srcRect); |
| } |
| context->setRenderTarget(oldRenderTarget); |
| context->setClip(oldClip); |
| |
| if (grp->hasTextureOrMask()) { |
| GrMatrix inverse; |
| if (!matrix.invert(&inverse)) { |
| return false; |
| } |
| grp->preConcatActiveSamplerMatrices(inverse); |
| } |
| |
| static const int MASK_IDX = GrPaint::kMaxMasks - 1; |
| // we assume the last mask index is available for use |
| GrAssert(!grp->isMaskStageEnabled(MASK_IDX)); |
| grp->setMask(MASK_IDX, blurTexture); |
| grp->maskSampler(MASK_IDX)->reset(); |
| |
| grp->maskSampler(MASK_IDX)->matrix()->setTranslate(-finalRect.fLeft, |
| -finalRect.fTop); |
| grp->maskSampler(MASK_IDX)->matrix()->postIDiv(blurTexture->width(), |
| blurTexture->height()); |
| context->drawRect(*grp, finalRect); |
| return true; |
| } |
| |
| bool drawWithMaskFilter(GrContext* context, const SkPath& path, |
| SkMaskFilter* filter, const SkMatrix& matrix, |
| const SkRegion& clip, SkBounder* bounder, |
| GrPaint* grp, SkPaint::Style style) { |
| SkMask srcM, dstM; |
| |
| if (!SkDraw::DrawToMask(path, &clip.getBounds(), filter, &matrix, &srcM, |
| SkMask::kComputeBoundsAndRenderImage_CreateMode, |
| style)) { |
| return false; |
| } |
| SkAutoMaskFreeImage autoSrc(srcM.fImage); |
| |
| if (!filter->filterMask(&dstM, srcM, matrix, NULL)) { |
| return false; |
| } |
| // this will free-up dstM when we're done (allocated in filterMask()) |
| SkAutoMaskFreeImage autoDst(dstM.fImage); |
| |
| if (clip.quickReject(dstM.fBounds)) { |
| return false; |
| } |
| if (bounder && !bounder->doIRect(dstM.fBounds)) { |
| return false; |
| } |
| |
| // we now have a device-aligned 8bit mask in dstM, ready to be drawn using |
| // the current clip (and identity matrix) and grpaint settings |
| |
| // used to compute inverse view, if necessary |
| GrMatrix ivm = matrix; |
| |
| GrContext::AutoMatrix avm(context, GrMatrix::I()); |
| |
| GrTextureDesc desc; |
| desc.fWidth = dstM.fBounds.width(); |
| desc.fHeight = dstM.fBounds.height(); |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| |
| GrAutoScratchTexture ast(context, desc); |
| GrTexture* texture = ast.texture(); |
| |
| if (NULL == texture) { |
| return false; |
| } |
| texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, |
| dstM.fImage, dstM.fRowBytes); |
| |
| if (grp->hasTextureOrMask() && ivm.invert(&ivm)) { |
| grp->preConcatActiveSamplerMatrices(ivm); |
| } |
| |
| static const int MASK_IDX = GrPaint::kMaxMasks - 1; |
| // we assume the last mask index is available for use |
| GrAssert(!grp->isMaskStageEnabled(MASK_IDX)); |
| grp->setMask(MASK_IDX, texture); |
| grp->maskSampler(MASK_IDX)->reset(); |
| |
| GrRect d; |
| d.setLTRB(GrIntToScalar(dstM.fBounds.fLeft), |
| GrIntToScalar(dstM.fBounds.fTop), |
| GrIntToScalar(dstM.fBounds.fRight), |
| GrIntToScalar(dstM.fBounds.fBottom)); |
| |
| GrMatrix* m = grp->maskSampler(MASK_IDX)->matrix(); |
| m->setTranslate(-dstM.fBounds.fLeft*SK_Scalar1, |
| -dstM.fBounds.fTop*SK_Scalar1); |
| m->postIDiv(texture->width(), texture->height()); |
| context->drawRect(*grp, d); |
| return true; |
| } |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, |
| const SkPaint& paint, const SkMatrix* prePathMatrix, |
| bool pathIsMutable) { |
| CHECK_FOR_NODRAW_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| bool doFill = true; |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| |
| // can we cheat, and threat a thin stroke as a hairline w/ coverage |
| // if we can, we draw lots faster (raster device does this same test) |
| SkScalar hairlineCoverage; |
| if (SkDrawTreatAsHairline(paint, *draw.fMatrix, &hairlineCoverage)) { |
| doFill = false; |
| grPaint.fCoverage = SkScalarRoundToInt(hairlineCoverage * |
| grPaint.fCoverage); |
| } |
| |
| // If we have a prematrix, apply it to the path, optimizing for the case |
| // where the original path can in fact be modified in place (even though |
| // its parameter type is const). |
| SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); |
| SkPath tmpPath; |
| |
| if (prePathMatrix) { |
| SkPath* result = pathPtr; |
| |
| if (!pathIsMutable) { |
| result = &tmpPath; |
| pathIsMutable = true; |
| } |
| // should I push prePathMatrix on our MV stack temporarily, instead |
| // of applying it here? See SkDraw.cpp |
| pathPtr->transform(*prePathMatrix, result); |
| pathPtr = result; |
| } |
| // at this point we're done with prePathMatrix |
| SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) |
| |
| if (paint.getPathEffect() || |
| (doFill && paint.getStyle() != SkPaint::kFill_Style)) { |
| // it is safe to use tmpPath here, even if we already used it for the |
| // prepathmatrix, since getFillPath can take the same object for its |
| // input and output safely. |
| doFill = paint.getFillPath(*pathPtr, &tmpPath); |
| pathPtr = &tmpPath; |
| } |
| |
| if (paint.getMaskFilter()) { |
| // avoid possibly allocating a new path in transform if we can |
| SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; |
| |
| // transform the path into device space |
| pathPtr->transform(*draw.fMatrix, devPathPtr); |
| GrPathFill pathFillType = doFill ? |
| skToGrFillType(devPathPtr->getFillType()) : kHairLine_GrPathFill; |
| if (!drawWithGPUMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(), |
| *draw.fMatrix, *draw.fClip, draw.fBounder, |
| &grPaint, pathFillType)) { |
| SkPaint::Style style = doFill ? SkPaint::kFill_Style : |
| SkPaint::kStroke_Style; |
| drawWithMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(), |
| *draw.fMatrix, *draw.fClip, draw.fBounder, |
| &grPaint, style); |
| } |
| return; |
| } |
| |
| GrPathFill fill = kHairLine_GrPathFill; |
| |
| if (doFill) { |
| switch (pathPtr->getFillType()) { |
| case SkPath::kWinding_FillType: |
| fill = kWinding_GrPathFill; |
| break; |
| case SkPath::kEvenOdd_FillType: |
| fill = kEvenOdd_GrPathFill; |
| break; |
| case SkPath::kInverseWinding_FillType: |
| fill = kInverseWinding_GrPathFill; |
| break; |
| case SkPath::kInverseEvenOdd_FillType: |
| fill = kInverseEvenOdd_GrPathFill; |
| break; |
| default: |
| SkDebugf("Unsupported path fill type\n"); |
| return; |
| } |
| } |
| |
| fContext->drawPath(grPaint, *pathPtr, fill); |
| } |
| |
| namespace { |
| |
| inline int get_tile_count(int l, int t, int r, int b, int tileSize) { |
| int tilesX = (r / tileSize) - (l / tileSize) + 1; |
| int tilesY = (b / tileSize) - (t / tileSize) + 1; |
| return tilesX * tilesY; |
| } |
| |
| inline int determine_tile_size(const SkBitmap& bitmap, |
| const SkIRect* srcRectPtr, |
| int maxTextureSize) { |
| static const int kSmallTileSize = 1 << 10; |
| if (maxTextureSize <= kSmallTileSize) { |
| return maxTextureSize; |
| } |
| |
| size_t maxTexTotalTileSize; |
| size_t smallTotalTileSize; |
| |
| if (NULL == srcRectPtr) { |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| maxTexTotalTileSize = get_tile_count(0, 0, w, h, maxTextureSize); |
| smallTotalTileSize = get_tile_count(0, 0, w, h, kSmallTileSize); |
| } else { |
| maxTexTotalTileSize = get_tile_count(srcRectPtr->fLeft, |
| srcRectPtr->fTop, |
| srcRectPtr->fRight, |
| srcRectPtr->fBottom, |
| maxTextureSize); |
| smallTotalTileSize = get_tile_count(srcRectPtr->fLeft, |
| srcRectPtr->fTop, |
| srcRectPtr->fRight, |
| srcRectPtr->fBottom, |
| kSmallTileSize); |
| } |
| maxTexTotalTileSize *= maxTextureSize * maxTextureSize; |
| smallTotalTileSize *= kSmallTileSize * kSmallTileSize; |
| |
| if (maxTexTotalTileSize > 2 * smallTotalTileSize) { |
| return kSmallTileSize; |
| } else { |
| return maxTextureSize; |
| } |
| } |
| } |
| |
| bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, |
| const GrSamplerState& sampler, |
| const SkIRect* srcRectPtr, |
| int* tileSize) const { |
| SkASSERT(NULL != tileSize); |
| |
| // if bitmap is explictly texture backed then just use the texture |
| if (NULL != bitmap.getTexture()) { |
| return false; |
| } |
| // if it's larger than the max texture size, then we have no choice but |
| // tiling |
| const int maxTextureSize = fContext->getMaxTextureSize(); |
| if (bitmap.width() > maxTextureSize || |
| bitmap.height() > maxTextureSize) { |
| *tileSize = determine_tile_size(bitmap, srcRectPtr, maxTextureSize); |
| return true; |
| } |
| // if we are going to have to draw the whole thing, then don't tile |
| if (NULL == srcRectPtr) { |
| return false; |
| } |
| // if the entire texture is already in our cache then no reason to tile it |
| if (this->isBitmapInTextureCache(bitmap, sampler)) { |
| return false; |
| } |
| |
| // At this point we know we could do the draw by uploading the entire bitmap |
| // as a texture. However, if the texture would be large compared to the |
| // cache size and we don't require most of it for this draw then tile to |
| // reduce the amount of upload and cache spill. |
| |
| // assumption here is that sw bitmap size is a good proxy for its size as |
| // a texture |
| size_t bmpSize = bitmap.getSize(); |
| size_t cacheSize; |
| fContext->getTextureCacheLimits(NULL, &cacheSize); |
| if (bmpSize < cacheSize / 2) { |
| return false; |
| } |
| |
| SkFixed fracUsed = |
| SkFixedMul((srcRectPtr->width() << 16) / bitmap.width(), |
| (srcRectPtr->height() << 16) / bitmap.height()); |
| if (fracUsed <= SK_FixedHalf) { |
| *tileSize = determine_tile_size(bitmap, srcRectPtr, maxTextureSize); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void SkGpuDevice::drawBitmap(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkIRect* srcRectPtr, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkIRect srcRect; |
| if (NULL == srcRectPtr) { |
| srcRect.set(0, 0, bitmap.width(), bitmap.height()); |
| } else { |
| srcRect = *srcRectPtr; |
| } |
| |
| if (paint.getMaskFilter()){ |
| // Convert the bitmap to a shader so that the rect can be drawn |
| // through drawRect, which supports mask filters. |
| SkBitmap tmp; // subset of bitmap, if necessary |
| const SkBitmap* bitmapPtr = &bitmap; |
| if (srcRectPtr) { |
| if (!bitmap.extractSubset(&tmp, srcRect)) { |
| return; // extraction failed |
| } |
| bitmapPtr = &tmp; |
| srcRect.set(0,0, srcRect.width(), srcRect.height()); |
| } |
| SkPaint paintWithTexture(paint); |
| paintWithTexture.setShader(SkShader::CreateBitmapShader( *bitmapPtr, |
| SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); |
| SkRect ScalarRect; |
| ScalarRect.set(srcRect); |
| |
| // Transform 'm' needs to be concatenated to the draw matrix, |
| // rather than transforming the primitive directly, so that 'm' will |
| // also affect the behavior of the mask filter. |
| SkMatrix drawMatrix; |
| drawMatrix.setConcat(*draw.fMatrix, m); |
| SkDraw transformedDraw(draw); |
| transformedDraw.fMatrix = &drawMatrix; |
| |
| this->drawRect(transformedDraw, ScalarRect, paintWithTexture); |
| |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!skPaint2GrPaintNoShader(paint, true, false, &grPaint)) { |
| return; |
| } |
| GrSamplerState* sampler = grPaint.textureSampler(kBitmapTextureIdx); |
| if (paint.isFilterBitmap()) { |
| sampler->setFilter(GrSamplerState::kBilinear_Filter); |
| } else { |
| sampler->setFilter(GrSamplerState::kNearest_Filter); |
| } |
| |
| int tileSize; |
| if (!this->shouldTileBitmap(bitmap, *sampler, srcRectPtr, &tileSize)) { |
| // take the simple case |
| this->internalDrawBitmap(draw, bitmap, srcRect, m, &grPaint); |
| return; |
| } |
| |
| // undo the translate done by SkCanvas |
| int DX = SkMax32(0, srcRect.fLeft); |
| int DY = SkMax32(0, srcRect.fTop); |
| // compute clip bounds in local coordinates |
| SkIRect clipRect; |
| { |
| SkRect r; |
| r.set(draw.fClip->getBounds()); |
| SkMatrix matrix, inverse; |
| matrix.setConcat(*draw.fMatrix, m); |
| if (!matrix.invert(&inverse)) { |
| return; |
| } |
| inverse.mapRect(&r); |
| r.roundOut(&clipRect); |
| // apply the canvas' translate to our local clip |
| clipRect.offset(DX, DY); |
| } |
| |
| int nx = bitmap.width() / tileSize; |
| int ny = bitmap.height() / tileSize; |
| for (int x = 0; x <= nx; x++) { |
| for (int y = 0; y <= ny; y++) { |
| SkIRect tileR; |
| tileR.set(x * tileSize, y * tileSize, |
| (x + 1) * tileSize, (y + 1) * tileSize); |
| if (!SkIRect::Intersects(tileR, clipRect)) { |
| continue; |
| } |
| |
| SkIRect srcR = tileR; |
| if (!srcR.intersect(srcRect)) { |
| continue; |
| } |
| |
| SkBitmap tmpB; |
| if (bitmap.extractSubset(&tmpB, tileR)) { |
| // now offset it to make it "local" to our tmp bitmap |
| srcR.offset(-tileR.fLeft, -tileR.fTop); |
| |
| SkMatrix tmpM(m); |
| { |
| int dx = tileR.fLeft - DX + SkMax32(0, srcR.fLeft); |
| int dy = tileR.fTop - DY + SkMax32(0, srcR.fTop); |
| tmpM.preTranslate(SkIntToScalar(dx), SkIntToScalar(dy)); |
| } |
| this->internalDrawBitmap(draw, tmpB, srcR, tmpM, &grPaint); |
| } |
| } |
| } |
| } |
| |
| namespace { |
| |
| bool hasAlignedSamples(const SkRect& srcRect, const SkRect& transformedRect) { |
| // detect pixel disalignment |
| if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - |
| transformedRect.left()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - |
| transformedRect.top()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.width() - srcRect.width()) < |
| COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.height() - srcRect.height()) < |
| COLOR_BLEED_TOLERANCE) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool mayColorBleed(const SkRect& srcRect, const SkRect& transformedRect, |
| const SkMatrix& m) { |
| // Only gets called if hasAlignedSamples returned false. |
| // So we can assume that sampling is axis aligned but not texel aligned. |
| GrAssert(!hasAlignedSamples(srcRect, transformedRect)); |
| SkRect innerSrcRect(srcRect), innerTransformedRect, |
| outerTransformedRect(transformedRect); |
| innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); |
| m.mapRect(&innerTransformedRect, innerSrcRect); |
| |
| // The gap between outerTransformedRect and innerTransformedRect |
| // represents the projection of the source border area, which is |
| // problematic for color bleeding. We must check whether any |
| // destination pixels sample the border area. |
| outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| SkIRect outer, inner; |
| outerTransformedRect.round(&outer); |
| innerTransformedRect.round(&inner); |
| // If the inner and outer rects round to the same result, it means the |
| // border does not overlap any pixel centers. Yay! |
| return inner != outer; |
| } |
| |
| } // unnamed namespace |
| |
| /* |
| * This is called by drawBitmap(), which has to handle images that may be too |
| * large to be represented by a single texture. |
| * |
| * internalDrawBitmap assumes that the specified bitmap will fit in a texture |
| * and that non-texture portion of the GrPaint has already been setup. |
| */ |
| void SkGpuDevice::internalDrawBitmap(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkIRect& srcRect, |
| const SkMatrix& m, |
| GrPaint* grPaint) { |
| SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && |
| bitmap.height() <= fContext->getMaxTextureSize()); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| SkDebugf("nothing to draw\n"); |
| return; |
| } |
| |
| GrSamplerState* sampler = grPaint->textureSampler(kBitmapTextureIdx); |
| |
| sampler->setWrapX(GrSamplerState::kClamp_WrapMode); |
| sampler->setWrapY(GrSamplerState::kClamp_WrapMode); |
| sampler->matrix()->reset(); |
| |
| GrTexture* texture; |
| SkAutoCachedTexture act(this, bitmap, sampler, &texture); |
| if (NULL == texture) { |
| return; |
| } |
| |
| grPaint->setTexture(kBitmapTextureIdx, texture); |
| |
| GrRect dstRect = SkRect::MakeWH(GrIntToScalar(srcRect.width()), |
| GrIntToScalar(srcRect.height())); |
| GrRect paintRect; |
| float wInv = 1.f / bitmap.width(); |
| float hInv = 1.f / bitmap.height(); |
| paintRect.setLTRB(SkFloatToScalar(srcRect.fLeft * wInv), |
| SkFloatToScalar(srcRect.fTop * hInv), |
| SkFloatToScalar(srcRect.fRight * wInv), |
| SkFloatToScalar(srcRect.fBottom * hInv)); |
| |
| bool needsTextureDomain = false; |
| if (GrSamplerState::kBilinear_Filter == sampler->getFilter()) |
| { |
| // Need texture domain if drawing a sub rect. |
| needsTextureDomain = srcRect.width() < bitmap.width() || |
| srcRect.height() < bitmap.height(); |
| if (m.rectStaysRect() && draw.fMatrix->rectStaysRect()) { |
| // sampling is axis-aligned |
| GrRect floatSrcRect, transformedRect; |
| floatSrcRect.set(srcRect); |
| SkMatrix srcToDeviceMatrix(m); |
| srcToDeviceMatrix.postConcat(*draw.fMatrix); |
| srcToDeviceMatrix.mapRect(&transformedRect, floatSrcRect); |
| |
| if (hasAlignedSamples(floatSrcRect, transformedRect)) { |
| // Samples are texel-aligned, so filtering is futile |
| sampler->setFilter(GrSamplerState::kNearest_Filter); |
| needsTextureDomain = false; |
| } else { |
| needsTextureDomain = needsTextureDomain && |
| mayColorBleed(floatSrcRect, transformedRect, m); |
| } |
| } |
| } |
| |
| GrRect textureDomain = GrRect::MakeEmpty(); |
| |
| if (needsTextureDomain) { |
| // Use a constrained texture domain to avoid color bleeding |
| GrScalar left, top, right, bottom; |
| if (srcRect.width() > 1) { |
| GrScalar border = GR_ScalarHalf / bitmap.width(); |
| left = paintRect.left() + border; |
| right = paintRect.right() - border; |
| } else { |
| left = right = GrScalarHalf(paintRect.left() + paintRect.right()); |
| } |
| if (srcRect.height() > 1) { |
| GrScalar border = GR_ScalarHalf / bitmap.height(); |
| top = paintRect.top() + border; |
| bottom = paintRect.bottom() - border; |
| } else { |
| top = bottom = GrScalarHalf(paintRect.top() + paintRect.bottom()); |
| } |
| textureDomain.setLTRB(left, top, right, bottom); |
| } |
| sampler->setTextureDomain(textureDomain); |
| |
| fContext->drawRectToRect(*grPaint, dstRect, paintRect, &m); |
| } |
| |
| namespace { |
| |
| void apply_custom_stage(GrContext* context, |
| GrTexture* srcTexture, |
| GrTexture* dstTexture, |
| const GrRect& rect, |
| GrCustomStage* stage) { |
| SkASSERT(srcTexture && srcTexture->getContext() == context); |
| GrContext::AutoMatrix avm(context, GrMatrix::I()); |
| GrContext::AutoRenderTarget art(context, dstTexture->asRenderTarget()); |
| GrContext::AutoClip acs(context, rect); |
| |
| GrMatrix sampleM; |
| sampleM.setIDiv(srcTexture->width(), srcTexture->height()); |
| GrPaint paint; |
| paint.reset(); |
| paint.textureSampler(0)->setFilter(GrSamplerState::kBilinear_Filter); |
| paint.textureSampler(0)->reset(sampleM); |
| paint.textureSampler(0)->setCustomStage(stage); |
| paint.setTexture(0, srcTexture); |
| context->drawRect(paint, rect); |
| } |
| |
| }; |
| |
| static GrTexture* filter_texture(GrContext* context, GrTexture* texture, |
| SkImageFilter* filter, const GrRect& rect) { |
| GrAssert(filter); |
| |
| SkSize blurSize; |
| SkISize radius; |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit, |
| desc.fWidth = SkScalarCeilToInt(rect.width()); |
| desc.fHeight = SkScalarCeilToInt(rect.height()); |
| desc.fConfig = kRGBA_8888_PM_GrPixelConfig; |
| GrCustomStage* stage; |
| |
| if (filter->asNewCustomStage(&stage, texture)) { |
| GrAutoScratchTexture dst(context, desc); |
| apply_custom_stage(context, texture, dst.texture(), rect, stage); |
| texture = dst.detach(); |
| stage->unref(); |
| } else if (filter->asABlur(&blurSize)) { |
| GrAutoScratchTexture temp1, temp2; |
| texture = context->gaussianBlur(texture, &temp1, &temp2, rect, |
| blurSize.width(), |
| blurSize.height()); |
| texture->ref(); |
| } else if (filter->asADilate(&radius)) { |
| GrAutoScratchTexture temp1(context, desc), temp2(context, desc); |
| texture = context->applyMorphology(texture, rect, |
| temp1.texture(), temp2.texture(), |
| GrContext::kDilate_MorphologyType, |
| radius); |
| texture->ref(); |
| } else if (filter->asAnErode(&radius)) { |
| GrAutoScratchTexture temp1(context, desc), temp2(context, desc); |
| texture = context->applyMorphology(texture, rect, |
| temp1.texture(), temp2.texture(), |
| GrContext::kErode_MorphologyType, |
| radius); |
| texture->ref(); |
| } |
| return texture; |
| } |
| |
| void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, |
| int left, int top, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| return; |
| } |
| |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| |
| GrPaint grPaint; |
| if(!skPaint2GrPaintNoShader(paint, true, false, &grPaint)) { |
| return; |
| } |
| |
| GrContext::AutoMatrix avm(fContext, GrMatrix::I()); |
| |
| GrSamplerState* sampler = grPaint.textureSampler(kBitmapTextureIdx); |
| |
| GrTexture* texture; |
| sampler->reset(); |
| SkAutoCachedTexture act(this, bitmap, sampler, &texture); |
| grPaint.setTexture(kBitmapTextureIdx, texture); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| if (NULL != filter) { |
| GrTexture* filteredTexture = filter_texture(fContext, texture, filter, |
| GrRect::MakeWH(SkIntToScalar(w), SkIntToScalar(h))); |
| if (filteredTexture) { |
| grPaint.setTexture(kBitmapTextureIdx, filteredTexture); |
| texture = filteredTexture; |
| filteredTexture->unref(); |
| } |
| } |
| |
| fContext->drawRectToRect(grPaint, |
| GrRect::MakeXYWH(GrIntToScalar(left), |
| GrIntToScalar(top), |
| GrIntToScalar(w), |
| GrIntToScalar(h)), |
| GrRect::MakeWH(GR_Scalar1 * w / texture->width(), |
| GR_Scalar1 * h / texture->height())); |
| } |
| |
| void SkGpuDevice::drawDevice(const SkDraw& draw, SkDevice* device, |
| int x, int y, const SkPaint& paint) { |
| // clear of the source device must occur before CHECK_SHOULD_DRAW |
| SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); |
| if (dev->fNeedClear) { |
| // TODO: could check here whether we really need to draw at all |
| dev->clear(0x0); |
| } |
| |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| if (!dev->bindDeviceAsTexture(&grPaint) || |
| !skPaint2GrPaintNoShader(paint, true, false, &grPaint)) { |
| return; |
| } |
| |
| GrTexture* devTex = grPaint.getTexture(0); |
| SkASSERT(NULL != devTex); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| if (NULL != filter) { |
| GrRect rect = GrRect::MakeWH(SkIntToScalar(devTex->width()), |
| SkIntToScalar(devTex->height())); |
| GrTexture* filteredTexture = filter_texture(fContext, devTex, filter, |
| rect); |
| if (filteredTexture) { |
| grPaint.setTexture(kBitmapTextureIdx, filteredTexture); |
| devTex = filteredTexture; |
| filteredTexture->unref(); |
| } |
| } |
| |
| const SkBitmap& bm = dev->accessBitmap(false); |
| int w = bm.width(); |
| int h = bm.height(); |
| |
| GrContext::AutoMatrix avm(fContext, GrMatrix::I()); |
| |
| grPaint.textureSampler(kBitmapTextureIdx)->reset(); |
| |
| GrRect dstRect = GrRect::MakeXYWH(GrIntToScalar(x), |
| GrIntToScalar(y), |
| GrIntToScalar(w), |
| GrIntToScalar(h)); |
| |
| // The device being drawn may not fill up its texture (saveLayer uses |
| // the approximate ). |
| GrRect srcRect = GrRect::MakeWH(GR_Scalar1 * w / devTex->width(), |
| GR_Scalar1 * h / devTex->height()); |
| |
| fContext->drawRectToRect(grPaint, dstRect, srcRect); |
| } |
| |
| bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) { |
| SkSize size; |
| SkISize radius; |
| |
| if (!filter->asNewCustomStage(NULL, NULL) && |
| !filter->asABlur(&size) && |
| !filter->asADilate(&radius) && |
| !filter->asAnErode(&radius)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src, |
| const SkMatrix& ctm, |
| SkBitmap* result, SkIPoint* offset) { |
| // want explicitly our impl, so guard against a subclass of us overriding it |
| if (!this->SkGpuDevice::canHandleImageFilter(filter)) { |
| return false; |
| } |
| |
| SkAutoLockPixels alp(src, !src.getTexture()); |
| if (!src.getTexture() && !src.readyToDraw()) { |
| return false; |
| } |
| |
| GrPaint paint; |
| paint.reset(); |
| |
| GrSamplerState* sampler = paint.textureSampler(kBitmapTextureIdx); |
| |
| GrTexture* texture; |
| SkAutoCachedTexture act(this, src, sampler, &texture); |
| |
| result->setConfig(src.config(), src.width(), src.height()); |
| GrRect rect = GrRect::MakeWH(SkIntToScalar(src.width()), |
| SkIntToScalar(src.height())); |
| GrTexture* resultTexture = filter_texture(fContext, texture, filter, rect); |
| if (resultTexture) { |
| result->setPixelRef(SkNEW_ARGS(SkGrTexturePixelRef, |
| (resultTexture)))->unref(); |
| resultTexture->unref(); |
| } |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // must be in SkCanvas::VertexMode order |
| static const GrPrimitiveType gVertexMode2PrimitiveType[] = { |
| kTriangles_GrPrimitiveType, |
| kTriangleStrip_GrPrimitiveType, |
| kTriangleFan_GrPrimitiveType, |
| }; |
| |
| void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, |
| int vertexCount, const SkPoint vertices[], |
| const SkPoint texs[], const SkColor colors[], |
| SkXfermode* xmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| // we ignore the shader if texs is null. |
| if (NULL == texs) { |
| if (!skPaint2GrPaintNoShader(paint, |
| false, |
| NULL == colors, |
| &grPaint)) { |
| return; |
| } |
| } else { |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| NULL == colors, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| } |
| |
| if (NULL != xmode && NULL != texs && NULL != colors) { |
| if (!SkXfermode::IsMode(xmode, SkXfermode::kMultiply_Mode)) { |
| SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); |
| #if 0 |
| return |
| #endif |
| } |
| } |
| |
| SkAutoSTMalloc<128, GrColor> convertedColors(0); |
| if (NULL != colors) { |
| // need to convert byte order and from non-PM to PM |
| convertedColors.reset(vertexCount); |
| for (int i = 0; i < vertexCount; ++i) { |
| convertedColors[i] = SkGr::SkColor2GrColor(colors[i]); |
| } |
| colors = convertedColors.get(); |
| } |
| fContext->drawVertices(grPaint, |
| gVertexMode2PrimitiveType[vmode], |
| vertexCount, |
| (GrPoint*) vertices, |
| (GrPoint*) texs, |
| colors, |
| indices, |
| indexCount); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static void GlyphCacheAuxProc(void* data) { |
| GrFontScaler* scaler = (GrFontScaler*)data; |
| SkSafeUnref(scaler); |
| } |
| |
| static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) { |
| void* auxData; |
| GrFontScaler* scaler = NULL; |
| if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) { |
| scaler = (GrFontScaler*)auxData; |
| } |
| if (NULL == scaler) { |
| scaler = SkNEW_ARGS(SkGrFontScaler, (cache)); |
| cache->setAuxProc(GlyphCacheAuxProc, scaler); |
| } |
| return scaler; |
| } |
| |
| static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); |
| |
| GrSkDrawProcs* procs = static_cast<GrSkDrawProcs*>(state.fDraw->fProcs); |
| |
| if (NULL == procs->fFontScaler) { |
| procs->fFontScaler = get_gr_font_scaler(state.fCache); |
| } |
| |
| procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(), |
| glyph.getSubXFixed(), |
| glyph.getSubYFixed()), |
| SkFixedFloorToFixed(fx), |
| SkFixedFloorToFixed(fy), |
| procs->fFontScaler); |
| } |
| |
| SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) { |
| |
| // deferred allocation |
| if (NULL == fDrawProcs) { |
| fDrawProcs = SkNEW(GrSkDrawProcs); |
| fDrawProcs->fD1GProc = SkGPU_Draw1Glyph; |
| fDrawProcs->fContext = fContext; |
| } |
| |
| // init our (and GL's) state |
| fDrawProcs->fTextContext = context; |
| fDrawProcs->fFontScaler = NULL; |
| return fDrawProcs; |
| } |
| |
| void SkGpuDevice::drawText(const SkDraw& draw, const void* text, |
| size_t byteLength, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| if (draw.fMatrix->hasPerspective()) { |
| // this guy will just call our drawPath() |
| draw.drawText((const char*)text, byteLength, x, y, paint); |
| } else { |
| SkDraw myDraw(draw); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| GrTextContext context(fContext, grPaint, draw.fExtMatrix); |
| myDraw.fProcs = this->initDrawForText(&context); |
| this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, |
| size_t byteLength, const SkScalar pos[], |
| SkScalar constY, int scalarsPerPos, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| if (draw.fMatrix->hasPerspective()) { |
| // this guy will just call our drawPath() |
| draw.drawPosText((const char*)text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| } else { |
| SkDraw myDraw(draw); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture act; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| &act, |
| &grPaint)) { |
| return; |
| } |
| GrTextContext context(fContext, grPaint, draw.fExtMatrix); |
| myDraw.fProcs = this->initDrawForText(&context); |
| this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, |
| size_t len, const SkPath& path, |
| const SkMatrix* m, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkASSERT(draw.fDevice == this); |
| draw.drawTextOnPath((const char*)text, len, path, m, paint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { |
| if (!paint.isLCDRenderText()) { |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| if (paint.getShader() || |
| paint.getXfermode() || // unless its srcover |
| paint.getMaskFilter() || |
| paint.getRasterizer() || |
| paint.getColorFilter() || |
| paint.getPathEffect() || |
| paint.isFakeBoldText() || |
| paint.getStyle() != SkPaint::kFill_Style) { |
| // turn off lcd |
| flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; |
| flags->fHinting = paint.getHinting(); |
| return true; |
| } |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| void SkGpuDevice::flush() { |
| DO_DEFERRED_CLEAR; |
| fContext->resolveRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkGpuDevice::TexCache SkGpuDevice::lockCachedTexture( |
| const SkBitmap& bitmap, |
| const GrSamplerState* sampler) { |
| GrContext::TextureCacheEntry entry; |
| GrContext* ctx = this->context(); |
| |
| if (!bitmap.isVolatile()) { |
| uint64_t key = bitmap.getGenerationID(); |
| key |= ((uint64_t) bitmap.pixelRefOffset()) << 32; |
| |
| GrTextureDesc desc; |
| desc.fWidth = bitmap.width(); |
| desc.fHeight = bitmap.height(); |
| desc.fConfig = SkGr::BitmapConfig2PixelConfig(bitmap.config()); |
| desc.fClientCacheID = key; |
| |
| entry = ctx->findAndLockTexture(desc, sampler); |
| if (NULL == entry.texture()) { |
| entry = sk_gr_create_bitmap_texture(ctx, key, sampler, |
| bitmap); |
| } |
| } else { |
| entry = sk_gr_create_bitmap_texture(ctx, kUncached_CacheID, |
| sampler, bitmap); |
| } |
| if (NULL == entry.texture()) { |
| GrPrintf("---- failed to create texture for cache [%d %d]\n", |
| bitmap.width(), bitmap.height()); |
| } |
| return entry; |
| } |
| |
| void SkGpuDevice::unlockCachedTexture(TexCache cache) { |
| this->context()->unlockTexture(cache); |
| } |
| |
| bool SkGpuDevice::isBitmapInTextureCache(const SkBitmap& bitmap, |
| const GrSamplerState& sampler) const { |
| uint64_t key = bitmap.getGenerationID(); |
| key |= ((uint64_t) bitmap.pixelRefOffset()) << 32; |
| |
| GrTextureDesc desc; |
| desc.fWidth = bitmap.width(); |
| desc.fHeight = bitmap.height(); |
| desc.fConfig = SkGr::BitmapConfig2PixelConfig(bitmap.config()); |
| desc.fClientCacheID = key; |
| |
| return this->context()->isTextureInCache(desc, &sampler); |
| } |
| |
| |
| SkDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config, |
| int width, int height, |
| bool isOpaque, |
| Usage usage) { |
| GrTextureDesc desc; |
| desc.fConfig = fRenderTarget->config(); |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fSampleCnt = fRenderTarget->numSamples(); |
| |
| GrContext::TextureCacheEntry cacheEntry; |
| GrTexture* texture; |
| SkAutoTUnref<GrTexture> tunref; |
| // Skia's convention is to only clear a device if it is non-opaque. |
| bool needClear = !isOpaque; |
| |
| #if CACHE_COMPATIBLE_DEVICE_TEXTURES |
| // layers are never draw in repeat modes, so we can request an approx |
| // match and ignore any padding. |
| GrContext::ScratchTexMatch matchType = (kSaveLayer_Usage == usage) ? |
| GrContext::kApprox_ScratchTexMatch : |
| GrContext::kExact_ScratchTexMatch; |
| cacheEntry = fContext->lockScratchTexture(desc, matchType); |
| texture = cacheEntry.texture(); |
| #else |
| tunref.reset(fContext->createUncachedTexture(desc, NULL, 0)); |
| texture = tunref.get(); |
| #endif |
| if (texture) { |
| return SkNEW_ARGS(SkGpuDevice,(fContext, |
| texture, |
| cacheEntry, |
| needClear)); |
| } else { |
| GrPrintf("---- failed to create compatible device texture [%d %d]\n", |
| width, height); |
| return NULL; |
| } |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, |
| GrTexture* texture, |
| TexCache cacheEntry, |
| bool needClear) |
| : SkDevice(make_bitmap(context, texture->asRenderTarget())) |
| , fClipStack(NULL) { |
| GrAssert(texture && texture->asRenderTarget()); |
| GrAssert(NULL == cacheEntry.texture() || texture == cacheEntry.texture()); |
| this->initFromRenderTarget(context, texture->asRenderTarget()); |
| fCache = cacheEntry; |
| fNeedClear = needClear; |
| } |
| |