| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkPerlinNoiseShader.h" |
| #include "SkColorFilter.h" |
| #include "SkReadBuffer.h" |
| #include "SkWriteBuffer.h" |
| #include "SkShader.h" |
| #include "SkUnPreMultiply.h" |
| #include "SkString.h" |
| |
| #if SK_SUPPORT_GPU |
| #include "GrContext.h" |
| #include "GrCoordTransform.h" |
| #include "GrInvariantOutput.h" |
| #include "SkGr.h" |
| #include "effects/GrConstColorProcessor.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #endif |
| |
| static const int kBlockSize = 256; |
| static const int kBlockMask = kBlockSize - 1; |
| static const int kPerlinNoise = 4096; |
| static const int kRandMaximum = SK_MaxS32; // 2**31 - 1 |
| |
| namespace { |
| |
| // noiseValue is the color component's value (or color) |
| // limitValue is the maximum perlin noise array index value allowed |
| // newValue is the current noise dimension (either width or height) |
| inline int checkNoise(int noiseValue, int limitValue, int newValue) { |
| // If the noise value would bring us out of bounds of the current noise array while we are |
| // stiching noise tiles together, wrap the noise around the current dimension of the noise to |
| // stay within the array bounds in a continuous fashion (so that tiling lines are not visible) |
| if (noiseValue >= limitValue) { |
| noiseValue -= newValue; |
| } |
| return noiseValue; |
| } |
| |
| inline SkScalar smoothCurve(SkScalar t) { |
| static const SkScalar SK_Scalar3 = 3.0f; |
| |
| // returns t * t * (3 - 2 * t) |
| return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t); |
| } |
| |
| } // end namespace |
| |
| struct SkPerlinNoiseShader::StitchData { |
| StitchData() |
| : fWidth(0) |
| , fWrapX(0) |
| , fHeight(0) |
| , fWrapY(0) |
| {} |
| |
| bool operator==(const StitchData& other) const { |
| return fWidth == other.fWidth && |
| fWrapX == other.fWrapX && |
| fHeight == other.fHeight && |
| fWrapY == other.fWrapY; |
| } |
| |
| int fWidth; // How much to subtract to wrap for stitching. |
| int fWrapX; // Minimum value to wrap. |
| int fHeight; |
| int fWrapY; |
| }; |
| |
| struct SkPerlinNoiseShader::PaintingData { |
| PaintingData(const SkISize& tileSize, SkScalar seed, |
| SkScalar baseFrequencyX, SkScalar baseFrequencyY, |
| const SkMatrix& matrix) |
| { |
| SkVector vec[2] = { |
| { SkScalarInvert(baseFrequencyX), SkScalarInvert(baseFrequencyY) }, |
| { SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight) }, |
| }; |
| matrix.mapVectors(vec, 2); |
| |
| fBaseFrequency.set(SkScalarInvert(vec[0].fX), SkScalarInvert(vec[0].fY)); |
| fTileSize.set(SkScalarRoundToInt(vec[1].fX), SkScalarRoundToInt(vec[1].fY)); |
| this->init(seed); |
| if (!fTileSize.isEmpty()) { |
| this->stitch(); |
| } |
| |
| #if SK_SUPPORT_GPU |
| fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1)); |
| fPermutationsBitmap.setPixels(fLatticeSelector); |
| |
| fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4)); |
| fNoiseBitmap.setPixels(fNoise[0][0]); |
| #endif |
| } |
| |
| int fSeed; |
| uint8_t fLatticeSelector[kBlockSize]; |
| uint16_t fNoise[4][kBlockSize][2]; |
| SkPoint fGradient[4][kBlockSize]; |
| SkISize fTileSize; |
| SkVector fBaseFrequency; |
| StitchData fStitchDataInit; |
| |
| private: |
| |
| #if SK_SUPPORT_GPU |
| SkBitmap fPermutationsBitmap; |
| SkBitmap fNoiseBitmap; |
| #endif |
| |
| inline int random() { |
| static const int gRandAmplitude = 16807; // 7**5; primitive root of m |
| static const int gRandQ = 127773; // m / a |
| static const int gRandR = 2836; // m % a |
| |
| int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ); |
| if (result <= 0) |
| result += kRandMaximum; |
| fSeed = result; |
| return result; |
| } |
| |
| // Only called once. Could be part of the constructor. |
| void init(SkScalar seed) |
| { |
| static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize)); |
| |
| // According to the SVG spec, we must truncate (not round) the seed value. |
| fSeed = SkScalarTruncToInt(seed); |
| // The seed value clamp to the range [1, kRandMaximum - 1]. |
| if (fSeed <= 0) { |
| fSeed = -(fSeed % (kRandMaximum - 1)) + 1; |
| } |
| if (fSeed > kRandMaximum - 1) { |
| fSeed = kRandMaximum - 1; |
| } |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int i = 0; i < kBlockSize; ++i) { |
| fLatticeSelector[i] = i; |
| fNoise[channel][i][0] = (random() % (2 * kBlockSize)); |
| fNoise[channel][i][1] = (random() % (2 * kBlockSize)); |
| } |
| } |
| for (int i = kBlockSize - 1; i > 0; --i) { |
| int k = fLatticeSelector[i]; |
| int j = random() % kBlockSize; |
| SkASSERT(j >= 0); |
| SkASSERT(j < kBlockSize); |
| fLatticeSelector[i] = fLatticeSelector[j]; |
| fLatticeSelector[j] = k; |
| } |
| |
| // Perform the permutations now |
| { |
| // Copy noise data |
| uint16_t noise[4][kBlockSize][2]; |
| for (int i = 0; i < kBlockSize; ++i) { |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int j = 0; j < 2; ++j) { |
| noise[channel][i][j] = fNoise[channel][i][j]; |
| } |
| } |
| } |
| // Do permutations on noise data |
| for (int i = 0; i < kBlockSize; ++i) { |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int j = 0; j < 2; ++j) { |
| fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j]; |
| } |
| } |
| } |
| } |
| |
| // Half of the largest possible value for 16 bit unsigned int |
| static const SkScalar gHalfMax16bits = 32767.5f; |
| |
| // Compute gradients from permutated noise data |
| for (int channel = 0; channel < 4; ++channel) { |
| for (int i = 0; i < kBlockSize; ++i) { |
| fGradient[channel][i] = SkPoint::Make( |
| SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize), |
| gInvBlockSizef), |
| SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize), |
| gInvBlockSizef)); |
| fGradient[channel][i].normalize(); |
| // Put the normalized gradient back into the noise data |
| fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul( |
| fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits)); |
| fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul( |
| fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits)); |
| } |
| } |
| } |
| |
| // Only called once. Could be part of the constructor. |
| void stitch() { |
| SkScalar tileWidth = SkIntToScalar(fTileSize.width()); |
| SkScalar tileHeight = SkIntToScalar(fTileSize.height()); |
| SkASSERT(tileWidth > 0 && tileHeight > 0); |
| // When stitching tiled turbulence, the frequencies must be adjusted |
| // so that the tile borders will be continuous. |
| if (fBaseFrequency.fX) { |
| SkScalar lowFrequencx = |
| SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; |
| SkScalar highFrequencx = |
| SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; |
| // BaseFrequency should be non-negative according to the standard. |
| if (fBaseFrequency.fX / lowFrequencx < highFrequencx / fBaseFrequency.fX) { |
| fBaseFrequency.fX = lowFrequencx; |
| } else { |
| fBaseFrequency.fX = highFrequencx; |
| } |
| } |
| if (fBaseFrequency.fY) { |
| SkScalar lowFrequency = |
| SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; |
| SkScalar highFrequency = |
| SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; |
| if (fBaseFrequency.fY / lowFrequency < highFrequency / fBaseFrequency.fY) { |
| fBaseFrequency.fY = lowFrequency; |
| } else { |
| fBaseFrequency.fY = highFrequency; |
| } |
| } |
| // Set up TurbulenceInitial stitch values. |
| fStitchDataInit.fWidth = |
| SkScalarRoundToInt(tileWidth * fBaseFrequency.fX); |
| fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth; |
| fStitchDataInit.fHeight = |
| SkScalarRoundToInt(tileHeight * fBaseFrequency.fY); |
| fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight; |
| } |
| |
| public: |
| |
| #if SK_SUPPORT_GPU |
| const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; } |
| |
| const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; } |
| #endif |
| }; |
| |
| sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, |
| int numOctaves, SkScalar seed, |
| const SkISize* tileSize) { |
| return sk_sp<SkShader>(new SkPerlinNoiseShader(kFractalNoise_Type, baseFrequencyX, |
| baseFrequencyY, numOctaves, |
| seed, tileSize)); |
| } |
| |
| sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, |
| int numOctaves, SkScalar seed, |
| const SkISize* tileSize) { |
| return sk_sp<SkShader>(new SkPerlinNoiseShader(kTurbulence_Type, baseFrequencyX, baseFrequencyY, |
| numOctaves, seed, tileSize)); |
| } |
| |
| SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type, |
| SkScalar baseFrequencyX, |
| SkScalar baseFrequencyY, |
| int numOctaves, |
| SkScalar seed, |
| const SkISize* tileSize) |
| : fType(type) |
| , fBaseFrequencyX(baseFrequencyX) |
| , fBaseFrequencyY(baseFrequencyY) |
| , fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/) |
| , fSeed(seed) |
| , fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize) |
| , fStitchTiles(!fTileSize.isEmpty()) |
| { |
| SkASSERT(numOctaves >= 0 && numOctaves < 256); |
| } |
| |
| SkPerlinNoiseShader::~SkPerlinNoiseShader() { |
| } |
| |
| sk_sp<SkFlattenable> SkPerlinNoiseShader::CreateProc(SkReadBuffer& buffer) { |
| Type type = (Type)buffer.readInt(); |
| SkScalar freqX = buffer.readScalar(); |
| SkScalar freqY = buffer.readScalar(); |
| int octaves = buffer.readInt(); |
| SkScalar seed = buffer.readScalar(); |
| SkISize tileSize; |
| tileSize.fWidth = buffer.readInt(); |
| tileSize.fHeight = buffer.readInt(); |
| |
| switch (type) { |
| case kFractalNoise_Type: |
| return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed, |
| &tileSize); |
| case kTurbulence_Type: |
| return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed, |
| &tileSize); |
| default: |
| return nullptr; |
| } |
| } |
| |
| void SkPerlinNoiseShader::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeInt((int) fType); |
| buffer.writeScalar(fBaseFrequencyX); |
| buffer.writeScalar(fBaseFrequencyY); |
| buffer.writeInt(fNumOctaves); |
| buffer.writeScalar(fSeed); |
| buffer.writeInt(fTileSize.fWidth); |
| buffer.writeInt(fTileSize.fHeight); |
| } |
| |
| SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::noise2D( |
| int channel, const StitchData& stitchData, const SkPoint& noiseVector) const { |
| struct Noise { |
| int noisePositionIntegerValue; |
| int nextNoisePositionIntegerValue; |
| SkScalar noisePositionFractionValue; |
| Noise(SkScalar component) |
| { |
| SkScalar position = component + kPerlinNoise; |
| noisePositionIntegerValue = SkScalarFloorToInt(position); |
| noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue); |
| nextNoisePositionIntegerValue = noisePositionIntegerValue + 1; |
| } |
| }; |
| Noise noiseX(noiseVector.x()); |
| Noise noiseY(noiseVector.y()); |
| SkScalar u, v; |
| const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader); |
| // If stitching, adjust lattice points accordingly. |
| if (perlinNoiseShader.fStitchTiles) { |
| noiseX.noisePositionIntegerValue = |
| checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); |
| noiseY.noisePositionIntegerValue = |
| checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); |
| noiseX.nextNoisePositionIntegerValue = |
| checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); |
| noiseY.nextNoisePositionIntegerValue = |
| checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); |
| } |
| noiseX.noisePositionIntegerValue &= kBlockMask; |
| noiseY.noisePositionIntegerValue &= kBlockMask; |
| noiseX.nextNoisePositionIntegerValue &= kBlockMask; |
| noiseY.nextNoisePositionIntegerValue &= kBlockMask; |
| int i = |
| fPaintingData->fLatticeSelector[noiseX.noisePositionIntegerValue]; |
| int j = |
| fPaintingData->fLatticeSelector[noiseX.nextNoisePositionIntegerValue]; |
| int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask; |
| int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask; |
| int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask; |
| int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask; |
| SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue); |
| SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue); |
| // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement |
| SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue, |
| noiseY.noisePositionFractionValue); // Offset (0,0) |
| u = fPaintingData->fGradient[channel][b00].dot(fractionValue); |
| fractionValue.fX -= SK_Scalar1; // Offset (-1,0) |
| v = fPaintingData->fGradient[channel][b10].dot(fractionValue); |
| SkScalar a = SkScalarInterp(u, v, sx); |
| fractionValue.fY -= SK_Scalar1; // Offset (-1,-1) |
| v = fPaintingData->fGradient[channel][b11].dot(fractionValue); |
| fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1) |
| u = fPaintingData->fGradient[channel][b01].dot(fractionValue); |
| SkScalar b = SkScalarInterp(u, v, sx); |
| return SkScalarInterp(a, b, sy); |
| } |
| |
| SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint( |
| int channel, StitchData& stitchData, const SkPoint& point) const { |
| const SkPerlinNoiseShader& perlinNoiseShader = static_cast<const SkPerlinNoiseShader&>(fShader); |
| if (perlinNoiseShader.fStitchTiles) { |
| // Set up TurbulenceInitial stitch values. |
| stitchData = fPaintingData->fStitchDataInit; |
| } |
| SkScalar turbulenceFunctionResult = 0; |
| SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), fPaintingData->fBaseFrequency.fX), |
| SkScalarMul(point.y(), fPaintingData->fBaseFrequency.fY))); |
| SkScalar ratio = SK_Scalar1; |
| for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) { |
| SkScalar noise = noise2D(channel, stitchData, noiseVector); |
| SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ? |
| noise : SkScalarAbs(noise); |
| turbulenceFunctionResult += numer / ratio; |
| noiseVector.fX *= 2; |
| noiseVector.fY *= 2; |
| ratio *= 2; |
| if (perlinNoiseShader.fStitchTiles) { |
| // Update stitch values |
| stitchData.fWidth *= 2; |
| stitchData.fWrapX = stitchData.fWidth + kPerlinNoise; |
| stitchData.fHeight *= 2; |
| stitchData.fWrapY = stitchData.fHeight + kPerlinNoise; |
| } |
| } |
| |
| // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 |
| // by fractalNoise and (turbulenceFunctionResult) by turbulence. |
| if (perlinNoiseShader.fType == kFractalNoise_Type) { |
| turbulenceFunctionResult = |
| SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf; |
| } |
| |
| if (channel == 3) { // Scale alpha by paint value |
| turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255; |
| } |
| |
| // Clamp result |
| return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1); |
| } |
| |
| SkPMColor SkPerlinNoiseShader::PerlinNoiseShaderContext::shade( |
| const SkPoint& point, StitchData& stitchData) const { |
| SkPoint newPoint; |
| fMatrix.mapPoints(&newPoint, &point, 1); |
| newPoint.fX = SkScalarRoundToScalar(newPoint.fX); |
| newPoint.fY = SkScalarRoundToScalar(newPoint.fY); |
| |
| U8CPU rgba[4]; |
| for (int channel = 3; channel >= 0; --channel) { |
| rgba[channel] = SkScalarFloorToInt(255 * |
| calculateTurbulenceValueForPoint(channel, stitchData, newPoint)); |
| } |
| return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]); |
| } |
| |
| SkShader::Context* SkPerlinNoiseShader::onCreateContext(const ContextRec& rec, |
| void* storage) const { |
| return new (storage) PerlinNoiseShaderContext(*this, rec); |
| } |
| |
| size_t SkPerlinNoiseShader::onContextSize(const ContextRec&) const { |
| return sizeof(PerlinNoiseShaderContext); |
| } |
| |
| SkPerlinNoiseShader::PerlinNoiseShaderContext::PerlinNoiseShaderContext( |
| const SkPerlinNoiseShader& shader, const ContextRec& rec) |
| : INHERITED(shader, rec) |
| { |
| SkMatrix newMatrix = *rec.fMatrix; |
| newMatrix.preConcat(shader.getLocalMatrix()); |
| if (rec.fLocalMatrix) { |
| newMatrix.preConcat(*rec.fLocalMatrix); |
| } |
| // This (1,1) translation is due to WebKit's 1 based coordinates for the noise |
| // (as opposed to 0 based, usually). The same adjustment is in the setData() function. |
| fMatrix.setTranslate(-newMatrix.getTranslateX() + SK_Scalar1, -newMatrix.getTranslateY() + SK_Scalar1); |
| fPaintingData = new PaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX, |
| shader.fBaseFrequencyY, newMatrix); |
| } |
| |
| SkPerlinNoiseShader::PerlinNoiseShaderContext::~PerlinNoiseShaderContext() { delete fPaintingData; } |
| |
| void SkPerlinNoiseShader::PerlinNoiseShaderContext::shadeSpan( |
| int x, int y, SkPMColor result[], int count) { |
| SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); |
| StitchData stitchData; |
| for (int i = 0; i < count; ++i) { |
| result[i] = shade(point, stitchData); |
| point.fX += SK_Scalar1; |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| class GrGLPerlinNoise : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; |
| |
| private: |
| GrGLSLProgramDataManager::UniformHandle fStitchDataUni; |
| GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni; |
| |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| class GrPerlinNoiseEffect : public GrFragmentProcessor { |
| public: |
| static GrFragmentProcessor* Create(SkPerlinNoiseShader::Type type, |
| int numOctaves, bool stitchTiles, |
| SkPerlinNoiseShader::PaintingData* paintingData, |
| GrTexture* permutationsTexture, GrTexture* noiseTexture, |
| const SkMatrix& matrix) { |
| return new GrPerlinNoiseEffect(type, numOctaves, stitchTiles, paintingData, |
| permutationsTexture, noiseTexture, matrix); |
| } |
| |
| virtual ~GrPerlinNoiseEffect() { delete fPaintingData; } |
| |
| const char* name() const override { return "PerlinNoise"; } |
| |
| const SkPerlinNoiseShader::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; } |
| |
| SkPerlinNoiseShader::Type type() const { return fType; } |
| bool stitchTiles() const { return fStitchTiles; } |
| const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; } |
| int numOctaves() const { return fNumOctaves; } |
| const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); } |
| |
| private: |
| GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { |
| return new GrGLPerlinNoise; |
| } |
| |
| virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const override { |
| GrGLPerlinNoise::GenKey(*this, caps, b); |
| } |
| |
| bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
| const GrPerlinNoiseEffect& s = sBase.cast<GrPerlinNoiseEffect>(); |
| return fType == s.fType && |
| fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency && |
| fNumOctaves == s.fNumOctaves && |
| fStitchTiles == s.fStitchTiles && |
| fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit; |
| } |
| |
| void onComputeInvariantOutput(GrInvariantOutput* inout) const override { |
| inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput); |
| } |
| |
| GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type, |
| int numOctaves, bool stitchTiles, |
| SkPerlinNoiseShader::PaintingData* paintingData, |
| GrTexture* permutationsTexture, GrTexture* noiseTexture, |
| const SkMatrix& matrix) |
| : fType(type) |
| , fNumOctaves(numOctaves) |
| , fStitchTiles(stitchTiles) |
| , fPermutationsAccess(permutationsTexture) |
| , fNoiseAccess(noiseTexture) |
| , fPaintingData(paintingData) { |
| this->initClassID<GrPerlinNoiseEffect>(); |
| this->addTextureAccess(&fPermutationsAccess); |
| this->addTextureAccess(&fNoiseAccess); |
| fCoordTransform.reset(kLocal_GrCoordSet, matrix); |
| this->addCoordTransform(&fCoordTransform); |
| } |
| |
| GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
| |
| SkPerlinNoiseShader::Type fType; |
| GrCoordTransform fCoordTransform; |
| int fNumOctaves; |
| bool fStitchTiles; |
| GrTextureAccess fPermutationsAccess; |
| GrTextureAccess fNoiseAccess; |
| SkPerlinNoiseShader::PaintingData *fPaintingData; |
| |
| private: |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////// |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoiseEffect); |
| |
| const GrFragmentProcessor* GrPerlinNoiseEffect::TestCreate(GrProcessorTestData* d) { |
| int numOctaves = d->fRandom->nextRangeU(2, 10); |
| bool stitchTiles = d->fRandom->nextBool(); |
| SkScalar seed = SkIntToScalar(d->fRandom->nextU()); |
| SkISize tileSize = SkISize::Make(d->fRandom->nextRangeU(4, 4096), |
| d->fRandom->nextRangeU(4, 4096)); |
| SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f, |
| 0.99f); |
| SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f, |
| 0.99f); |
| |
| sk_sp<SkShader> shader(d->fRandom->nextBool() ? |
| SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed, |
| stitchTiles ? &tileSize : nullptr) : |
| SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed, |
| stitchTiles ? &tileSize : nullptr)); |
| |
| return shader->asFragmentProcessor(d->fContext, |
| GrTest::TestMatrix(d->fRandom), nullptr, |
| kNone_SkFilterQuality); |
| } |
| |
| void GrGLPerlinNoise::emitCode(EmitArgs& args) { |
| const GrPerlinNoiseEffect& pne = args.fFp.cast<GrPerlinNoiseEffect>(); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| SkString vCoords = fragBuilder->ensureFSCoords2D(args.fCoords, 0); |
| |
| fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec2f_GrSLType, kDefault_GrSLPrecision, |
| "baseFrequency"); |
| const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni); |
| |
| const char* stitchDataUni = nullptr; |
| if (pne.stitchTiles()) { |
| fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec2f_GrSLType, kDefault_GrSLPrecision, |
| "stitchData"); |
| stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni); |
| } |
| |
| // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8 |
| const char* chanCoordR = "0.125"; |
| const char* chanCoordG = "0.375"; |
| const char* chanCoordB = "0.625"; |
| const char* chanCoordA = "0.875"; |
| const char* chanCoord = "chanCoord"; |
| const char* stitchData = "stitchData"; |
| const char* ratio = "ratio"; |
| const char* noiseVec = "noiseVec"; |
| const char* noiseSmooth = "noiseSmooth"; |
| const char* floorVal = "floorVal"; |
| const char* fractVal = "fractVal"; |
| const char* uv = "uv"; |
| const char* ab = "ab"; |
| const char* latticeIdx = "latticeIdx"; |
| const char* bcoords = "bcoords"; |
| const char* lattice = "lattice"; |
| const char* inc8bit = "0.00390625"; // 1.0 / 256.0 |
| // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a |
| // [-1,1] vector and perform a dot product between that vector and the provided vector. |
| const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);"; |
| |
| // Add noise function |
| static const GrGLSLShaderVar gPerlinNoiseArgs[] = { |
| GrGLSLShaderVar(chanCoord, kFloat_GrSLType), |
| GrGLSLShaderVar(noiseVec, kVec2f_GrSLType) |
| }; |
| |
| static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] = { |
| GrGLSLShaderVar(chanCoord, kFloat_GrSLType), |
| GrGLSLShaderVar(noiseVec, kVec2f_GrSLType), |
| GrGLSLShaderVar(stitchData, kVec2f_GrSLType) |
| }; |
| |
| SkString noiseCode; |
| |
| noiseCode.appendf("\tvec4 %s;\n", floorVal); |
| noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec); |
| noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal); |
| noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec); |
| |
| // smooth curve : t * t * (3 - 2 * t) |
| noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);", |
| noiseSmooth, fractVal, fractVal, fractVal); |
| |
| // Adjust frequencies if we're stitching tiles |
| if (pne.stitchTiles()) { |
| noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }", |
| floorVal, stitchData, floorVal, stitchData); |
| noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }", |
| floorVal, stitchData, floorVal, stitchData); |
| noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }", |
| floorVal, stitchData, floorVal, stitchData); |
| noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }", |
| floorVal, stitchData, floorVal, stitchData); |
| } |
| |
| // Get texture coordinates and normalize |
| noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n", |
| floorVal, floorVal); |
| |
| // Get permutation for x |
| { |
| SkString xCoords(""); |
| xCoords.appendf("vec2(%s.x, 0.5)", floorVal); |
| |
| noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx); |
| fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(), |
| kVec2f_GrSLType); |
| noiseCode.append(".r;"); |
| } |
| |
| // Get permutation for x + 1 |
| { |
| SkString xCoords(""); |
| xCoords.appendf("vec2(%s.z, 0.5)", floorVal); |
| |
| noiseCode.appendf("\n\t%s.y = ", latticeIdx); |
| fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(), |
| kVec2f_GrSLType); |
| noiseCode.append(".r;"); |
| } |
| |
| #if defined(SK_BUILD_FOR_ANDROID) |
| // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). |
| // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit |
| // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 |
| // (or 0.484368 here). The following rounding operation prevents these precision issues from |
| // affecting the result of the noise by making sure that we only have multiples of 1/255. |
| // (Note that 1/255 is about 0.003921569, which is the value used here). |
| noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);", |
| latticeIdx, latticeIdx); |
| #endif |
| |
| // Get (x,y) coordinates with the permutated x |
| noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal); |
| |
| noiseCode.appendf("\n\n\tvec2 %s;", uv); |
| // Compute u, at offset (0,0) |
| { |
| SkString latticeCoords(""); |
| latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord); |
| noiseCode.appendf("\n\tvec4 %s = ", lattice); |
| fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), |
| kVec2f_GrSLType); |
| noiseCode.appendf(".bgra;\n\t%s.x = ", uv); |
| noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); |
| } |
| |
| noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal); |
| // Compute v, at offset (-1,0) |
| { |
| SkString latticeCoords(""); |
| latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord); |
| noiseCode.append("\n\tlattice = "); |
| fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), |
| kVec2f_GrSLType); |
| noiseCode.appendf(".bgra;\n\t%s.y = ", uv); |
| noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); |
| } |
| |
| // Compute 'a' as a linear interpolation of 'u' and 'v' |
| noiseCode.appendf("\n\tvec2 %s;", ab); |
| noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); |
| |
| noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal); |
| // Compute v, at offset (-1,-1) |
| { |
| SkString latticeCoords(""); |
| latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord); |
| noiseCode.append("\n\tlattice = "); |
| fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), |
| kVec2f_GrSLType); |
| noiseCode.appendf(".bgra;\n\t%s.y = ", uv); |
| noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); |
| } |
| |
| noiseCode.appendf("\n\t%s.x += 1.0;", fractVal); |
| // Compute u, at offset (0,-1) |
| { |
| SkString latticeCoords(""); |
| latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord); |
| noiseCode.append("\n\tlattice = "); |
| fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(), |
| kVec2f_GrSLType); |
| noiseCode.appendf(".bgra;\n\t%s.x = ", uv); |
| noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); |
| } |
| |
| // Compute 'b' as a linear interpolation of 'u' and 'v' |
| noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); |
| // Compute the noise as a linear interpolation of 'a' and 'b' |
| noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth); |
| |
| SkString noiseFuncName; |
| if (pne.stitchTiles()) { |
| fragBuilder->emitFunction(kFloat_GrSLType, |
| "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs), |
| gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName); |
| } else { |
| fragBuilder->emitFunction(kFloat_GrSLType, |
| "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs), |
| gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName); |
| } |
| |
| // There are rounding errors if the floor operation is not performed here |
| fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;", |
| noiseVec, vCoords.c_str(), baseFrequencyUni); |
| |
| // Clear the color accumulator |
| fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor); |
| |
| if (pne.stitchTiles()) { |
| // Set up TurbulenceInitial stitch values. |
| fragBuilder->codeAppendf("vec2 %s = %s;", stitchData, stitchDataUni); |
| } |
| |
| fragBuilder->codeAppendf("float %s = 1.0;", ratio); |
| |
| // Loop over all octaves |
| fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves()); |
| |
| fragBuilder->codeAppendf("%s += ", args.fOutputColor); |
| if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) { |
| fragBuilder->codeAppend("abs("); |
| } |
| if (pne.stitchTiles()) { |
| fragBuilder->codeAppendf( |
| "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s)," |
| "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))", |
| noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData, |
| noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData, |
| noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData, |
| noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData); |
| } else { |
| fragBuilder->codeAppendf( |
| "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s)," |
| "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))", |
| noiseFuncName.c_str(), chanCoordR, noiseVec, |
| noiseFuncName.c_str(), chanCoordG, noiseVec, |
| noiseFuncName.c_str(), chanCoordB, noiseVec, |
| noiseFuncName.c_str(), chanCoordA, noiseVec); |
| } |
| if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) { |
| fragBuilder->codeAppendf(")"); // end of "abs(" |
| } |
| fragBuilder->codeAppendf(" * %s;", ratio); |
| |
| fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec); |
| fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio); |
| |
| if (pne.stitchTiles()) { |
| fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData); |
| } |
| fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves |
| |
| if (pne.type() == SkPerlinNoiseShader::kFractalNoise_Type) { |
| // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 |
| // by fractalNoise and (turbulenceFunctionResult) by turbulence. |
| fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", |
| args.fOutputColor,args.fOutputColor); |
| } |
| |
| // Clamp values |
| fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor); |
| |
| // Pre-multiply the result |
| fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", |
| args.fOutputColor, args.fOutputColor, |
| args.fOutputColor, args.fOutputColor); |
| } |
| |
| void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>(); |
| |
| uint32_t key = turbulence.numOctaves(); |
| |
| key = key << 3; // Make room for next 3 bits |
| |
| switch (turbulence.type()) { |
| case SkPerlinNoiseShader::kFractalNoise_Type: |
| key |= 0x1; |
| break; |
| case SkPerlinNoiseShader::kTurbulence_Type: |
| key |= 0x2; |
| break; |
| default: |
| // leave key at 0 |
| break; |
| } |
| |
| if (turbulence.stitchTiles()) { |
| key |= 0x4; // Flip the 3rd bit if tile stitching is on |
| } |
| |
| b->add32(key); |
| } |
| |
| void GrGLPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& processor) { |
| INHERITED::onSetData(pdman, processor); |
| |
| const GrPerlinNoiseEffect& turbulence = processor.cast<GrPerlinNoiseEffect>(); |
| |
| const SkVector& baseFrequency = turbulence.baseFrequency(); |
| pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); |
| |
| if (turbulence.stitchTiles()) { |
| const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData(); |
| pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth), |
| SkIntToScalar(stitchData.fHeight)); |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| const GrFragmentProcessor* SkPerlinNoiseShader::asFragmentProcessor( |
| GrContext* context, |
| const SkMatrix& viewM, |
| const SkMatrix* externalLocalMatrix, |
| SkFilterQuality) const { |
| SkASSERT(context); |
| |
| SkMatrix localMatrix = this->getLocalMatrix(); |
| if (externalLocalMatrix) { |
| localMatrix.preConcat(*externalLocalMatrix); |
| } |
| |
| SkMatrix matrix = viewM; |
| matrix.preConcat(localMatrix); |
| |
| if (0 == fNumOctaves) { |
| if (kFractalNoise_Type == fType) { |
| // Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2) |
| SkAutoTUnref<const GrFragmentProcessor> inner( |
| GrConstColorProcessor::Create(0x80404040, |
| GrConstColorProcessor::kModulateRGBA_InputMode)); |
| return GrFragmentProcessor::MulOutputByInputAlpha(inner); |
| } |
| // Emit zero. |
| return GrConstColorProcessor::Create(0x0, GrConstColorProcessor::kIgnore_InputMode); |
| } |
| |
| // Either we don't stitch tiles, either we have a valid tile size |
| SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); |
| |
| SkPerlinNoiseShader::PaintingData* paintingData = |
| new PaintingData(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix); |
| SkAutoTUnref<GrTexture> permutationsTexture( |
| GrRefCachedBitmapTexture(context, paintingData->getPermutationsBitmap(), |
| GrTextureParams::ClampNoFilter())); |
| SkAutoTUnref<GrTexture> noiseTexture( |
| GrRefCachedBitmapTexture(context, paintingData->getNoiseBitmap(), |
| GrTextureParams::ClampNoFilter())); |
| |
| SkMatrix m = viewM; |
| m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1); |
| m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1); |
| if ((permutationsTexture) && (noiseTexture)) { |
| SkAutoTUnref<GrFragmentProcessor> inner( |
| GrPerlinNoiseEffect::Create(fType, |
| fNumOctaves, |
| fStitchTiles, |
| paintingData, |
| permutationsTexture, noiseTexture, |
| m)); |
| return GrFragmentProcessor::MulOutputByInputAlpha(inner); |
| } |
| delete paintingData; |
| return nullptr; |
| } |
| |
| #endif |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkPerlinNoiseShader::toString(SkString* str) const { |
| str->append("SkPerlinNoiseShader: ("); |
| |
| str->append("type: "); |
| switch (fType) { |
| case kFractalNoise_Type: |
| str->append("\"fractal noise\""); |
| break; |
| case kTurbulence_Type: |
| str->append("\"turbulence\""); |
| break; |
| default: |
| str->append("\"unknown\""); |
| break; |
| } |
| str->append(" base frequency: ("); |
| str->appendScalar(fBaseFrequencyX); |
| str->append(", "); |
| str->appendScalar(fBaseFrequencyY); |
| str->append(") number of octaves: "); |
| str->appendS32(fNumOctaves); |
| str->append(" seed: "); |
| str->appendScalar(fSeed); |
| str->append(" stitch tiles: "); |
| str->append(fStitchTiles ? "true " : "false "); |
| |
| this->INHERITED::toString(str); |
| |
| str->append(")"); |
| } |
| #endif |