blob: d4b4c7f4f033fe2ebd9cc4e43cc7afb5ac4645ce [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/v1/SurfaceDrawContext_v1.h"
#include "include/core/SkDrawable.h"
#include "include/core/SkVertices.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/private/GrImageContext.h"
#include "include/private/SkShadowFlags.h"
#include "include/private/SkVx.h"
#include "include/utils/SkShadowUtils.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkDrawProcs.h"
#include "src/core/SkDrawShadowInfo.h"
#include "src/core/SkGlyphRunPainter.h"
#include "src/core/SkLatticeIter.h"
#include "src/core/SkMatrixPriv.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkRRectPriv.h"
#include "src/gpu/GrAppliedClip.h"
#include "src/gpu/GrAttachment.h"
#include "src/gpu/GrBlurUtils.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrColor.h"
#include "src/gpu/GrDataUtils.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/GrImageContextPriv.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/GrStencilSettings.h"
#include "src/gpu/GrStyle.h"
#include "src/gpu/GrTracing.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/gpu/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/effects/GrDisableColorXP.h"
#include "src/gpu/effects/GrRRectEffect.h"
#include "src/gpu/effects/GrTextureEffect.h"
#include "src/gpu/geometry/GrQuad.h"
#include "src/gpu/geometry/GrQuadUtils.h"
#include "src/gpu/geometry/GrStyledShape.h"
#include "src/gpu/ops/GrClearOp.h"
#include "src/gpu/ops/GrDrawAtlasOp.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "src/gpu/ops/GrDrawVerticesOp.h"
#include "src/gpu/ops/GrDrawableOp.h"
#include "src/gpu/ops/GrFillRRectOp.h"
#include "src/gpu/ops/GrFillRectOp.h"
#include "src/gpu/ops/GrLatticeOp.h"
#include "src/gpu/ops/GrOp.h"
#include "src/gpu/ops/GrOvalOpFactory.h"
#include "src/gpu/ops/GrRegionOp.h"
#include "src/gpu/ops/GrShadowRRectOp.h"
#include "src/gpu/ops/GrStrokeRectOp.h"
#include "src/gpu/ops/GrTextureOp.h"
#include "src/gpu/tessellate/GrTessellationPathRenderer.h"
#include "src/gpu/text/GrSDFTControl.h"
#include "src/gpu/text/GrTextBlobCache.h"
#if SK_GPU_V1
#include "src/gpu/GrPathRenderer.h"
#endif
#define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this->drawingManager()->getContext())
#define ASSERT_SINGLE_OWNER GR_ASSERT_SINGLE_OWNER(this->singleOwner())
#define RETURN_IF_ABANDONED if (fContext->abandoned()) { return; }
#define RETURN_FALSE_IF_ABANDONED if (fContext->abandoned()) { return false; }
//////////////////////////////////////////////////////////////////////////////
namespace {
void op_bounds(SkRect* bounds, const GrOp* op) {
*bounds = op->bounds();
if (op->hasZeroArea()) {
if (op->hasAABloat()) {
bounds->outset(0.5f, 0.5f);
} else {
// We don't know which way the particular GPU will snap lines or points at integer
// coords. So we ensure that the bounds is large enough for either snap.
SkRect before = *bounds;
bounds->roundOut(bounds);
if (bounds->fLeft == before.fLeft) {
bounds->fLeft -= 1;
}
if (bounds->fTop == before.fTop) {
bounds->fTop -= 1;
}
if (bounds->fRight == before.fRight) {
bounds->fRight += 1;
}
if (bounds->fBottom == before.fBottom) {
bounds->fBottom += 1;
}
}
}
}
} // anonymous namespace
namespace skgpu::v1 {
using DoSimplify = GrStyledShape::DoSimplify;
class AutoCheckFlush {
public:
AutoCheckFlush(GrDrawingManager* drawingManager) : fDrawingManager(drawingManager) {
SkASSERT(fDrawingManager);
}
~AutoCheckFlush() { fDrawingManager->flushIfNecessary(); }
private:
GrDrawingManager* fDrawingManager;
};
std::unique_ptr<SurfaceDrawContext> SurfaceDrawContext::Make(GrRecordingContext* rContext,
GrColorType colorType,
sk_sp<GrSurfaceProxy> proxy,
sk_sp<SkColorSpace> colorSpace,
GrSurfaceOrigin origin,
const SkSurfaceProps& surfaceProps,
bool flushTimeOpsTask) {
if (!rContext || !proxy) {
return nullptr;
}
const GrBackendFormat& format = proxy->backendFormat();
GrSwizzle readSwizzle, writeSwizzle;
if (colorType != GrColorType::kUnknown) {
readSwizzle = rContext->priv().caps()->getReadSwizzle(format, colorType);
writeSwizzle = rContext->priv().caps()->getWriteSwizzle(format, colorType);
}
GrSurfaceProxyView readView ( proxy, origin, readSwizzle);
GrSurfaceProxyView writeView(std::move(proxy), origin, writeSwizzle);
return std::make_unique<SurfaceDrawContext>(rContext,
std::move(readView),
std::move(writeView),
colorType,
std::move(colorSpace),
surfaceProps,
flushTimeOpsTask);
}
std::unique_ptr<SurfaceDrawContext> SurfaceDrawContext::Make(
GrRecordingContext* rContext,
sk_sp<SkColorSpace> colorSpace,
SkBackingFit fit,
SkISize dimensions,
const GrBackendFormat& format,
int sampleCnt,
GrMipmapped mipMapped,
GrProtected isProtected,
GrSwizzle readSwizzle,
GrSwizzle writeSwizzle,
GrSurfaceOrigin origin,
SkBudgeted budgeted,
const SkSurfaceProps& surfaceProps) {
// It is probably not necessary to check if the context is abandoned here since uses of the
// SurfaceDrawContext which need the context will mostly likely fail later on without an
// issue. However having this hear adds some reassurance in case there is a path doesn't handle
// an abandoned context correctly. It also lets us early out of some extra work.
if (rContext->abandoned()) {
return nullptr;
}
sk_sp<GrTextureProxy> proxy = rContext->priv().proxyProvider()->createProxy(
format,
dimensions,
GrRenderable::kYes,
sampleCnt,
mipMapped,
fit,
budgeted,
isProtected);
if (!proxy) {
return nullptr;
}
GrSurfaceProxyView readView ( proxy, origin, readSwizzle);
GrSurfaceProxyView writeView(std::move(proxy), origin, writeSwizzle);
auto sdc = std::make_unique<SurfaceDrawContext>(rContext,
std::move(readView),
std::move(writeView),
GrColorType::kUnknown,
std::move(colorSpace),
surfaceProps);
sdc->discard();
return sdc;
}
std::unique_ptr<SurfaceDrawContext> SurfaceDrawContext::Make(
GrRecordingContext* rContext,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
SkBackingFit fit,
SkISize dimensions,
const SkSurfaceProps& surfaceProps,
int sampleCnt,
GrMipmapped mipMapped,
GrProtected isProtected,
GrSurfaceOrigin origin,
SkBudgeted budgeted) {
auto format = rContext->priv().caps()->getDefaultBackendFormat(colorType, GrRenderable::kYes);
if (!format.isValid()) {
return nullptr;
}
sk_sp<GrTextureProxy> proxy = rContext->priv().proxyProvider()->createProxy(format,
dimensions,
GrRenderable::kYes,
sampleCnt,
mipMapped,
fit,
budgeted,
isProtected);
if (!proxy) {
return nullptr;
}
return SurfaceDrawContext::Make(rContext,
colorType,
std::move(proxy),
std::move(colorSpace),
origin,
surfaceProps);
}
std::unique_ptr<SurfaceDrawContext> SurfaceDrawContext::MakeWithFallback(
GrRecordingContext* rContext,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
SkBackingFit fit,
SkISize dimensions,
const SkSurfaceProps& surfaceProps,
int sampleCnt,
GrMipmapped mipMapped,
GrProtected isProtected,
GrSurfaceOrigin origin,
SkBudgeted budgeted) {
const GrCaps* caps = rContext->priv().caps();
auto [ct, _] = caps->getFallbackColorTypeAndFormat(colorType, sampleCnt);
if (ct == GrColorType::kUnknown) {
return nullptr;
}
return SurfaceDrawContext::Make(rContext, ct, colorSpace, fit, dimensions, surfaceProps,
sampleCnt, mipMapped, isProtected, origin, budgeted);
}
std::unique_ptr<SurfaceDrawContext> SurfaceDrawContext::MakeFromBackendTexture(
GrRecordingContext* rContext,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const GrBackendTexture& tex,
int sampleCnt,
GrSurfaceOrigin origin,
const SkSurfaceProps& surfaceProps,
sk_sp<GrRefCntedCallback> releaseHelper) {
SkASSERT(sampleCnt > 0);
sk_sp<GrTextureProxy> proxy(rContext->priv().proxyProvider()->wrapRenderableBackendTexture(
tex, sampleCnt, kBorrow_GrWrapOwnership, GrWrapCacheable::kNo,
std::move(releaseHelper)));
if (!proxy) {
return nullptr;
}
return SurfaceDrawContext::Make(rContext, colorType, std::move(proxy), std::move(colorSpace),
origin, surfaceProps);
}
// In MDB mode the reffing of the 'getLastOpsTask' call's result allows in-progress
// GrOpsTask to be picked up and added to by SurfaceDrawContexts lower in the call
// stack. When this occurs with a closed GrOpsTask, a new one will be allocated
// when the surfaceDrawContext attempts to use it (via getOpsTask).
SurfaceDrawContext::SurfaceDrawContext(GrRecordingContext* rContext,
GrSurfaceProxyView readView,
GrSurfaceProxyView writeView,
GrColorType colorType,
sk_sp<SkColorSpace> colorSpace,
const SkSurfaceProps& surfaceProps,
bool flushTimeOpsTask)
: SurfaceFillContext(rContext,
std::move(readView),
std::move(writeView),
{colorType, kPremul_SkAlphaType, std::move(colorSpace)},
flushTimeOpsTask)
, fSurfaceProps(surfaceProps)
, fCanUseDynamicMSAA(
(fSurfaceProps.flags() & SkSurfaceProps::kDynamicMSAA_Flag) &&
rContext->priv().caps()->supportsDynamicMSAA(this->asRenderTargetProxy()))
, fGlyphPainter(*this) {
SkDEBUGCODE(this->validate();)
}
SurfaceDrawContext::~SurfaceDrawContext() {
ASSERT_SINGLE_OWNER
}
void SurfaceDrawContext::willReplaceOpsTask(GrOpsTask* prevTask, GrOpsTask* nextTask) {
if (prevTask && fNeedsStencil) {
// Store the stencil values in memory upon completion of fOpsTask.
prevTask->setMustPreserveStencil();
// Reload the stencil buffer content at the beginning of newOpsTask.
// FIXME: Could the topo sort insert a task between these two that modifies the stencil
// values?
nextTask->setInitialStencilContent(GrOpsTask::StencilContent::kPreserved);
}
#if GR_GPU_STATS && GR_TEST_UTILS
if (fCanUseDynamicMSAA) {
fContext->priv().dmsaaStats().fNumRenderPasses++;
}
#endif
}
inline GrAAType SurfaceDrawContext::chooseAAType(GrAA aa) {
if (fCanUseDynamicMSAA) {
// Always trigger DMSAA when it's available. The coverage ops that know how to handle both
// single and multisample targets without popping will do so without calling chooseAAType.
return GrAAType::kMSAA;
}
if (GrAA::kNo == aa) {
// On some devices we cannot disable MSAA if it is enabled so we make the AA type reflect
// that.
if (this->numSamples() > 1 && !this->caps()->multisampleDisableSupport()) {
return GrAAType::kMSAA;
}
return GrAAType::kNone;
}
return (this->numSamples() > 1) ? GrAAType::kMSAA : GrAAType::kCoverage;
}
void SurfaceDrawContext::drawGlyphRunListNoCache(const GrClip* clip,
const SkMatrixProvider& viewMatrix,
const SkGlyphRunList& glyphRunList,
const SkPaint& paint) {
GrSDFTControl control =
fContext->priv().getSDFTControl(fSurfaceProps.isUseDeviceIndependentFonts());
const SkPoint drawOrigin = glyphRunList.origin();
SkMatrix drawMatrix = viewMatrix.localToDevice();
drawMatrix.preTranslate(drawOrigin.x(), drawOrigin.y());
GrSubRunAllocator* const alloc = this->subRunAlloc();
for (auto& glyphRun : glyphRunList) {
GrSubRunNoCachePainter painter{this, alloc, clip, viewMatrix, glyphRunList, paint};
// Make and add the text ops.
fGlyphPainter.processGlyphRun(glyphRun,
drawMatrix,
paint,
control,
&painter);
}
}
void SurfaceDrawContext::drawGlyphRunListWithCache(const GrClip* clip,
const SkMatrixProvider& viewMatrix,
const SkGlyphRunList& glyphRunList,
const SkPaint& paint) {
SkMatrix drawMatrix(viewMatrix.localToDevice());
drawMatrix.preTranslate(glyphRunList.origin().x(), glyphRunList.origin().y());
GrSDFTControl control =
this->recordingContext()->priv().getSDFTControl(
this->surfaceProps().isUseDeviceIndependentFonts());
auto [canCache, key] = GrTextBlob::Key::Make(glyphRunList,
paint,
fSurfaceProps,
this->colorInfo(),
drawMatrix,
control);
sk_sp<GrTextBlob> blob;
GrTextBlobCache* textBlobCache = fContext->priv().getTextBlobCache();
if (canCache) {
blob = textBlobCache->find(key);
}
if (blob == nullptr || !blob->canReuse(paint, drawMatrix)) {
if (blob != nullptr) {
// We have to remake the blob because changes may invalidate our masks.
// TODO we could probably get away with reuse most of the time if the pointer is unique,
// but we'd have to clear the SubRun information
textBlobCache->remove(blob.get());
}
blob = GrTextBlob::Make(glyphRunList, paint, drawMatrix, control, &fGlyphPainter);
if (canCache) {
blob->addKey(key);
// The blob may already have been created on a different thread. Use the first one
// that was there.
blob = textBlobCache->addOrReturnExisting(glyphRunList, blob);
}
}
for (const GrSubRun& subRun : blob->subRunList()) {
subRun.draw(clip, viewMatrix, glyphRunList, paint, this);
}
}
// choose to use the GrTextBlob cache or not.
bool gGrDrawTextNoCache = false;
void SurfaceDrawContext::drawGlyphRunList(const GrClip* clip,
const SkMatrixProvider& viewMatrix,
const SkGlyphRunList& glyphRunList,
const SkPaint& paint) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawGlyphRunList", fContext);
// Drawing text can cause us to do inline uploads. This is not supported for wrapped vulkan
// secondary command buffers because it would require stopping and starting a render pass which
// we don't have access to.
if (this->wrapsVkSecondaryCB()) {
return;
}
if (gGrDrawTextNoCache || glyphRunList.blob() == nullptr) {
// If the glyphRunList does not have an associated text blob, then it was created by one of
// the direct draw APIs (drawGlyphs, etc.). There is no need to create a GrTextBlob just
// build the sub run directly and place it in the op.
this->drawGlyphRunListNoCache(clip, viewMatrix, glyphRunList, paint);
} else {
this->drawGlyphRunListWithCache(clip, viewMatrix, glyphRunList, paint);
}
}
void SurfaceDrawContext::drawPaint(const GrClip* clip,
GrPaint&& paint,
const SkMatrix& viewMatrix) {
// Start with the render target, since that is the maximum content we could possibly fill.
// drawFilledQuad() will automatically restrict it to clip bounds for us if possible.
if (!paint.numTotalFragmentProcessors()) {
// The paint is trivial so we won't need to use local coordinates, so skip calculating the
// inverse view matrix.
SkRect r = this->asSurfaceProxy()->getBoundsRect();
this->fillRectToRect(clip, std::move(paint), GrAA::kNo, SkMatrix::I(), r, r);
} else {
// Use the inverse view matrix to arrive at appropriate local coordinates for the paint.
SkMatrix localMatrix;
if (!viewMatrix.invert(&localMatrix)) {
return;
}
SkIRect bounds = SkIRect::MakeSize(this->asSurfaceProxy()->dimensions());
this->fillPixelsWithLocalMatrix(clip, std::move(paint), bounds, localMatrix);
}
}
enum class SurfaceDrawContext::QuadOptimization {
// The rect to draw doesn't intersect clip or render target, so no draw op should be added
kDiscarded,
// The rect to draw was converted to some other op and appended to the oplist, so no additional
// op is necessary. Currently this can convert it to a clear op or a rrect op. Only valid if
// a constColor is provided.
kSubmitted,
// The clip was folded into the device quad, with updated edge flags and local coords, and
// caller is responsible for adding an appropriate op.
kClipApplied,
// No change to clip, but quad updated to better fit clip/render target, and caller is
// responsible for adding an appropriate op.
kCropped
};
SurfaceDrawContext::QuadOptimization SurfaceDrawContext::attemptQuadOptimization(
const GrClip* clip, const GrUserStencilSettings* stencilSettings, GrAA* aa, DrawQuad* quad,
GrPaint* paint) {
// Optimization requirements:
// 1. kDiscard applies when clip bounds and quad bounds do not intersect
// 2a. kSubmitted applies when constColor and final geom is pixel aligned rect;
// pixel aligned rect requires rect clip and (rect quad or quad covers clip) OR
// 2b. kSubmitted applies when constColor and rrect clip and quad covers clip
// 4. kClipApplied applies when rect clip and (rect quad or quad covers clip)
// 5. kCropped in all other scenarios (although a crop may be a no-op)
const SkPMColor4f* constColor = nullptr;
SkPMColor4f paintColor;
if (!stencilSettings && paint && !paint->hasCoverageFragmentProcessor() &&
paint->isConstantBlendedColor(&paintColor)) {
// Only consider clears/rrects when it's easy to guarantee 100% fill with single color
constColor = &paintColor;
}
// Save the old AA flags since CropToRect will modify 'quad' and if kCropped is returned, it's
// better to just keep the old flags instead of introducing mixed edge flags.
GrQuadAAFlags oldFlags = quad->fEdgeFlags;
// Use the logical size of the render target, which allows for "fullscreen" clears even if
// the render target has an approximate backing fit
SkRect rtRect = this->asSurfaceProxy()->getBoundsRect();
SkRect drawBounds = quad->fDevice.bounds();
if (!quad->fDevice.isFinite() || drawBounds.isEmpty() ||
GrClip::IsOutsideClip(rtRect, drawBounds)) {
return QuadOptimization::kDiscarded;
} else if (GrQuadUtils::WillUseHairline(quad->fDevice, GrAAType::kCoverage, quad->fEdgeFlags)) {
// Don't try to apply the clip early if we know rendering will use hairline methods, as this
// has an effect on the op bounds not otherwise taken into account in this function.
return QuadOptimization::kCropped;
}
auto conservativeCrop = [&]() {
static constexpr int kLargeDrawLimit = 15000;
// Crop the quad to the render target. This doesn't change the visual results of drawing but
// is meant to help numerical stability for excessively large draws.
if (drawBounds.width() > kLargeDrawLimit || drawBounds.height() > kLargeDrawLimit) {
GrQuadUtils::CropToRect(rtRect, *aa, quad, /* compute local */ !constColor);
}
};
bool simpleColor = !stencilSettings && constColor;
GrClip::PreClipResult result = clip ? clip->preApply(drawBounds, *aa)
: GrClip::PreClipResult(GrClip::Effect::kUnclipped);
switch(result.fEffect) {
case GrClip::Effect::kClippedOut:
return QuadOptimization::kDiscarded;
case GrClip::Effect::kUnclipped:
if (!simpleColor) {
conservativeCrop();
return QuadOptimization::kClipApplied;
} else {
// Update result to store the render target bounds in order and then fall
// through to attempt the draw->native clear optimization
result = GrClip::PreClipResult(SkRRect::MakeRect(rtRect), *aa);
}
break;
case GrClip::Effect::kClipped:
if (!result.fIsRRect || (stencilSettings && result.fAA != *aa) ||
(!result.fRRect.isRect() && !simpleColor)) {
// The clip and draw state are too complicated to try and reduce
conservativeCrop();
return QuadOptimization::kCropped;
} // Else fall through to attempt to combine the draw and clip geometry together
break;
default:
SkUNREACHABLE;
}
// If we reached here, we know we're an axis-aligned clip that is either a rect or a round rect,
// so we can potentially combine it with the draw geometry so that no clipping is needed.
SkASSERT(result.fEffect == GrClip::Effect::kClipped && result.fIsRRect);
SkRect clippedBounds = result.fRRect.getBounds();
clippedBounds.intersect(rtRect);
if (!drawBounds.intersect(clippedBounds)) {
// Our fractional bounds aren't actually inside the clip. GrClip::preApply() can sometimes
// think in terms of rounded-out bounds. Discard the draw.
return QuadOptimization::kDiscarded;
}
// Guard against the clipped draw turning into a hairline draw after intersection
if (drawBounds.width() < 1.f || drawBounds.height() < 1.f) {
return QuadOptimization::kCropped;
}
if (result.fRRect.isRect()) {
// No rounded corners, so we might be able to become a native clear or we might be able to
// modify geometry and edge flags to represent intersected shape of clip and draw.
if (GrQuadUtils::CropToRect(clippedBounds, result.fAA, quad,
/*compute local*/ !constColor)) {
if (simpleColor && quad->fDevice.quadType() == GrQuad::Type::kAxisAligned) {
// Clear optimization is possible
drawBounds = quad->fDevice.bounds();
if (drawBounds.contains(rtRect)) {
// Fullscreen clear
this->clear(*constColor);
return QuadOptimization::kSubmitted;
} else if (GrClip::IsPixelAligned(drawBounds) &&
drawBounds.width() > 256 && drawBounds.height() > 256) {
// Scissor + clear (round shouldn't do anything since we are pixel aligned)
SkIRect scissorRect;
drawBounds.round(&scissorRect);
this->clear(scissorRect, *constColor);
return QuadOptimization::kSubmitted;
}
}
// else the draw and clip were combined so just update the AA to reflect combination
if (*aa == GrAA::kNo && result.fAA == GrAA::kYes &&
quad->fEdgeFlags != GrQuadAAFlags::kNone) {
// The clip was anti-aliased and now the draw needs to be upgraded to AA to
// properly reflect the smooth edge of the clip.
*aa = GrAA::kYes;
}
// We intentionally do not downgrade AA here because we don't know if we need to
// preserve MSAA (see GrQuadAAFlags docs). But later in the pipeline, the ops can
// use GrResolveAATypeForQuad() to turn off coverage AA when all flags are off.
// deviceQuad is exactly the intersection of original quad and clip, so it can be
// drawn with no clip (submitted by caller)
return QuadOptimization::kClipApplied;
}
} else {
// Rounded corners and constant filled color (limit ourselves to solid colors because
// there is no way to use custom local coordinates with drawRRect).
SkASSERT(simpleColor);
if (GrQuadUtils::CropToRect(clippedBounds, result.fAA, quad,
/* compute local */ false) &&
quad->fDevice.quadType() == GrQuad::Type::kAxisAligned &&
quad->fDevice.bounds().contains(clippedBounds)) {
// Since the cropped quad became a rectangle which covered the bounds of the rrect,
// we can draw the rrect directly and ignore the edge flags
this->drawRRect(nullptr, std::move(*paint), result.fAA, SkMatrix::I(), result.fRRect,
GrStyle::SimpleFill());
return QuadOptimization::kSubmitted;
}
}
// The quads have been updated to better fit the clip bounds, but can't get rid of
// the clip entirely
quad->fEdgeFlags = oldFlags;
return QuadOptimization::kCropped;
}
void SurfaceDrawContext::drawFilledQuad(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
DrawQuad* quad,
const GrUserStencilSettings* ss) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawFilledQuad", fContext);
AutoCheckFlush acf(this->drawingManager());
QuadOptimization opt = this->attemptQuadOptimization(clip, ss, &aa, quad, &paint);
if (opt >= QuadOptimization::kClipApplied) {
// These optimizations require caller to add an op themselves
const GrClip* finalClip = opt == QuadOptimization::kClipApplied ? nullptr : clip;
GrAAType aaType;
if (ss) {
aaType = (aa == GrAA::kYes) ? GrAAType::kMSAA : GrAAType::kNone;
} else if (fCanUseDynamicMSAA && aa == GrAA::kNo) {
// The SkGpuDevice ensures GrAA is always kYes when using dmsaa. If the caller calls
// into here with GrAA::kNo, trust that they know what they're doing and that the
// rendering will be equal with or without msaa.
aaType = GrAAType::kNone;
} else {
aaType = this->chooseAAType(aa);
}
this->addDrawOp(finalClip, GrFillRectOp::Make(fContext, std::move(paint), aaType,
quad, ss));
}
// All other optimization levels were completely handled inside attempt(), so no extra op needed
}
void SurfaceDrawContext::drawTexture(const GrClip* clip,
GrSurfaceProxyView view,
SkAlphaType srcAlphaType,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
SkBlendMode blendMode,
const SkPMColor4f& color,
const SkRect& srcRect,
const SkRect& dstRect,
GrAA aa,
GrQuadAAFlags edgeAA,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> colorSpaceXform) {
// If we are using dmsaa then go through GrFillRRectOp (via fillRectToRect).
if ((this->alwaysAntialias() || this->caps()->reducedShaderMode()) && aa == GrAA::kYes) {
GrPaint paint;
paint.setColor4f(color);
std::unique_ptr<GrFragmentProcessor> fp;
if (constraint == SkCanvas::kStrict_SrcRectConstraint) {
fp = GrTextureEffect::MakeSubset(view, srcAlphaType, SkMatrix::I(),
GrSamplerState(filter, mm), srcRect,
*this->caps());
} else {
fp = GrTextureEffect::Make(view, srcAlphaType, SkMatrix::I(), filter, mm);
}
if (colorSpaceXform) {
fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(colorSpaceXform));
}
fp = GrBlendFragmentProcessor::Make(std::move(fp), nullptr, SkBlendMode::kModulate);
paint.setColorFragmentProcessor(std::move(fp));
if (blendMode != SkBlendMode::kSrcOver) {
paint.setXPFactory(SkBlendMode_AsXPFactory(blendMode));
}
this->fillRectToRect(clip, std::move(paint), GrAA::kYes, viewMatrix, dstRect, srcRect);
return;
}
const SkRect* subset = constraint == SkCanvas::kStrict_SrcRectConstraint ?
&srcRect : nullptr;
DrawQuad quad{GrQuad::MakeFromRect(dstRect, viewMatrix), GrQuad(srcRect), edgeAA};
this->drawTexturedQuad(clip, std::move(view), srcAlphaType, std::move(colorSpaceXform), filter,
mm, color, blendMode, aa, &quad, subset);
}
void SurfaceDrawContext::drawTexturedQuad(const GrClip* clip,
GrSurfaceProxyView proxyView,
SkAlphaType srcAlphaType,
sk_sp<GrColorSpaceXform> textureXform,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
const SkPMColor4f& color,
SkBlendMode blendMode,
GrAA aa,
DrawQuad* quad,
const SkRect* subset) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
SkASSERT(proxyView.asTextureProxy());
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawTexturedQuad", fContext);
AutoCheckFlush acf(this->drawingManager());
// Functionally this is very similar to drawFilledQuad except that there's no constColor to
// enable the kSubmitted optimizations, no stencil settings support, and its a GrTextureOp.
QuadOptimization opt = this->attemptQuadOptimization(clip, nullptr/*stencil*/, &aa, quad,
nullptr/*paint*/);
SkASSERT(opt != QuadOptimization::kSubmitted);
if (opt != QuadOptimization::kDiscarded) {
// And the texture op if not discarded
const GrClip* finalClip = opt == QuadOptimization::kClipApplied ? nullptr : clip;
GrAAType aaType = this->chooseAAType(aa);
auto clampType = GrColorTypeClampType(this->colorInfo().colorType());
auto saturate = clampType == GrClampType::kManual ? GrTextureOp::Saturate::kYes
: GrTextureOp::Saturate::kNo;
// Use the provided subset, although hypothetically we could detect that the cropped local
// quad is sufficiently inside the subset and the constraint could be dropped.
this->addDrawOp(finalClip,
GrTextureOp::Make(fContext, std::move(proxyView), srcAlphaType,
std::move(textureXform), filter, mm, color, saturate,
blendMode, aaType, quad, subset));
}
}
void SurfaceDrawContext::drawRect(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& rect,
const GrStyle* style) {
if (!style) {
style = &GrStyle::SimpleFill();
}
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawRect", fContext);
// Path effects should've been devolved to a path in SkGpuDevice
SkASSERT(!style->pathEffect());
AutoCheckFlush acf(this->drawingManager());
const SkStrokeRec& stroke = style->strokeRec();
if (stroke.getStyle() == SkStrokeRec::kFill_Style) {
// Fills the rect, using rect as its own local coordinates
this->fillRectToRect(clip, std::move(paint), aa, viewMatrix, rect, rect);
return;
} else if ((stroke.getStyle() == SkStrokeRec::kStroke_Style ||
stroke.getStyle() == SkStrokeRec::kHairline_Style) &&
rect.width() &&
rect.height() &&
!this->caps()->reducedShaderMode()) {
// Only use the StrokeRectOp for non-empty rectangles. Empty rectangles will be processed by
// GrStyledShape to handle stroke caps and dashing properly.
//
// http://skbug.com/12206 -- there is a double-blend issue with the bevel version of
// AAStrokeRectOp, and if we increase the AA bloat for MSAA it becomes more pronounced.
// Don't use the bevel version with DMSAA.
GrAAType aaType = (fCanUseDynamicMSAA &&
stroke.getJoin() == SkPaint::kMiter_Join &&
stroke.getMiter() >= SK_ScalarSqrt2) ? GrAAType::kCoverage
: this->chooseAAType(aa);
GrOp::Owner op = GrStrokeRectOp::Make(
fContext, std::move(paint), aaType, viewMatrix, rect, stroke);
// op may be null if the stroke is not supported or if using coverage aa and the view matrix
// does not preserve rectangles.
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
}
assert_alive(paint);
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix,
GrStyledShape(rect, *style, DoSimplify::kNo));
}
void SurfaceDrawContext::fillRectToRect(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& rectToDraw,
const SkRect& localRect) {
DrawQuad quad{GrQuad::MakeFromRect(rectToDraw, viewMatrix), GrQuad(localRect),
aa == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone};
// If we are using dmsaa then attempt to draw the rect with GrFillRRectOp.
if ((fContext->priv().caps()->reducedShaderMode() || this->alwaysAntialias()) &&
this->caps()->drawInstancedSupport() &&
aa == GrAA::kYes) { // If aa is kNo when using dmsaa, the rect is axis aligned. Don't use
// GrFillRRectOp because it might require dual source blending.
// http://skbug.com/11756
QuadOptimization opt = this->attemptQuadOptimization(clip, nullptr/*stencil*/, &aa, &quad,
&paint);
if (opt < QuadOptimization::kClipApplied) {
// The optimization was completely handled inside attempt().
return;
}
SkRect croppedRect, croppedLocal{};
const GrClip* optimizedClip = clip;
if (clip && viewMatrix.isScaleTranslate() && quad.fDevice.asRect(&croppedRect) &&
(!paint.usesLocalCoords() || quad.fLocal.asRect(&croppedLocal))) {
// The cropped quad is still a rect, and our view matrix preserves rects. Map it back
// to pre-matrix space.
SkMatrix inverse;
if (!viewMatrix.invert(&inverse)) {
return;
}
SkASSERT(inverse.rectStaysRect());
inverse.mapRect(&croppedRect);
if (opt == QuadOptimization::kClipApplied) {
optimizedClip = nullptr;
}
} else {
// Even if attemptQuadOptimization gave us an optimized quad, GrFillRRectOp needs a rect
// in pre-matrix space, so use the original rect. Also preserve the original clip.
croppedRect = rectToDraw;
croppedLocal = localRect;
}
if (auto op = GrFillRRectOp::Make(fContext, this->arenaAlloc(), std::move(paint),
viewMatrix, SkRRect::MakeRect(croppedRect), croppedLocal,
GrAA::kYes)) {
this->addDrawOp(optimizedClip, std::move(op));
return;
}
}
assert_alive(paint);
this->drawFilledQuad(clip, std::move(paint), aa, &quad);
}
void SurfaceDrawContext::drawQuadSet(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const GrQuadSetEntry quads[],
int cnt) {
GrAAType aaType = this->chooseAAType(aa);
GrFillRectOp::AddFillRectOps(this, clip, fContext, std::move(paint), aaType, viewMatrix,
quads, cnt);
}
int SurfaceDrawContext::maxWindowRectangles() const {
return this->asRenderTargetProxy()->maxWindowRectangles(*this->caps());
}
GrOpsTask::CanDiscardPreviousOps SurfaceDrawContext::canDiscardPreviousOpsOnFullClear() const {
#if GR_TEST_UTILS
if (fPreserveOpsOnFullClear_TestingOnly) {
return GrOpsTask::CanDiscardPreviousOps::kNo;
}
#endif
// Regardless of how the clear is implemented (native clear or a fullscreen quad), all prior ops
// would normally be overwritten. The one exception is if the render target context is marked as
// needing a stencil buffer then there may be a prior op that writes to the stencil buffer.
// Although the clear will ignore the stencil buffer, following draw ops may not so we can't get
// rid of all the preceding ops. Beware! If we ever add any ops that have a side effect beyond
// modifying the stencil buffer we will need a more elaborate tracking system (skbug.com/7002).
return GrOpsTask::CanDiscardPreviousOps(!fNeedsStencil);
}
void SurfaceDrawContext::setNeedsStencil() {
// Don't clear stencil until after we've set fNeedsStencil. This ensures we don't loop forever
// in the event that there are driver bugs and we need to clear as a draw.
bool hasInitializedStencil = fNeedsStencil;
fNeedsStencil = true;
if (!hasInitializedStencil) {
this->asRenderTargetProxy()->setNeedsStencil();
if (this->caps()->performStencilClearsAsDraws()) {
// There is a driver bug with clearing stencil. We must use an op to manually clear the
// stencil buffer before the op that required 'setNeedsStencil'.
this->internalStencilClear(nullptr, /* inside mask */ false);
} else {
this->getOpsTask()->setInitialStencilContent(
GrOpsTask::StencilContent::kUserBitsCleared);
}
}
}
void SurfaceDrawContext::internalStencilClear(const SkIRect* scissor, bool insideStencilMask) {
this->setNeedsStencil();
GrScissorState scissorState(this->asSurfaceProxy()->backingStoreDimensions());
if (scissor && !scissorState.set(*scissor)) {
// The requested clear region is off screen, so nothing to do.
return;
}
bool clearWithDraw = this->caps()->performStencilClearsAsDraws() ||
(scissorState.enabled() && this->caps()->performPartialClearsAsDraws());
if (clearWithDraw) {
const GrUserStencilSettings* ss = GrStencilSettings::SetClipBitSettings(insideStencilMask);
// Configure the paint to have no impact on the color buffer
GrPaint paint;
paint.setXPFactory(GrDisableColorXPFactory::Get());
this->addDrawOp(nullptr,
GrFillRectOp::MakeNonAARect(fContext, std::move(paint), SkMatrix::I(),
SkRect::Make(scissorState.rect()), ss));
} else {
this->addOp(GrClearOp::MakeStencilClip(fContext, scissorState, insideStencilMask));
}
}
bool SurfaceDrawContext::stencilPath(const GrHardClip* clip,
GrAA doStencilMSAA,
const SkMatrix& viewMatrix,
const SkPath& path) {
#if SK_GPU_V1
SkIRect clipBounds = clip ? clip->getConservativeBounds()
: SkIRect::MakeSize(this->dimensions());
GrStyledShape shape(path, GrStyledShape::DoSimplify::kNo);
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = fContext->priv().caps();
canDrawArgs.fProxy = this->asRenderTargetProxy();
canDrawArgs.fClipConservativeBounds = &clipBounds;
canDrawArgs.fViewMatrix = &viewMatrix;
canDrawArgs.fShape = &shape;
canDrawArgs.fPaint = nullptr;
canDrawArgs.fSurfaceProps = &fSurfaceProps;
canDrawArgs.fAAType = (doStencilMSAA == GrAA::kYes) ? GrAAType::kMSAA : GrAAType::kNone;
canDrawArgs.fHasUserStencilSettings = false;
GrPathRenderer* pr = this->drawingManager()->getPathRenderer(
canDrawArgs, false, GrPathRendererChain::DrawType::kStencil);
if (!pr) {
SkDebugf("WARNING: No path renderer to stencil path.\n");
return false;
}
GrPathRenderer::StencilPathArgs args;
args.fContext = fContext;
args.fSurfaceDrawContext = this;
args.fClip = clip;
args.fClipConservativeBounds = &clipBounds;
args.fViewMatrix = &viewMatrix;
args.fShape = &shape;
args.fDoStencilMSAA = doStencilMSAA;
pr->stencilPath(args);
return true;
#else
return false;
#endif // SK_GPU_V1
}
void SurfaceDrawContext::drawTextureSet(const GrClip* clip,
GrTextureSetEntry set[],
int cnt,
int proxyRunCnt,
GrSamplerState::Filter filter,
GrSamplerState::MipmapMode mm,
SkBlendMode mode,
GrAA aa,
SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> texXform) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawTextureSet", fContext);
// Create the minimum number of GrTextureOps needed to draw this set. Individual
// GrTextureOps can rebind the texture between draws thus avoiding GrPaint (re)creation.
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
auto clampType = GrColorTypeClampType(this->colorInfo().colorType());
auto saturate = clampType == GrClampType::kManual ? GrTextureOp::Saturate::kYes
: GrTextureOp::Saturate::kNo;
GrTextureOp::AddTextureSetOps(this, clip, fContext, set, cnt, proxyRunCnt, filter, mm, saturate,
mode, aaType, constraint, viewMatrix, std::move(texXform));
}
void SurfaceDrawContext::drawVertices(const GrClip* clip,
GrPaint&& paint,
const SkMatrixProvider& matrixProvider,
sk_sp<SkVertices> vertices,
GrPrimitiveType* overridePrimType,
const SkRuntimeEffect* effect) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawVertices", fContext);
AutoCheckFlush acf(this->drawingManager());
SkASSERT(vertices);
GrAAType aaType = fCanUseDynamicMSAA ? GrAAType::kMSAA : this->chooseAAType(GrAA::kNo);
GrOp::Owner op =
GrDrawVerticesOp::Make(fContext, std::move(paint), std::move(vertices), matrixProvider,
aaType, this->colorInfo().refColorSpaceXformFromSRGB(),
overridePrimType, effect);
this->addDrawOp(clip, std::move(op));
}
///////////////////////////////////////////////////////////////////////////////
void SurfaceDrawContext::drawAtlas(const GrClip* clip,
GrPaint&& paint,
const SkMatrix& viewMatrix,
int spriteCount,
const SkRSXform xform[],
const SkRect texRect[],
const SkColor colors[]) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawAtlas", fContext);
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(GrAA::kNo);
GrOp::Owner op = GrDrawAtlasOp::Make(fContext, std::move(paint), viewMatrix,
aaType, spriteCount, xform, texRect, colors);
this->addDrawOp(clip, std::move(op));
}
///////////////////////////////////////////////////////////////////////////////
void SurfaceDrawContext::drawRRect(const GrClip* origClip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRRect& rrect,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawRRect", fContext);
SkASSERT(!style.pathEffect()); // this should've been devolved to a path in SkGpuDevice
const SkStrokeRec& stroke = style.strokeRec();
if (stroke.getStyle() == SkStrokeRec::kFill_Style && rrect.isEmpty()) {
return;
}
const GrClip* clip = origClip;
// It is not uncommon to clip to a round rect and then draw that same round rect. Since our
// lower level clip code works from op bounds, which are SkRects, it doesn't detect that the
// clip can be ignored. The following test attempts to mitigate the stencil clip cost but only
// works for axis-aligned round rects. This also only works for filled rrects since the stroke
// width outsets beyond the rrect itself.
// TODO: skbug.com/10462 - There was mixed performance wins and regressions when this
// optimization was turned on outside of Android Framework. I (michaelludwig) believe this is
// do to the overhead in determining if an SkClipStack is just a rrect. Once that is improved,
// re-enable this and see if we avoid the regressions.
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
SkRRect devRRect;
if (clip && stroke.getStyle() == SkStrokeRec::kFill_Style &&
rrect.transform(viewMatrix, &devRRect)) {
GrClip::PreClipResult result = clip->preApply(devRRect.getBounds(), aa);
switch(result.fEffect) {
case GrClip::Effect::kClippedOut:
return;
case GrClip::Effect::kUnclipped:
clip = nullptr;
break;
case GrClip::Effect::kClipped:
// Currently there's no general-purpose rrect-to-rrect contains function, and if we
// got here, we know the devRRect's bounds aren't fully contained by the clip.
// Testing for equality between the two is a reasonable stop-gap for now.
if (result.fIsRRect && result.fRRect == devRRect) {
// NOTE: On the android framework, we allow this optimization even when the clip
// is non-AA and the draw is AA.
if (result.fAA == aa || (result.fAA == GrAA::kNo && aa == GrAA::kYes)) {
clip = nullptr;
}
}
break;
default:
SkUNREACHABLE;
}
}
#endif
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
GrOp::Owner op;
if (aaType == GrAAType::kCoverage &&
!fCanUseDynamicMSAA &&
!this->caps()->reducedShaderMode() &&
rrect.isSimple() &&
rrect.getSimpleRadii().fX == rrect.getSimpleRadii().fY &&
viewMatrix.rectStaysRect() && viewMatrix.isSimilarity()) {
// In specific cases we use a dedicated circular round rect op to try and get better perf.
assert_alive(paint);
op = GrOvalOpFactory::MakeCircularRRectOp(fContext, std::move(paint), viewMatrix, rrect,
stroke, this->caps()->shaderCaps());
}
if (!op && style.isSimpleFill()) {
assert_alive(paint);
op = GrFillRRectOp::Make(fContext, this->arenaAlloc(), std::move(paint), viewMatrix, rrect,
rrect.rect(), GrAA(aaType != GrAAType::kNone));
}
if (!op && (aaType == GrAAType::kCoverage || fCanUseDynamicMSAA)) {
assert_alive(paint);
op = GrOvalOpFactory::MakeRRectOp(
fContext, std::move(paint), viewMatrix, rrect, stroke, this->caps()->shaderCaps());
}
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
assert_alive(paint);
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix,
GrStyledShape(rrect, style, DoSimplify::kNo));
}
///////////////////////////////////////////////////////////////////////////////
bool SurfaceDrawContext::drawFastShadow(const GrClip* clip,
const SkMatrix& viewMatrix,
const SkPath& path,
const SkDrawShadowRec& rec) {
ASSERT_SINGLE_OWNER
if (fContext->abandoned()) {
return true;
}
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawFastShadow", fContext);
// check z plane
bool tiltZPlane = SkToBool(!SkScalarNearlyZero(rec.fZPlaneParams.fX) ||
!SkScalarNearlyZero(rec.fZPlaneParams.fY));
bool skipAnalytic = SkToBool(rec.fFlags & SkShadowFlags::kGeometricOnly_ShadowFlag);
if (tiltZPlane || skipAnalytic || !viewMatrix.rectStaysRect() || !viewMatrix.isSimilarity()) {
return false;
}
SkRRect rrect;
SkRect rect;
// we can only handle rects, circles, and simple rrects with circular corners
bool isRRect = path.isRRect(&rrect) && SkRRectPriv::IsNearlySimpleCircular(rrect) &&
rrect.getSimpleRadii().fX > SK_ScalarNearlyZero;
if (!isRRect &&
path.isOval(&rect) && SkScalarNearlyEqual(rect.width(), rect.height()) &&
rect.width() > SK_ScalarNearlyZero) {
rrect.setOval(rect);
isRRect = true;
}
if (!isRRect && path.isRect(&rect)) {
rrect.setRect(rect);
isRRect = true;
}
if (!isRRect) {
return false;
}
if (rrect.isEmpty()) {
return true;
}
AutoCheckFlush acf(this->drawingManager());
SkPoint3 devLightPos = rec.fLightPos;
bool directional = SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag);
if (!directional) {
// transform light
viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
}
// 1/scale
SkScalar devToSrcScale = viewMatrix.isScaleTranslate() ?
SkScalarInvert(SkScalarAbs(viewMatrix[SkMatrix::kMScaleX])) :
sk_float_rsqrt(viewMatrix[SkMatrix::kMScaleX] * viewMatrix[SkMatrix::kMScaleX] +
viewMatrix[SkMatrix::kMSkewX] * viewMatrix[SkMatrix::kMSkewX]);
SkScalar occluderHeight = rec.fZPlaneParams.fZ;
bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
if (SkColorGetA(rec.fAmbientColor) > 0) {
SkScalar devSpaceInsetWidth = SkDrawShadowMetrics::AmbientBlurRadius(occluderHeight);
const SkScalar umbraRecipAlpha = SkDrawShadowMetrics::AmbientRecipAlpha(occluderHeight);
const SkScalar devSpaceAmbientBlur = devSpaceInsetWidth * umbraRecipAlpha;
// Outset the shadow rrect to the border of the penumbra
SkScalar ambientPathOutset = devSpaceInsetWidth * devToSrcScale;
SkRRect ambientRRect;
SkRect outsetRect = rrect.rect().makeOutset(ambientPathOutset, ambientPathOutset);
// If the rrect was an oval then its outset will also be one.
// We set it explicitly to avoid errors.
if (rrect.isOval()) {
ambientRRect = SkRRect::MakeOval(outsetRect);
} else {
SkScalar outsetRad = SkRRectPriv::GetSimpleRadii(rrect).fX + ambientPathOutset;
ambientRRect = SkRRect::MakeRectXY(outsetRect, outsetRad, outsetRad);
}
GrColor ambientColor = SkColorToPremulGrColor(rec.fAmbientColor);
if (transparent) {
// set a large inset to force a fill
devSpaceInsetWidth = ambientRRect.width();
}
GrOp::Owner op = GrShadowRRectOp::Make(fContext,
ambientColor,
viewMatrix,
ambientRRect,
devSpaceAmbientBlur,
devSpaceInsetWidth);
if (op) {
this->addDrawOp(clip, std::move(op));
}
}
if (SkColorGetA(rec.fSpotColor) > 0) {
SkScalar devSpaceSpotBlur;
SkScalar spotScale;
SkVector spotOffset;
if (directional) {
SkDrawShadowMetrics::GetDirectionalParams(occluderHeight, devLightPos.fX,
devLightPos.fY, devLightPos.fZ,
rec.fLightRadius, &devSpaceSpotBlur,
&spotScale, &spotOffset);
} else {
SkDrawShadowMetrics::GetSpotParams(occluderHeight, devLightPos.fX, devLightPos.fY,
devLightPos.fZ, rec.fLightRadius,
&devSpaceSpotBlur, &spotScale, &spotOffset);
}
// handle scale of radius due to CTM
const SkScalar srcSpaceSpotBlur = devSpaceSpotBlur * devToSrcScale;
// Adjust translate for the effect of the scale.
spotOffset.fX += spotScale*viewMatrix[SkMatrix::kMTransX];
spotOffset.fY += spotScale*viewMatrix[SkMatrix::kMTransY];
// This offset is in dev space, need to transform it into source space.
SkMatrix ctmInverse;
if (viewMatrix.invert(&ctmInverse)) {
ctmInverse.mapPoints(&spotOffset, 1);
} else {
// Since the matrix is a similarity, this should never happen, but just in case...
SkDebugf("Matrix is degenerate. Will not render spot shadow correctly!\n");
SkASSERT(false);
}
// Compute the transformed shadow rrect
SkRRect spotShadowRRect;
SkMatrix shadowTransform;
shadowTransform.setScaleTranslate(spotScale, spotScale, spotOffset.fX, spotOffset.fY);
rrect.transform(shadowTransform, &spotShadowRRect);
SkScalar spotRadius = spotShadowRRect.getSimpleRadii().fX;
// Compute the insetWidth
SkScalar blurOutset = srcSpaceSpotBlur;
SkScalar insetWidth = blurOutset;
if (transparent) {
// If transparent, just do a fill
insetWidth += spotShadowRRect.width();
} else {
// For shadows, instead of using a stroke we specify an inset from the penumbra
// border. We want to extend this inset area so that it meets up with the caster
// geometry. The inset geometry will by default already be inset by the blur width.
//
// We compare the min and max corners inset by the radius between the original
// rrect and the shadow rrect. The distance between the two plus the difference
// between the scaled radius and the original radius gives the distance from the
// transformed shadow shape to the original shape in that corner. The max
// of these gives the maximum distance we need to cover.
//
// Since we are outsetting by 1/2 the blur distance, we just add the maxOffset to
// that to get the full insetWidth.
SkScalar maxOffset;
if (rrect.isRect()) {
// Manhattan distance works better for rects
maxOffset = std::max(std::max(SkTAbs(spotShadowRRect.rect().fLeft -
rrect.rect().fLeft),
SkTAbs(spotShadowRRect.rect().fTop -
rrect.rect().fTop)),
std::max(SkTAbs(spotShadowRRect.rect().fRight -
rrect.rect().fRight),
SkTAbs(spotShadowRRect.rect().fBottom -
rrect.rect().fBottom)));
} else {
SkScalar dr = spotRadius - SkRRectPriv::GetSimpleRadii(rrect).fX;
SkPoint upperLeftOffset = SkPoint::Make(spotShadowRRect.rect().fLeft -
rrect.rect().fLeft + dr,
spotShadowRRect.rect().fTop -
rrect.rect().fTop + dr);
SkPoint lowerRightOffset = SkPoint::Make(spotShadowRRect.rect().fRight -
rrect.rect().fRight - dr,
spotShadowRRect.rect().fBottom -
rrect.rect().fBottom - dr);
maxOffset = SkScalarSqrt(std::max(SkPointPriv::LengthSqd(upperLeftOffset),
SkPointPriv::LengthSqd(lowerRightOffset))) + dr;
}
insetWidth += std::max(blurOutset, maxOffset);
}
// Outset the shadow rrect to the border of the penumbra
SkRect outsetRect = spotShadowRRect.rect().makeOutset(blurOutset, blurOutset);
if (spotShadowRRect.isOval()) {
spotShadowRRect = SkRRect::MakeOval(outsetRect);
} else {
SkScalar outsetRad = spotRadius + blurOutset;
spotShadowRRect = SkRRect::MakeRectXY(outsetRect, outsetRad, outsetRad);
}
GrColor spotColor = SkColorToPremulGrColor(rec.fSpotColor);
GrOp::Owner op = GrShadowRRectOp::Make(fContext,
spotColor,
viewMatrix,
spotShadowRRect,
2.0f * devSpaceSpotBlur,
insetWidth);
if (op) {
this->addDrawOp(clip, std::move(op));
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
void SurfaceDrawContext::drawRegion(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRegion& region,
const GrStyle& style,
const GrUserStencilSettings* ss) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawRegion", fContext);
if (GrAA::kYes == aa) {
// GrRegionOp performs no antialiasing but is much faster, so here we check the matrix
// to see whether aa is really required.
if (!SkToBool(viewMatrix.getType() & ~(SkMatrix::kTranslate_Mask)) &&
SkScalarIsInt(viewMatrix.getTranslateX()) &&
SkScalarIsInt(viewMatrix.getTranslateY())) {
aa = GrAA::kNo;
}
}
bool complexStyle = !style.isSimpleFill();
if (complexStyle || GrAA::kYes == aa) {
SkPath path;
region.getBoundaryPath(&path);
path.setIsVolatile(true);
return this->drawPath(clip, std::move(paint), aa, viewMatrix, path, style);
}
GrAAType aaType = (this->numSamples() > 1 &&
!this->caps()->multisampleDisableSupport())
? GrAAType::kMSAA
: GrAAType::kNone;
GrOp::Owner op = GrRegionOp::Make(fContext, std::move(paint), viewMatrix, region, aaType, ss);
this->addDrawOp(clip, std::move(op));
}
void SurfaceDrawContext::drawOval(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& oval,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawOval", fContext);
const SkStrokeRec& stroke = style.strokeRec();
if (oval.isEmpty() && !style.pathEffect()) {
if (stroke.getStyle() == SkStrokeRec::kFill_Style) {
return;
}
this->drawRect(clip, std::move(paint), aa, viewMatrix, oval, &style);
return;
}
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
GrOp::Owner op;
if (aaType == GrAAType::kCoverage &&
!fCanUseDynamicMSAA &&
!this->caps()->reducedShaderMode() &&
oval.width() > SK_ScalarNearlyZero &&
oval.width() == oval.height() &&
viewMatrix.isSimilarity()) {
// In specific cases we use a dedicated circle op to try and get better perf.
assert_alive(paint);
op = GrOvalOpFactory::MakeCircleOp(fContext, std::move(paint), viewMatrix, oval, style,
this->caps()->shaderCaps());
}
if (!op && style.isSimpleFill()) {
// GrFillRRectOp has special geometry and a fragment-shader branch to conditionally evaluate
// the arc equation. This same special geometry and fragment branch also turn out to be a
// substantial optimization for drawing ovals (namely, by not evaluating the arc equation
// inside the oval's inner diamond). Given these optimizations, it's a clear win to draw
// ovals the exact same way we do round rects.
assert_alive(paint);
op = GrFillRRectOp::Make(fContext, this->arenaAlloc(), std::move(paint), viewMatrix,
SkRRect::MakeOval(oval), oval, GrAA(aaType != GrAAType::kNone));
}
if (!op && (aaType == GrAAType::kCoverage || fCanUseDynamicMSAA)) {
assert_alive(paint);
op = GrOvalOpFactory::MakeOvalOp(fContext, std::move(paint), viewMatrix, oval, style,
this->caps()->shaderCaps());
}
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
assert_alive(paint);
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix,
GrStyledShape(SkRRect::MakeOval(oval), SkPathDirection::kCW, 2,
false, style, DoSimplify::kNo));
}
void SurfaceDrawContext::drawArc(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkRect& oval,
SkScalar startAngle,
SkScalar sweepAngle,
bool useCenter,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawArc", fContext);
AutoCheckFlush acf(this->drawingManager());
GrAAType aaType = this->chooseAAType(aa);
if (aaType == GrAAType::kCoverage) {
const GrShaderCaps* shaderCaps = this->caps()->shaderCaps();
GrOp::Owner op = GrOvalOpFactory::MakeArcOp(fContext,
std::move(paint),
viewMatrix,
oval,
startAngle,
sweepAngle,
useCenter,
style,
shaderCaps);
if (op) {
this->addDrawOp(clip, std::move(op));
return;
}
assert_alive(paint);
}
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix,
GrStyledShape::MakeArc(oval, startAngle, sweepAngle, useCenter,
style, DoSimplify::kNo));
}
void SurfaceDrawContext::drawImageLattice(const GrClip* clip,
GrPaint&& paint,
const SkMatrix& viewMatrix,
GrSurfaceProxyView view,
SkAlphaType alphaType,
sk_sp<GrColorSpaceXform> csxf,
GrSamplerState::Filter filter,
std::unique_ptr<SkLatticeIter> iter,
const SkRect& dst) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawImageLattice", fContext);
AutoCheckFlush acf(this->drawingManager());
GrOp::Owner op =
GrLatticeOp::MakeNonAA(fContext, std::move(paint), viewMatrix, std::move(view),
alphaType, std::move(csxf), filter, std::move(iter), dst);
this->addDrawOp(clip, std::move(op));
}
void SurfaceDrawContext::drawDrawable(std::unique_ptr<SkDrawable::GpuDrawHandler> drawable,
const SkRect& bounds) {
GrOp::Owner op(GrDrawableOp::Make(fContext, std::move(drawable), bounds));
SkASSERT(op);
this->addOp(std::move(op));
}
void SurfaceDrawContext::setLastClip(uint32_t clipStackGenID,
const SkIRect& devClipBounds,
int numClipAnalyticElements) {
GrOpsTask* opsTask = this->getOpsTask();
opsTask->fLastClipStackGenID = clipStackGenID;
opsTask->fLastDevClipBounds = devClipBounds;
opsTask->fLastClipNumAnalyticElements = numClipAnalyticElements;
}
bool SurfaceDrawContext::mustRenderClip(uint32_t clipStackGenID,
const SkIRect& devClipBounds,
int numClipAnalyticElements) {
GrOpsTask* opsTask = this->getOpsTask();
return opsTask->fLastClipStackGenID != clipStackGenID ||
!opsTask->fLastDevClipBounds.contains(devClipBounds) ||
opsTask->fLastClipNumAnalyticElements != numClipAnalyticElements;
}
bool SurfaceDrawContext::waitOnSemaphores(int numSemaphores,
const GrBackendSemaphore waitSemaphores[],
bool deleteSemaphoresAfterWait) {
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "waitOnSemaphores", fContext);
AutoCheckFlush acf(this->drawingManager());
if (numSemaphores && !this->caps()->semaphoreSupport()) {
return false;
}
auto direct = fContext->asDirectContext();
if (!direct) {
return false;
}
auto resourceProvider = direct->priv().resourceProvider();
GrWrapOwnership ownership =
deleteSemaphoresAfterWait ? kAdopt_GrWrapOwnership : kBorrow_GrWrapOwnership;
std::unique_ptr<std::unique_ptr<GrSemaphore>[]> grSemaphores(
new std::unique_ptr<GrSemaphore>[numSemaphores]);
for (int i = 0; i < numSemaphores; ++i) {
grSemaphores[i] = resourceProvider->wrapBackendSemaphore(waitSemaphores[i],
GrSemaphoreWrapType::kWillWait,
ownership);
}
this->drawingManager()->newWaitRenderTask(this->asSurfaceProxyRef(), std::move(grSemaphores),
numSemaphores);
return true;
}
void SurfaceDrawContext::drawPath(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrStyle& style) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawPath", fContext);
GrStyledShape shape(path, style, DoSimplify::kNo);
this->drawShape(clip, std::move(paint), aa, viewMatrix, std::move(shape));
}
void SurfaceDrawContext::drawShape(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
GrStyledShape&& shape) {
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawShape", fContext);
if (shape.isEmpty()) {
if (shape.inverseFilled()) {
this->drawPaint(clip, std::move(paint), viewMatrix);
}
return;
}
AutoCheckFlush acf(this->drawingManager());
// If we get here in drawShape(), we definitely need to use path rendering
this->drawShapeUsingPathRenderer(clip, std::move(paint), aa, viewMatrix, std::move(shape),
/* attemptDrawSimple */ true);
}
#if SK_GPU_V1
static SkIRect get_clip_bounds(const SurfaceDrawContext* sdc, const GrClip* clip) {
return clip ? clip->getConservativeBounds() : SkIRect::MakeWH(sdc->width(), sdc->height());
}
#endif // SK_GPU_V1
bool SurfaceDrawContext::drawAndStencilPath(const GrHardClip* clip,
const GrUserStencilSettings* ss,
SkRegion::Op op,
bool invert,
GrAA aa,
const SkMatrix& viewMatrix,
const SkPath& path) {
#if SK_GPU_V1
ASSERT_SINGLE_OWNER
RETURN_FALSE_IF_ABANDONED
SkDEBUGCODE(this->validate();)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "drawAndStencilPath", fContext);
if (path.isEmpty() && path.isInverseFillType()) {
GrPaint paint;
paint.setCoverageSetOpXPFactory(op, invert);
this->stencilRect(clip, ss, std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::Make(this->dimensions()));
return true;
}
AutoCheckFlush acf(this->drawingManager());
// An Assumption here is that path renderer would use some form of tweaking
// the src color (either the input alpha or in the frag shader) to implement
// aa. If we have some future driver-mojo path AA that can do the right
// thing WRT to the blend then we'll need some query on the PR.
GrAAType aaType = this->chooseAAType(aa);
bool hasUserStencilSettings = !ss->isUnused();
SkIRect clipConservativeBounds = get_clip_bounds(this, clip);
GrPaint paint;
paint.setCoverageSetOpXPFactory(op, invert);
GrStyledShape shape(path, GrStyle::SimpleFill());
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = this->caps();
canDrawArgs.fProxy = this->asRenderTargetProxy();
canDrawArgs.fViewMatrix = &viewMatrix;
canDrawArgs.fShape = &shape;
canDrawArgs.fPaint = &paint;
canDrawArgs.fSurfaceProps = &fSurfaceProps;
canDrawArgs.fClipConservativeBounds = &clipConservativeBounds;
canDrawArgs.fAAType = aaType;
canDrawArgs.fHasUserStencilSettings = hasUserStencilSettings;
// Don't allow the SW renderer
GrPathRenderer* pr = this->drawingManager()->getPathRenderer(
canDrawArgs, false, GrPathRendererChain::DrawType::kStencilAndColor);
if (!pr) {
return false;
}
GrPathRenderer::DrawPathArgs args{this->drawingManager()->getContext(),
std::move(paint),
ss,
this,
clip,
&clipConservativeBounds,
&viewMatrix,
&shape,
aaType,
this->colorInfo().isLinearlyBlended()};
pr->drawPath(args);
return true;
#else
return false;
#endif
}
SkBudgeted SurfaceDrawContext::isBudgeted() const {
ASSERT_SINGLE_OWNER
if (fContext->abandoned()) {
return SkBudgeted::kNo;
}
SkDEBUGCODE(this->validate();)
return this->asSurfaceProxy()->isBudgeted();
}
void SurfaceDrawContext::drawStrokedLine(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
const SkPoint points[2],
const SkStrokeRec& stroke) {
ASSERT_SINGLE_OWNER
SkASSERT(stroke.getStyle() == SkStrokeRec::kStroke_Style);
SkASSERT(stroke.getWidth() > 0);
// Adding support for round capping would require a
// SurfaceDrawContext::fillRRectWithLocalMatrix entry point
SkASSERT(SkPaint::kRound_Cap != stroke.getCap());
const SkScalar halfWidth = 0.5f * stroke.getWidth();
if (halfWidth <= 0.f) {
// Prevents underflow when stroke width is epsilon > 0 (so technically not a hairline).
// The CTM would need to have a scale near 1/epsilon in order for this to have meaningful
// coverage (although that would likely overflow elsewhere and cause the draw to drop due
// to non-finite bounds). At any other scale, this line is so thin, it's coverage is
// negligible, so discarding the draw is visually equivalent.
return;
}
SkVector parallel = points[1] - points[0];
if (!SkPoint::Normalize(&parallel)) {
parallel.fX = 1.0f;
parallel.fY = 0.0f;
}
parallel *= halfWidth;
SkVector ortho = { parallel.fY, -parallel.fX };
if (SkPaint::kButt_Cap == stroke.getCap()) {
// No extra extension for butt caps
parallel = {0.f, 0.f};
}
// Order is TL, TR, BR, BL where arbitrarily "down" is p0 to p1 and "right" is positive
SkPoint corners[4] = { points[0] - ortho - parallel,
points[0] + ortho - parallel,
points[1] + ortho + parallel,
points[1] - ortho + parallel };
GrQuadAAFlags edgeAA = (aa == GrAA::kYes) ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
this->fillQuadWithEdgeAA(clip, std::move(paint), aa, edgeAA, viewMatrix, corners, nullptr);
}
bool SurfaceDrawContext::drawSimpleShape(const GrClip* clip,
GrPaint* paint,
GrAA aa,
const SkMatrix& viewMatrix,
const GrStyledShape& shape) {
if (!shape.style().hasPathEffect()) {
GrAAType aaType = this->chooseAAType(aa);
SkPoint linePts[2];
SkRRect rrect;
// We can ignore the starting point and direction since there is no path effect.
bool inverted;
if (shape.asLine(linePts, &inverted) && !inverted &&
shape.style().strokeRec().getStyle() == SkStrokeRec::kStroke_Style &&
shape.style().strokeRec().getCap() != SkPaint::kRound_Cap) {
// The stroked line is an oriented rectangle, which looks the same or better (if
// perspective) compared to path rendering. The exception is subpixel/hairline lines
// that are non-AA or MSAA, in which case the default path renderer achieves higher
// quality.
// FIXME(michaelludwig): If the fill rect op could take an external coverage, or checks
// for and outsets thin non-aa rects to 1px, the path renderer could be skipped.
SkScalar coverage;
if (aaType == GrAAType::kCoverage ||
!SkDrawTreatAAStrokeAsHairline(shape.style().strokeRec().getWidth(), viewMatrix,
&coverage)) {
this->drawStrokedLine(clip, std::move(*paint), aa, viewMatrix, linePts,
shape.style().strokeRec());
return true;
}
} else if (shape.asRRect(&rrect, nullptr, nullptr, &inverted) && !inverted) {
if (rrect.isRect()) {
this->drawRect(clip, std::move(*paint), aa, viewMatrix, rrect.rect(),
&shape.style());
return true;
} else if (rrect.isOval()) {
this->drawOval(clip, std::move(*paint), aa, viewMatrix, rrect.rect(),
shape.style());
return true;
}
this->drawRRect(clip, std::move(*paint), aa, viewMatrix, rrect, shape.style());
return true;
} else if (GrAAType::kCoverage == aaType &&
shape.style().isSimpleFill() &&
viewMatrix.rectStaysRect() &&
!this->caps()->reducedShaderMode()) {
// TODO: the rectStaysRect restriction could be lifted if we were willing to apply the
// matrix to all the points individually rather than just to the rect
SkRect rects[2];
if (shape.asNestedRects(rects)) {
// Concave AA paths are expensive - try to avoid them for special cases
GrOp::Owner op = GrStrokeRectOp::MakeNested(
fContext, std::move(*paint), viewMatrix, rects);
if (op) {
this->addDrawOp(clip, std::move(op));
}
// Returning here indicates that there is nothing to draw in this case.
return true;
}
}
}
return false;
}
void SurfaceDrawContext::drawShapeUsingPathRenderer(const GrClip* clip,
GrPaint&& paint,
GrAA aa,
const SkMatrix& viewMatrix,
GrStyledShape&& shape,
bool attemptDrawSimple) {
#if SK_GPU_V1
ASSERT_SINGLE_OWNER
RETURN_IF_ABANDONED
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "internalDrawPath", fContext);
if (!viewMatrix.isFinite() || !shape.bounds().isFinite()) {
return;
}
SkIRect clipConservativeBounds = get_clip_bounds(this, clip);
// Always allow paths to trigger DMSAA.
GrAAType aaType = fCanUseDynamicMSAA ? GrAAType::kMSAA : this->chooseAAType(aa);
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = this->caps();
canDrawArgs.fProxy = this->asRenderTargetProxy();
canDrawArgs.fViewMatrix = &viewMatrix;
canDrawArgs.fShape = &shape;
canDrawArgs.fPaint = &paint;
canDrawArgs.fSurfaceProps = &fSurfaceProps;
canDrawArgs.fClipConservativeBounds = &clipConservativeBounds;
canDrawArgs.fHasUserStencilSettings = false;
canDrawArgs.fAAType = aaType;
constexpr static bool kDisallowSWPathRenderer = false;
constexpr static bool kAllowSWPathRenderer = true;
using DrawType = GrPathRendererChain::DrawType;
GrPathRenderer* pr = nullptr;
if (!shape.style().strokeRec().isFillStyle() && !shape.isEmpty()) {
// Give the tessellation path renderer a chance to claim this stroke before we simplify it.
GrPathRenderer* tess = this->drawingManager()->getTessellationPathRenderer();
if (tess && tess->canDrawPath(canDrawArgs) == GrPathRenderer::CanDrawPath::kYes) {
pr = tess;
}
}
if (!pr) {
// The shape isn't a stroke that can be drawn directly. Simplify if possible.
shape.simplify();
if (shape.isEmpty() && !shape.inverseFilled()) {
return;
}
if (attemptDrawSimple || shape.simplified()) {
// Usually we enter drawShapeUsingPathRenderer() because the shape+style was too complex
// for dedicated draw ops. However, if GrStyledShape was able to reduce something we
// ought to try again instead of going right to path rendering.
if (this->drawSimpleShape(clip, &paint, aa, viewMatrix, shape)) {
return;
}
}
// Try a 1st time without applying any of the style to the geometry (and barring sw)
pr = this->drawingManager()->getPathRenderer(canDrawArgs, kDisallowSWPathRenderer,
DrawType::kColor);
}
SkScalar styleScale = GrStyle::MatrixToScaleFactor(viewMatrix);
if (styleScale == 0.0f) {
return;
}
if (!pr && shape.style().pathEffect()) {
// It didn't work above, so try again with the path effect applied.
shape = shape.applyStyle(GrStyle::Apply::kPathEffectOnly, styleScale);
if (shape.isEmpty()) {
return;
}
pr = this->drawingManager()->getPathRenderer(canDrawArgs, kDisallowSWPathRenderer,
DrawType::kColor);
}
if (!pr) {
if (shape.style().applies()) {
shape = shape.applyStyle(GrStyle::Apply::kPathEffectAndStrokeRec, styleScale);
if (shape.isEmpty()) {
return;
}
// This time, allow SW renderer
pr = this->drawingManager()->getPathRenderer(canDrawArgs, kAllowSWPathRenderer,
DrawType::kColor);
} else {
pr = this->drawingManager()->getSoftwarePathRenderer();
#if GR_PATH_RENDERER_SPEW
SkDebugf("falling back to: %s\n", pr->name());
#endif
}
}
if (!pr) {
#ifdef SK_DEBUG
SkDebugf("Unable to find path renderer compatible with path.\n");
#endif
return;
}
GrPathRenderer::DrawPathArgs args{this->drawingManager()->getContext(),
std::move(paint),
&GrUserStencilSettings::kUnused,
this,
clip,
&clipConservativeBounds,
&viewMatrix,
canDrawArgs.fShape,
aaType,
this->colorInfo().isLinearlyBlended()};
pr->drawPath(args);
#endif
}
void SurfaceDrawContext::addDrawOp(const GrClip* clip,
GrOp::Owner op,
const std::function<WillAddOpFn>& willAddFn) {
ASSERT_SINGLE_OWNER
if (fContext->abandoned()) {
return;
}
GrDrawOp* drawOp = (GrDrawOp*)op.get();
SkDEBUGCODE(this->validate();)
SkDEBUGCODE(drawOp->fAddDrawOpCalled = true;)
GR_CREATE_TRACE_MARKER_CONTEXT("SurfaceDrawContext", "addDrawOp", fContext);
// Setup clip
SkRect bounds;
op_bounds(&bounds, op.get());
GrAppliedClip appliedClip(this->dimensions(), this->asSurfaceProxy()->backingStoreDimensions());
const bool opUsesMSAA = drawOp->usesMSAA();
bool skipDraw = false;
if (clip) {
// Have a complex clip, so defer to its early clip culling
GrAAType aaType;
if (opUsesMSAA) {
aaType = GrAAType::kMSAA;
} else {
aaType = op->hasAABloat() ? GrAAType::kCoverage : GrAAType::kNone;
}
skipDraw = clip->apply(fContext, this, drawOp, aaType,
&appliedClip, &bounds) == GrClip::Effect::kClippedOut;
} else {
// No clipping, so just clip the bounds against the logical render target dimensions
skipDraw = !bounds.intersect(this->asSurfaceProxy()->getBoundsRect());
}
if (skipDraw) {
return;
}
GrClampType clampType = GrColorTypeClampType(this->colorInfo().colorType());
GrProcessorSet::Analysis analysis = drawOp->finalize(*this->caps(), &appliedClip, clampType);
const bool opUsesStencil = drawOp->usesStencil();
// Always trigger DMSAA when there is stencil. This ensures stencil contents get properly
// preserved between render passes, if needed.
const bool drawNeedsMSAA = opUsesMSAA || (fCanUseDynamicMSAA && opUsesStencil);
// Must be called before setDstProxyView so that it sees the final bounds of the op.
op->setClippedBounds(bounds);
// Determine if the Op will trigger the use of a separate DMSAA attachment that requires manual
// resolves.
// TODO: Currently usesAttachmentIfDMSAA checks if this is a textureProxy or not. This check is
// really only for GL which uses a normal texture sampling when using barriers. For Vulkan it
// is possible to use the msaa buffer as an input attachment even if this is not a texture.
// However, support for that is not fully implemented yet in Vulkan. Once it is, this check
// should change to a virtual caps check that returns whether we need to break up an OpsTask
// if it has barriers and we are about to promote to MSAA.
bool usesAttachmentIfDMSAA =
fCanUseDynamicMSAA &&
(!this->caps()->msaaResolvesAutomatically() || !this->asTextureProxy());
bool opRequiresDMSAAAttachment = usesAttachmentIfDMSAA && drawNeedsMSAA;
bool opTriggersDMSAAAttachment =
opRequiresDMSAAAttachment && !this->getOpsTask()->usesMSAASurface();
if (opTriggersDMSAAAttachment) {
// This will be the op that actually triggers use of a DMSAA attachment. Texture barriers
// can't be moved to a DMSAA attachment, so if there already are any on the current opsTask
// then we need to split.
if (this->getOpsTask()->renderPassXferBarriers() & GrXferBarrierFlags::kTexture) {
SkASSERT(!this->getOpsTask()->isColorNoOp());
this->replaceOpsTask()->setCannotMergeBackward();
}
}
GrDstProxyView dstProxyView;
if (analysis.requiresDstTexture()) {
if (!this->setupDstProxyView(drawOp->bounds(), drawNeedsMSAA, &dstProxyView)) {
return;
}
#ifdef SK_DEBUG
if (fCanUseDynamicMSAA && drawNeedsMSAA && !this->caps()->msaaResolvesAutomatically()) {
// Since we aren't literally writing to the render target texture while using a DMSAA
// attachment, we need to resolve that texture before sampling it. Ensure the current
// opsTask got closed off in order to initiate an implicit resolve.
SkASSERT(this->getOpsTask()->isEmpty());
}
#endif
}
auto opsTask = this->getOpsTask();
if (willAddFn) {
willAddFn(op.get(), opsTask->uniqueID());
}
// Note if the op needs stencil. Stencil clipping already called setNeedsStencil for itself, if
// needed.
if (opUsesStencil) {
this->setNeedsStencil();
}
#if GR_GPU_STATS && GR_TEST_UTILS
if (fCanUseDynamicMSAA && drawNeedsMSAA) {
if (!opsTask->usesMSAASurface()) {
fContext->priv().dmsaaStats().fNumMultisampleRenderPasses++;
}
fContext->priv().dmsaaStats().fTriggerCounts[op->name()]++;
}
#endif
opsTask->addDrawOp(this->drawingManager(), std::move(op), drawNeedsMSAA, analysis,
std::move(appliedClip), dstProxyView,
GrTextureResolveManager(this->drawingManager()), *this->caps());
#ifdef SK_DEBUG
if (fCanUseDynamicMSAA && drawNeedsMSAA) {
SkASSERT(opsTask->usesMSAASurface());
}
#endif
}
bool SurfaceDrawContext::setupDstProxyView(const SkRect& opBounds,
bool opRequiresMSAA,
GrDstProxyView* dstProxyView) {
// If we are wrapping a vulkan secondary command buffer, we can't make a dst copy because we
// don't actually have a VkImage to make a copy of. Additionally we don't have the power to
// start and stop the render pass in order to make the copy.
if (this->asRenderTargetProxy()->wrapsVkSecondaryCB()) {
return false;
}
// First get the dstSampleFlags as if we will put the draw into the current GrOpsTask
auto dstSampleFlags = this->caps()->getDstSampleFlagsForProxy(
this->asRenderTargetProxy(), this->getOpsTask()->usesMSAASurface() || opRequiresMSAA);
// If we don't have barriers for this draw then we will definitely be breaking up the GrOpsTask.
// However, if using dynamic MSAA, the new GrOpsTask will not have MSAA already enabled on it
// and that may allow us to use texture barriers. So we check if we can use barriers on the new
// ops task and then break it up if so.
if (!(dstSampleFlags & GrDstSampleFlags::kRequiresTextureBarrier) &&
fCanUseDynamicMSAA && this->getOpsTask()->usesMSAASurface() && !opRequiresMSAA) {
auto newFlags =
this->caps()->getDstSampleFlagsForProxy(this->asRenderTargetProxy(),
false/*=opRequiresMSAA*/);
if (newFlags & GrDstSampleFlags::kRequiresTextureBarrier) {
// We can't have an empty ops task if we are in DMSAA and the ops task already returns
// true for usesMSAASurface.
SkASSERT(!this->getOpsTask()->isColorNoOp());
this->replaceOpsTask()->setCannotMergeBackward();
dstSampleFlags = newFlags;
}
}
if (dstSampleFlags & GrDstSampleFlags::kRequiresTextureBarrier) {
// If we require a barrier to sample the dst it means we are sampling the RT itself
// either as a texture or input attachment. In this case we don't need to break up the
// GrOpsTask.
dstProxyView->setProxyView(this->readSurfaceView());
dstProxyView->setOffset(0, 0);
dstProxyView->setDstSampleFlags(dstSampleFlags);
return true;
}
SkASSERT(dstSampleFlags == GrDstSampleFlags::kNone);
// We are using a different surface from the main color attachment to sample the dst from. If we
// are in DMSAA we can just use the single sampled RT texture itself. Otherwise, we must do a
// copy.
// We do have to check if we ended up here becasue we don't have texture barriers but do have
// msaaResolvesAutomatically (i.e. render-to-msaa-texture). In that case there will be no op or
// barrier between draws to flush the render target before being used as a texture in the next
// draw. So in that case we just fall through to doing a copy.
if (fCanUseDynamicMSAA && opRequiresMSAA && this->asTextureProxy() &&
!this->caps()->msaaResolvesAutomatically()) {
this->replaceOpsTaskIfModifiesColor()->setCannotMergeBackward();
dstProxyView->setProxyView(this->readSurfaceView());
dstProxyView->setOffset(0, 0);
dstProxyView->setDstSampleFlags(dstSampleFlags);
return true;
}
// Now we fallback to doing a copy.
GrColorType colorType = this->colorInfo().colorType();
// MSAA consideration: When there is support for reading MSAA samples in the shader we could
// have per-sample dst values by making the copy multisampled.
GrCaps::DstCopyRestrictions restrictions = this->caps()->getDstCopyRestrictions(
this->asRenderTargetProxy(), colorType);
SkIRect copyRect = SkIRect::MakeSize(this->asSurfaceProxy()->backingStoreDimensions());
if (!restrictions.fMustCopyWholeSrc) {
// If we don't need the whole source, restrict to the op's bounds. We add an extra pixel
// of padding to account for AA bloat and the unpredictable rounding of coords near pixel
// centers during rasterization.
SkIRect conservativeDrawBounds = opBounds.roundOut();
conservativeDrawBounds.outset(1, 1);
SkAssertResult(copyRect.intersect(conservativeDrawBounds));
}
SkIPoint dstOffset;
SkBackingFit fit;
if (restrictions.fRectsMustMatch == GrSurfaceProxy::RectsMustMatch::kYes) {
dstOffset = {0, 0};
fit = SkBackingFit::kExact;
} else {
dstOffset = {copyRect.fLeft, copyRect.fTop};
fit = SkBackingFit::kApprox;
}
auto copy = GrSurfaceProxy::Copy(fContext,
this->asSurfaceProxyRef(),
this->origin(),
GrMipmapped::kNo,
copyRect,
fit,
SkBudgeted::kYes,
restrictions.fRectsMustMatch);
SkASSERT(copy);
dstProxyView->setProxyView({std::move(copy), this->origin(), this->readSwizzle()});
dstProxyView->setOffset(dstOffset);
dstProxyView->setDstSampleFlags(dstSampleFlags);
return true;
}
GrOpsTask* SurfaceDrawContext::replaceOpsTaskIfModifiesColor() {
if (!this->getOpsTask()->isColorNoOp()) {
this->replaceOpsTask();
}
return this->getOpsTask();
}
} // namespace skgpu::v1