| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "DMSrcSink.h" |
| #include "SamplePipeControllers.h" |
| #include "SkAndroidCodec.h" |
| #include "SkCodec.h" |
| #include "SkCodecTools.h" |
| #include "SkCommonFlags.h" |
| #include "SkData.h" |
| #include "SkDocument.h" |
| #include "SkError.h" |
| #include "SkFunction.h" |
| #include "SkImageGenerator.h" |
| #include "SkMultiPictureDraw.h" |
| #include "SkNullCanvas.h" |
| #include "SkOSFile.h" |
| #include "SkPictureData.h" |
| #include "SkPictureRecorder.h" |
| #include "SkRandom.h" |
| #include "SkRecordDraw.h" |
| #include "SkRecorder.h" |
| #include "SkRemote.h" |
| #include "SkSVGCanvas.h" |
| #include "SkStream.h" |
| #include "SkTLogic.h" |
| #include "SkXMLWriter.h" |
| #include "SkSwizzler.h" |
| |
| DEFINE_bool(multiPage, false, "For document-type backends, render the source" |
| " into multiple pages"); |
| |
| static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) { |
| SkAutoTUnref<SkData> encoded(SkData::NewWithCopy(src, size)); |
| return encoded && SkDEPRECATED_InstallDiscardablePixelRef(encoded, dst); |
| } |
| |
| namespace DM { |
| |
| GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} |
| |
| Error GMSrc::draw(SkCanvas* canvas) const { |
| SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); |
| canvas->concat(gm->getInitialTransform()); |
| gm->draw(canvas); |
| return ""; |
| } |
| |
| SkISize GMSrc::size() const { |
| SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); |
| return gm->getISize(); |
| } |
| |
| Name GMSrc::name() const { |
| SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); |
| return gm->getName(); |
| } |
| |
| void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { |
| SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr)); |
| gm->modifyGrContextOptions(options); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| BRDSrc::BRDSrc(Path path, SkBitmapRegionDecoderInterface::Strategy strategy, Mode mode, |
| CodecSrc::DstColorType dstColorType, uint32_t sampleSize) |
| : fPath(path) |
| , fStrategy(strategy) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fSampleSize(sampleSize) |
| {} |
| |
| bool BRDSrc::veto(SinkFlags flags) const { |
| // No need to test to non-raster or indirect backends. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| static SkBitmapRegionDecoderInterface* create_brd(Path path, |
| SkBitmapRegionDecoderInterface::Strategy strategy) { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str())); |
| if (!encoded) { |
| return NULL; |
| } |
| return SkBitmapRegionDecoderInterface::CreateBitmapRegionDecoder(encoded, strategy); |
| } |
| |
| Error BRDSrc::draw(SkCanvas* canvas) const { |
| SkColorType colorType = canvas->imageInfo().colorType(); |
| if (kRGB_565_SkColorType == colorType && |
| CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) { |
| return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); |
| } |
| switch (fDstColorType) { |
| case CodecSrc::kGetFromCanvas_DstColorType: |
| break; |
| case CodecSrc::kIndex8_Always_DstColorType: |
| colorType = kIndex_8_SkColorType; |
| break; |
| case CodecSrc::kGrayscale_Always_DstColorType: |
| colorType = kGray_8_SkColorType; |
| break; |
| } |
| |
| SkAutoTDelete<SkBitmapRegionDecoderInterface> brd(create_brd(fPath, fStrategy)); |
| if (nullptr == brd.get()) { |
| return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str())); |
| } |
| |
| if (!brd->conversionSupported(colorType)) { |
| return Error::Nonfatal("Cannot convert to color type.\n"); |
| } |
| |
| const uint32_t width = brd->width(); |
| const uint32_t height = brd->height(); |
| // Visually inspecting very small output images is not necessary. |
| if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) { |
| return Error::Nonfatal("Scaling very small images is uninteresting."); |
| } |
| switch (fMode) { |
| case kFullImage_Mode: { |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height), |
| fSampleSize, colorType, false)) { |
| return "Cannot decode (full) region.\n"; |
| } |
| if (colorType != bitmap.colorType()) { |
| return Error::Nonfatal("Cannot convert to color type.\n"); |
| } |
| canvas->drawBitmap(bitmap, 0, 0); |
| return ""; |
| } |
| case kDivisor_Mode: { |
| const uint32_t divisor = 2; |
| if (width < divisor || height < divisor) { |
| return Error::Nonfatal("Divisor is larger than image dimension.\n"); |
| } |
| |
| // Use a border to test subsets that extend outside the image. |
| // We will not allow the border to be larger than the image dimensions. Allowing |
| // these large borders causes off by one errors that indicate a problem with the |
| // test suite, not a problem with the implementation. |
| const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor); |
| const uint32_t scaledBorder = SkTMin(5u, maxBorder); |
| const uint32_t unscaledBorder = scaledBorder * fSampleSize; |
| |
| // We may need to clear the canvas to avoid uninitialized memory. |
| // Assume we are scaling a 780x780 image with sampleSize = 8. |
| // The output image should be 97x97. |
| // Each subset will be 390x390. |
| // Each scaled subset be 48x48. |
| // Four scaled subsets will only fill a 96x96 image. |
| // The bottom row and last column will not be touched. |
| // This is an unfortunate result of our rounding rules when scaling. |
| // Maybe we need to consider testing scaled subsets without trying to |
| // combine them to match the full scaled image? Or maybe this is the |
| // best we can do? |
| canvas->clear(0); |
| |
| for (uint32_t x = 0; x < divisor; x++) { |
| for (uint32_t y = 0; y < divisor; y++) { |
| // Calculate the subset dimensions |
| uint32_t subsetWidth = width / divisor; |
| uint32_t subsetHeight = height / divisor; |
| const int left = x * subsetWidth; |
| const int top = y * subsetHeight; |
| |
| // Increase the size of the last subset in each row or column, when the |
| // divisor does not divide evenly into the image dimensions |
| subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; |
| subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; |
| |
| // Increase the size of the subset in order to have a border on each side |
| const int decodeLeft = left - unscaledBorder; |
| const int decodeTop = top - unscaledBorder; |
| const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2; |
| const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2; |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft, |
| decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false)) { |
| return "Cannot decode region.\n"; |
| } |
| if (colorType != bitmap.colorType()) { |
| return Error::Nonfatal("Cannot convert to color type.\n"); |
| } |
| |
| canvas->drawBitmapRect(bitmap, |
| SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder, |
| (SkScalar) (subsetWidth / fSampleSize), |
| (SkScalar) (subsetHeight / fSampleSize)), |
| SkRect::MakeXYWH((SkScalar) (left / fSampleSize), |
| (SkScalar) (top / fSampleSize), |
| (SkScalar) (subsetWidth / fSampleSize), |
| (SkScalar) (subsetHeight / fSampleSize)), |
| nullptr); |
| } |
| } |
| return ""; |
| } |
| default: |
| SkASSERT(false); |
| return "Error: Should not be reached.\n"; |
| } |
| } |
| |
| SkISize BRDSrc::size() const { |
| SkAutoTDelete<SkBitmapRegionDecoderInterface> brd(create_brd(fPath, fStrategy)); |
| if (brd) { |
| return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize), |
| SkTMax(1, brd->height() / (int) fSampleSize)); |
| } |
| return SkISize::Make(0, 0); |
| } |
| |
| static SkString get_scaled_name(const Path& path, float scale) { |
| return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale); |
| } |
| |
| Name BRDSrc::name() const { |
| // We will replicate the names used by CodecSrc so that images can |
| // be compared in Gold. |
| if (1 == fSampleSize) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, get_scale_from_sample_size(fSampleSize)); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, float scale) |
| : fPath(path) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fScale(scale) |
| {} |
| |
| bool CodecSrc::veto(SinkFlags flags) const { |
| // No need to test decoding to non-raster or indirect backend. |
| // TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to |
| // let the GPU handle it. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| bool get_decode_info(SkImageInfo* decodeInfo, const SkImageInfo& defaultInfo, |
| SkColorType canvasColorType, CodecSrc::DstColorType dstColorType) { |
| switch (dstColorType) { |
| case CodecSrc::kIndex8_Always_DstColorType: |
| if (kRGB_565_SkColorType == canvasColorType) { |
| return false; |
| } |
| *decodeInfo = defaultInfo.makeColorType(kIndex_8_SkColorType); |
| break; |
| case CodecSrc::kGrayscale_Always_DstColorType: |
| if (kRGB_565_SkColorType == canvasColorType) { |
| return false; |
| } |
| *decodeInfo = defaultInfo.makeColorType(kGray_8_SkColorType); |
| break; |
| default: |
| *decodeInfo = defaultInfo.makeColorType(canvasColorType); |
| break; |
| } |
| |
| // FIXME: Currently we cannot draw unpremultiplied sources. |
| if (decodeInfo->alphaType() == kUnpremul_SkAlphaType) { |
| *decodeInfo = decodeInfo->makeAlphaType(kPremul_SkAlphaType); |
| } |
| return true; |
| } |
| |
| Error CodecSrc::draw(SkCanvas* canvas) const { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded)); |
| if (nullptr == codec.get()) { |
| return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo decodeInfo; |
| if (!get_decode_info(&decodeInfo, codec->getInfo(), canvas->imageInfo().colorType(), |
| fDstColorType)) { |
| return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); |
| } |
| |
| // Try to scale the image if it is desired |
| SkISize size = codec->getScaledDimensions(fScale); |
| if (size == decodeInfo.dimensions() && 1.0f != fScale) { |
| return Error::Nonfatal("Test without scaling is uninteresting."); |
| } |
| |
| // Visually inspecting very small output images is not necessary. We will |
| // cover these cases in unit testing. |
| if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) { |
| return Error::Nonfatal("Scaling very small images is uninteresting."); |
| } |
| decodeInfo = decodeInfo.makeWH(size.width(), size.height()); |
| |
| // Construct a color table for the decode if necessary |
| SkAutoTUnref<SkColorTable> colorTable(nullptr); |
| SkPMColor* colorPtr = nullptr; |
| int* colorCountPtr = nullptr; |
| int maxColors = 256; |
| if (kIndex_8_SkColorType == decodeInfo.colorType()) { |
| SkPMColor colors[256]; |
| colorTable.reset(new SkColorTable(colors, maxColors)); |
| colorPtr = const_cast<SkPMColor*>(colorTable->readColors()); |
| colorCountPtr = &maxColors; |
| } |
| |
| SkBitmap bitmap; |
| if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) { |
| return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), |
| decodeInfo.width(), decodeInfo.height()); |
| } |
| |
| switch (fMode) { |
| case kCodec_Mode: { |
| switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), nullptr, |
| colorPtr, colorCountPtr)) { |
| case SkCodec::kSuccess: |
| // We consider incomplete to be valid, since we should still decode what is |
| // available. |
| case SkCodec::kIncompleteInput: |
| break; |
| case SkCodec::kInvalidConversion: |
| return Error::Nonfatal("Incompatible colortype conversion"); |
| default: |
| // Everything else is considered a failure. |
| return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| canvas->drawBitmap(bitmap, 0, 0); |
| break; |
| } |
| case kScanline_Mode: { |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, |
| colorCountPtr)) { |
| return Error::Nonfatal("Could not start scanline decoder"); |
| } |
| |
| void* dst = bitmap.getAddr(0, 0); |
| size_t rowBytes = bitmap.rowBytes(); |
| uint32_t height = decodeInfo.height(); |
| switch (codec->getScanlineOrder()) { |
| case SkCodec::kTopDown_SkScanlineOrder: |
| case SkCodec::kBottomUp_SkScanlineOrder: |
| case SkCodec::kNone_SkScanlineOrder: |
| // We do not need to check the return value. On an incomplete |
| // image, memory will be filled with a default value. |
| codec->getScanlines(dst, height, rowBytes); |
| break; |
| case SkCodec::kOutOfOrder_SkScanlineOrder: { |
| for (int y = 0; y < decodeInfo.height(); y++) { |
| int dstY = codec->outputScanline(y); |
| void* dstPtr = bitmap.getAddr(0, dstY); |
| // We complete the loop, even if this call begins to fail |
| // due to an incomplete image. This ensures any uninitialized |
| // memory will be filled with the proper value. |
| codec->getScanlines(dstPtr, 1, bitmap.rowBytes()); |
| } |
| break; |
| } |
| } |
| |
| canvas->drawBitmap(bitmap, 0, 0); |
| break; |
| } |
| case kScanline_Subset_Mode: { |
| //this mode decodes the image in divisor*divisor subsets, using a scanline decoder |
| const int divisor = 2; |
| const int w = decodeInfo.width(); |
| const int h = decodeInfo.height(); |
| if (divisor > w || divisor > h) { |
| return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big" |
| "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), w, h)); |
| } |
| const int subsetWidth = w/divisor; |
| const int subsetHeight = h/divisor; |
| // One of our subsets will be larger to contain any pixels that do not divide evenly. |
| const int extraX = w % divisor; |
| const int extraY = h % divisor; |
| /* |
| * if w or h are not evenly divided by divisor need to adjust width and height of end |
| * subsets to cover entire image. |
| * Add extraX and extraY to largestSubsetBm's width and height to adjust width |
| * and height of end subsets. |
| * subsetBm is extracted from largestSubsetBm. |
| * subsetBm's size is determined based on the current subset and may be larger for end |
| * subsets. |
| */ |
| SkImageInfo largestSubsetDecodeInfo = |
| decodeInfo.makeWH(subsetWidth + extraX, subsetHeight + extraY); |
| SkBitmap largestSubsetBm; |
| if (!largestSubsetBm.tryAllocPixels(largestSubsetDecodeInfo, nullptr, |
| colorTable.get())) { |
| return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), |
| largestSubsetDecodeInfo.width(), largestSubsetDecodeInfo.height()); |
| } |
| for (int col = 0; col < divisor; col++) { |
| //currentSubsetWidth may be larger than subsetWidth for rightmost subsets |
| const int currentSubsetWidth = (col + 1 == divisor) ? |
| subsetWidth + extraX : subsetWidth; |
| const int x = col * subsetWidth; |
| for (int row = 0; row < divisor; row++) { |
| //currentSubsetHeight may be larger than subsetHeight for bottom subsets |
| const int currentSubsetHeight = (row + 1 == divisor) ? |
| subsetHeight + extraY : subsetHeight; |
| const int y = row * subsetHeight; |
| //create scanline decoder for each subset |
| SkCodec::Options options; |
| SkIRect subset = SkIRect::MakeXYWH(x, 0, currentSubsetWidth, h); |
| options.fSubset = ⊂ |
| // TODO (msarett): Support this mode for all scanline orderings. |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &options, |
| colorPtr, colorCountPtr) || |
| SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) { |
| if (x == 0 && y == 0) { |
| //first try, image may not be compatible |
| return Error::Nonfatal("Could not start top-down scanline decoder"); |
| } else { |
| return "Error scanline decoder is nullptr"; |
| } |
| } |
| // Skip to the first line of subset. We ignore the result value here. |
| // If the skip value fails, this will indicate an incomplete image. |
| // This means that the call to getScanlines() will also fail, but it |
| // will fill the buffer with a default value, so we can still draw the |
| // image. |
| codec->skipScanlines(y); |
| |
| //create and set size of subsetBm |
| SkBitmap subsetBm; |
| SkIRect bounds = SkIRect::MakeWH(currentSubsetWidth, currentSubsetHeight); |
| SkAssertResult(largestSubsetBm.extractSubset(&subsetBm, bounds)); |
| SkAutoLockPixels autolock(subsetBm, true); |
| codec->getScanlines(subsetBm.getAddr(0, 0), currentSubsetHeight, |
| subsetBm.rowBytes()); |
| subsetBm.notifyPixelsChanged(); |
| canvas->drawBitmap(subsetBm, SkIntToScalar(x), SkIntToScalar(y)); |
| } |
| } |
| break; |
| } |
| case kStripe_Mode: { |
| const int height = decodeInfo.height(); |
| // This value is chosen arbitrarily. We exercise more cases by choosing a value that |
| // does not align with image blocks. |
| const int stripeHeight = 37; |
| const int numStripes = (height + stripeHeight - 1) / stripeHeight; |
| |
| // Decode odd stripes |
| if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr, |
| colorCountPtr) |
| || SkCodec::kTopDown_SkScanlineOrder != codec->getScanlineOrder()) { |
| // This mode was designed to test the new skip scanlines API in libjpeg-turbo. |
| // Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting |
| // to run this test for image types that do not have this scanline ordering. |
| return Error::Nonfatal("Could not start top-down scanline decoder"); |
| } |
| |
| for (int i = 0; i < numStripes; i += 2) { |
| // Skip a stripe |
| const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); |
| codec->skipScanlines(linesToSkip); |
| |
| // Read a stripe |
| const int startY = (i + 1) * stripeHeight; |
| const int linesToRead = SkTMin(stripeHeight, height - startY); |
| if (linesToRead > 0) { |
| codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); |
| } |
| } |
| |
| // Decode even stripes |
| const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr, |
| colorPtr, colorCountPtr); |
| if (SkCodec::kSuccess != startResult) { |
| return "Failed to restart scanline decoder with same parameters."; |
| } |
| for (int i = 0; i < numStripes; i += 2) { |
| // Read a stripe |
| const int startY = i * stripeHeight; |
| const int linesToRead = SkTMin(stripeHeight, height - startY); |
| codec->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); |
| |
| // Skip a stripe |
| const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); |
| if (linesToSkip > 0) { |
| codec->skipScanlines(linesToSkip); |
| } |
| } |
| canvas->drawBitmap(bitmap, 0, 0); |
| break; |
| } |
| case kSubset_Mode: { |
| // Arbitrarily choose a divisor. |
| int divisor = 2; |
| // Total width/height of the image. |
| const int W = codec->getInfo().width(); |
| const int H = codec->getInfo().height(); |
| if (divisor > W || divisor > H) { |
| return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big " |
| "for %s with dimensions (%d x %d)", divisor, |
| fPath.c_str(), W, H)); |
| } |
| // subset dimensions |
| // SkWebpCodec, the only one that supports subsets, requires even top/left boundaries. |
| const int w = SkAlign2(W / divisor); |
| const int h = SkAlign2(H / divisor); |
| SkIRect subset; |
| SkCodec::Options opts; |
| opts.fSubset = ⊂ |
| SkBitmap subsetBm; |
| // We will reuse pixel memory from bitmap. |
| void* pixels = bitmap.getPixels(); |
| // Keep track of left and top (for drawing subsetBm into canvas). We could use |
| // fScale * x and fScale * y, but we want integers such that the next subset will start |
| // where the last one ended. So we'll add decodeInfo.width() and height(). |
| int left = 0; |
| for (int x = 0; x < W; x += w) { |
| int top = 0; |
| for (int y = 0; y < H; y+= h) { |
| // Do not make the subset go off the edge of the image. |
| const int preScaleW = SkTMin(w, W - x); |
| const int preScaleH = SkTMin(h, H - y); |
| subset.setXYWH(x, y, preScaleW, preScaleH); |
| // And scale |
| // FIXME: Should we have a version of getScaledDimensions that takes a subset |
| // into account? |
| decodeInfo = decodeInfo.makeWH( |
| SkTMax(1, SkScalarRoundToInt(preScaleW * fScale)), |
| SkTMax(1, SkScalarRoundToInt(preScaleH * fScale))); |
| size_t rowBytes = decodeInfo.minRowBytes(); |
| if (!subsetBm.installPixels(decodeInfo, pixels, rowBytes, colorTable.get(), |
| nullptr, nullptr)) { |
| return SkStringPrintf("could not install pixels for %s.", fPath.c_str()); |
| } |
| const SkCodec::Result result = codec->getPixels(decodeInfo, pixels, rowBytes, |
| &opts, colorPtr, colorCountPtr); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| break; |
| case SkCodec::kInvalidConversion: |
| if (0 == (x|y)) { |
| // First subset is okay to return unimplemented. |
| return Error::Nonfatal("Incompatible colortype conversion"); |
| } |
| // If the first subset succeeded, a later one should not fail. |
| // fall through to failure |
| case SkCodec::kUnimplemented: |
| if (0 == (x|y)) { |
| // First subset is okay to return unimplemented. |
| return Error::Nonfatal("subset codec not supported"); |
| } |
| // If the first subset succeeded, why would a later one fail? |
| // fall through to failure |
| default: |
| return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) " |
| "from %s with dimensions (%d x %d)\t error %d", |
| x, y, decodeInfo.width(), decodeInfo.height(), |
| fPath.c_str(), W, H, result); |
| } |
| canvas->drawBitmap(subsetBm, SkIntToScalar(left), SkIntToScalar(top)); |
| // translate by the scaled height. |
| top += decodeInfo.height(); |
| } |
| // translate by the scaled width. |
| left += decodeInfo.width(); |
| } |
| return ""; |
| } |
| } |
| return ""; |
| } |
| |
| SkISize CodecSrc::size() const { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); |
| SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded)); |
| if (nullptr == codec) { |
| return SkISize::Make(0, 0); |
| } |
| return codec->getScaledDimensions(fScale); |
| } |
| |
| Name CodecSrc::name() const { |
| if (1.0f == fScale) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, fScale); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| AndroidCodecSrc::AndroidCodecSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, |
| int sampleSize) |
| : fPath(path) |
| , fMode(mode) |
| , fDstColorType(dstColorType) |
| , fSampleSize(sampleSize) |
| {} |
| |
| bool AndroidCodecSrc::veto(SinkFlags flags) const { |
| // No need to test decoding to non-raster or indirect backend. |
| // TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to |
| // let the GPU handle it. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Error AndroidCodecSrc::draw(SkCanvas* canvas) const { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded)); |
| if (nullptr == codec.get()) { |
| return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str()); |
| } |
| |
| SkImageInfo decodeInfo; |
| if (!get_decode_info(&decodeInfo, codec->getInfo(), canvas->imageInfo().colorType(), |
| fDstColorType)) { |
| return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); |
| } |
| |
| // Scale the image if it is desired. |
| SkISize size = codec->getSampledDimensions(fSampleSize); |
| |
| // Visually inspecting very small output images is not necessary. We will |
| // cover these cases in unit testing. |
| if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) { |
| return Error::Nonfatal("Scaling very small images is uninteresting."); |
| } |
| decodeInfo = decodeInfo.makeWH(size.width(), size.height()); |
| |
| // Construct a color table for the decode if necessary |
| SkAutoTUnref<SkColorTable> colorTable(nullptr); |
| SkPMColor* colorPtr = nullptr; |
| int* colorCountPtr = nullptr; |
| int maxColors = 256; |
| if (kIndex_8_SkColorType == decodeInfo.colorType()) { |
| SkPMColor colors[256]; |
| colorTable.reset(new SkColorTable(colors, maxColors)); |
| colorPtr = const_cast<SkPMColor*>(colorTable->readColors()); |
| colorCountPtr = &maxColors; |
| } |
| |
| SkBitmap bitmap; |
| if (!bitmap.tryAllocPixels(decodeInfo, nullptr, colorTable.get())) { |
| return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), |
| decodeInfo.width(), decodeInfo.height()); |
| } |
| |
| // Create options for the codec. |
| SkAndroidCodec::AndroidOptions options; |
| options.fColorPtr = colorPtr; |
| options.fColorCount = colorCountPtr; |
| options.fSampleSize = fSampleSize; |
| |
| switch (fMode) { |
| case kFullImage_Mode: { |
| switch (codec->getAndroidPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), |
| &options)) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| break; |
| case SkCodec::kInvalidConversion: |
| return Error::Nonfatal("Cannot convert to requested color type.\n"); |
| default: |
| return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| canvas->drawBitmap(bitmap, 0, 0); |
| return ""; |
| } |
| case kDivisor_Mode: { |
| const int width = codec->getInfo().width(); |
| const int height = codec->getInfo().height(); |
| const int divisor = 2; |
| if (width < divisor || height < divisor) { |
| return Error::Nonfatal("Divisor is larger than image dimension.\n"); |
| } |
| |
| // Keep track of the final decoded dimensions. |
| int finalScaledWidth = 0; |
| int finalScaledHeight = 0; |
| for (int x = 0; x < divisor; x++) { |
| for (int y = 0; y < divisor; y++) { |
| // Calculate the subset dimensions |
| int subsetWidth = width / divisor; |
| int subsetHeight = height / divisor; |
| const int left = x * subsetWidth; |
| const int top = y * subsetHeight; |
| |
| // Increase the size of the last subset in each row or column, when the |
| // divisor does not divide evenly into the image dimensions |
| subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0; |
| subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0; |
| SkIRect subset = SkIRect::MakeXYWH(left, top, subsetWidth, subsetHeight); |
| if (!codec->getSupportedSubset(&subset)) { |
| return "Could not get supported subset to decode.\n"; |
| } |
| options.fSubset = ⊂ |
| const int scaledWidthOffset = subset.left() / fSampleSize; |
| const int scaledHeightOffset = subset.top() / fSampleSize; |
| void* pixels = bitmap.getAddr(scaledWidthOffset, scaledHeightOffset); |
| SkISize scaledSubsetSize = codec->getSampledSubsetDimensions(fSampleSize, |
| subset); |
| SkImageInfo subsetDecodeInfo = decodeInfo.makeWH(scaledSubsetSize.width(), |
| scaledSubsetSize.height()); |
| |
| if (x + 1 == divisor && y + 1 == divisor) { |
| finalScaledWidth = scaledWidthOffset + scaledSubsetSize.width(); |
| finalScaledHeight = scaledHeightOffset + scaledSubsetSize.height(); |
| } |
| |
| switch (codec->getAndroidPixels(subsetDecodeInfo, pixels, bitmap.rowBytes(), |
| &options)) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| break; |
| case SkCodec::kInvalidConversion: |
| return Error::Nonfatal("Cannot convert to requested color type.\n"); |
| default: |
| return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); |
| } |
| } |
| } |
| |
| SkRect rect = SkRect::MakeXYWH(0, 0, (SkScalar) finalScaledWidth, |
| (SkScalar) finalScaledHeight); |
| canvas->drawBitmapRect(bitmap, rect, rect, nullptr); |
| return ""; |
| } |
| default: |
| SkASSERT(false); |
| return "Error: Should not be reached.\n"; |
| } |
| } |
| |
| SkISize AndroidCodecSrc::size() const { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); |
| SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded)); |
| if (nullptr == codec) { |
| return SkISize::Make(0, 0); |
| } |
| return codec->getSampledDimensions(fSampleSize); |
| } |
| |
| Name AndroidCodecSrc::name() const { |
| // We will replicate the names used by CodecSrc so that images can |
| // be compared in Gold. |
| if (1 == fSampleSize) { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| return get_scaled_name(fPath, get_scale_from_sample_size(fSampleSize)); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {} |
| |
| bool ImageSrc::veto(SinkFlags flags) const { |
| // No need to test decoding to non-raster or indirect backend. |
| // TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV. |
| return flags.type != SinkFlags::kRaster |
| || flags.approach != SinkFlags::kDirect; |
| } |
| |
| Error ImageSrc::draw(SkCanvas* canvas) const { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); |
| if (!encoded) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| const SkColorType dstColorType = canvas->imageInfo().colorType(); |
| if (fDivisor == 0) { |
| // Decode the full image. |
| SkBitmap bitmap; |
| if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, |
| dstColorType, SkImageDecoder::kDecodePixels_Mode)) { |
| return SkStringPrintf("Couldn't decode %s.", fPath.c_str()); |
| } |
| if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) { |
| // Do not draw a bitmap with alpha to a destination without alpha. |
| return Error::Nonfatal("Uninteresting to decode image with alpha into 565."); |
| } |
| encoded.reset((SkData*)nullptr); // Might as well drop this when we're done with it. |
| canvas->drawBitmap(bitmap, 0,0); |
| return ""; |
| } |
| // Decode subsets. This is a little involved. |
| SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded)); |
| SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream.get())); |
| if (!decoder) { |
| return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str()); |
| } |
| stream->rewind(); |
| int w,h; |
| if (!decoder->buildTileIndex(stream.detach(), &w, &h)) { |
| return Error::Nonfatal("Subset decoding not supported."); |
| } |
| |
| // Divide the image into subsets that cover the entire image. |
| if (fDivisor > w || fDivisor > h) { |
| return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big" |
| "for %s with dimensions (%d x %d)", fDivisor, fPath.c_str(), w, h)); |
| } |
| const int subsetWidth = w / fDivisor, |
| subsetHeight = h / fDivisor; |
| for (int y = 0; y < h; y += subsetHeight) { |
| for (int x = 0; x < w; x += subsetWidth) { |
| SkBitmap subset; |
| SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight); |
| if (!decoder->decodeSubset(&subset, rect, dstColorType)) { |
| return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).", |
| x, y, x+subsetWidth, y+subsetHeight); |
| } |
| if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) { |
| // Do not draw a bitmap with alpha to a destination without alpha. |
| // This is not an error, but there is nothing interesting to show. |
| |
| // This should only happen on the first iteration through the loop. |
| SkASSERT(0 == x && 0 == y); |
| |
| return Error::Nonfatal("Uninteresting to decode image with alpha into 565."); |
| } |
| canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y)); |
| } |
| } |
| return ""; |
| } |
| |
| SkISize ImageSrc::size() const { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(fPath.c_str())); |
| SkBitmap bitmap; |
| if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(), |
| encoded->size(), |
| &bitmap, |
| kUnknown_SkColorType, |
| SkImageDecoder::kDecodeBounds_Mode)) { |
| return SkISize::Make(0,0); |
| } |
| return bitmap.dimensions(); |
| } |
| |
| Name ImageSrc::name() const { |
| return SkOSPath::Basename(fPath.c_str()); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static const SkRect kSKPViewport = {0,0, 1000,1000}; |
| |
| SKPSrc::SKPSrc(Path path) : fPath(path) {} |
| |
| Error SKPSrc::draw(SkCanvas* canvas) const { |
| SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str())); |
| if (!stream) { |
| return SkStringPrintf("Couldn't read %s.", fPath.c_str()); |
| } |
| SkAutoTUnref<SkPicture> pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap)); |
| if (!pic) { |
| return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str()); |
| } |
| stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it. |
| |
| canvas->clipRect(kSKPViewport); |
| canvas->drawPicture(pic); |
| return ""; |
| } |
| |
| SkISize SKPSrc::size() const { |
| SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str())); |
| if (!stream) { |
| return SkISize::Make(0,0); |
| } |
| SkPictInfo info; |
| if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) { |
| return SkISize::Make(0,0); |
| } |
| SkRect viewport = kSKPViewport; |
| if (!viewport.intersect(info.fCullRect)) { |
| return SkISize::Make(0,0); |
| } |
| return viewport.roundOut().size(); |
| } |
| |
| Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { |
| SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas()); |
| return src.draw(canvas); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); |
| |
| GPUSink::GPUSink(GrContextFactory::GLContextType ct, |
| GrGLStandard api, |
| int samples, |
| bool diText, |
| bool threaded) |
| : fContextType(ct) |
| , fGpuAPI(api) |
| , fSampleCount(samples) |
| , fUseDIText(diText) |
| , fThreaded(threaded) {} |
| |
| int GPUSink::enclave() const { |
| return fThreaded ? kAnyThread_Enclave : kGPU_Enclave; |
| } |
| |
| void PreAbandonGpuContextErrorHandler(SkError, void*) {} |
| |
| DEFINE_bool(imm, false, "Run gpu configs in immediate mode."); |
| |
| Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { |
| GrContextOptions options; |
| if (FLAGS_imm) { |
| options.fImmediateMode = true; |
| } |
| src.modifyGrContextOptions(&options); |
| |
| GrContextFactory factory(options); |
| const SkISize size = src.size(); |
| const SkImageInfo info = |
| SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType); |
| SkAutoTUnref<SkSurface> surface( |
| NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDIText)); |
| if (!surface) { |
| return "Could not create a surface."; |
| } |
| if (FLAGS_preAbandonGpuContext) { |
| SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr); |
| factory.abandonContexts(); |
| } |
| SkCanvas* canvas = surface->getCanvas(); |
| Error err = src.draw(canvas); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| canvas->flush(); |
| if (FLAGS_gpuStats) { |
| canvas->getGrContext()->dumpCacheStats(log); |
| canvas->getGrContext()->dumpGpuStats(log); |
| } |
| dst->allocPixels(info); |
| canvas->readPixels(dst, 0, 0); |
| if (FLAGS_abandonGpuContext) { |
| factory.abandonContexts(); |
| } |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { |
| // Print the given DM:Src to a document, breaking on 8.5x11 pages. |
| SkASSERT(doc); |
| int width = src.size().width(), |
| height = src.size().height(); |
| |
| if (FLAGS_multiPage) { |
| const int kLetterWidth = 612, // 8.5 * 72 |
| kLetterHeight = 792; // 11 * 72 |
| const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth), |
| SkIntToScalar(kLetterHeight)); |
| |
| int xPages = ((width - 1) / kLetterWidth) + 1; |
| int yPages = ((height - 1) / kLetterHeight) + 1; |
| |
| for (int y = 0; y < yPages; ++y) { |
| for (int x = 0; x < xPages; ++x) { |
| int w = SkTMin(kLetterWidth, width - (x * kLetterWidth)); |
| int h = SkTMin(kLetterHeight, height - (y * kLetterHeight)); |
| SkCanvas* canvas = |
| doc->beginPage(SkIntToScalar(w), SkIntToScalar(h)); |
| if (!canvas) { |
| return "SkDocument::beginPage(w,h) returned nullptr"; |
| } |
| canvas->clipRect(letter); |
| canvas->translate(-letter.width() * x, -letter.height() * y); |
| Error err = src.draw(canvas); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| doc->endPage(); |
| } |
| } |
| } else { |
| SkCanvas* canvas = |
| doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); |
| if (!canvas) { |
| return "SkDocument::beginPage(w,h) returned nullptr"; |
| } |
| Error err = src.draw(canvas); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| doc->endPage(); |
| } |
| if (!doc->close()) { |
| return "SkDocument::close() returned false"; |
| } |
| dst->flush(); |
| return ""; |
| } |
| |
| PDFSink::PDFSink(const char* rasterizer) : fRasterizer(rasterizer) {} |
| |
| Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkAutoTUnref<SkDocument> doc(SkDocument::CreatePDF(dst)); |
| if (!doc) { |
| return "SkDocument::CreatePDF() returned nullptr"; |
| } |
| SkTArray<SkDocument::Attribute> info; |
| info.emplace_back(SkString("Title"), src.name()); |
| info.emplace_back(SkString("Subject"), |
| SkString("rendering correctness test")); |
| info.emplace_back(SkString("Creator"), SkString("Skia/DM")); |
| |
| info.emplace_back(SkString("Keywords"), |
| SkStringPrintf("Rasterizer:%s;", fRasterizer)); |
| doc->setMetadata(info, nullptr, nullptr); |
| return draw_skdocument(src, doc.get(), dst); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| XPSSink::XPSSink() {} |
| |
| Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkAutoTUnref<SkDocument> doc(SkDocument::CreateXPS(dst)); |
| if (!doc) { |
| return "SkDocument::CreateXPS() returned nullptr"; |
| } |
| return draw_skdocument(src, doc.get(), dst); |
| } |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SKPSink::SKPSink() {} |
| |
| Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkSize size; |
| size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(size.width(), size.height())); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| SkAutoTUnref<SkPicture> pic(recorder.endRecording()); |
| pic->serialize(dst); |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| SVGSink::SVGSink() {} |
| |
| Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { |
| SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst)); |
| SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create( |
| SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), |
| xmlWriter)); |
| return src.draw(canvas); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} |
| |
| Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { |
| const SkISize size = src.size(); |
| // If there's an appropriate alpha type for this color type, use it, otherwise use premul. |
| SkAlphaType alphaType = kPremul_SkAlphaType; |
| (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); |
| |
| dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType)); |
| dst->eraseColor(SK_ColorTRANSPARENT); |
| SkCanvas canvas(*dst); |
| return src.draw(&canvas); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), |
| // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. |
| // Several examples below. |
| |
| static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, |
| SkISize size, SkFunction<Error(SkCanvas*)> draw) { |
| class ProxySrc : public Src { |
| public: |
| ProxySrc(SkISize size, SkFunction<Error(SkCanvas*)> draw) : fSize(size), fDraw(draw) {} |
| Error draw(SkCanvas* canvas) const override { return fDraw(canvas); } |
| Name name() const override { sk_throw(); return ""; } // Won't be called. |
| SkISize size() const override { return fSize; } |
| private: |
| SkISize fSize; |
| SkFunction<Error(SkCanvas*)> fDraw; |
| }; |
| return sink->draw(ProxySrc(size, draw), bitmap, stream, log); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { |
| SkRect bounds = SkRect::MakeIWH(srcW, srcH); |
| matrix->mapRect(&bounds); |
| matrix->postTranslate(-bounds.x(), -bounds.y()); |
| return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())); |
| } |
| |
| ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} |
| |
| Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| SkMatrix matrix = fMatrix; |
| SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); |
| return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| canvas->concat(matrix); |
| return src.draw(canvas); |
| }); |
| } |
| |
| // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. |
| // This should be pixel-preserving. |
| ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} |
| |
| Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| Error err = fSink->draw(src, bitmap, stream, log); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| SkMatrix inverse; |
| if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { |
| return "Cannot upright --matrix."; |
| } |
| SkMatrix upright = SkMatrix::I(); |
| upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); |
| upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); |
| upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); |
| upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); |
| |
| SkBitmap uprighted; |
| SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); |
| uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); |
| |
| SkCanvas canvas(uprighted); |
| canvas.concat(upright); |
| SkPaint paint; |
| paint.setXfermodeMode(SkXfermode::kSrc_Mode); |
| canvas.drawBitmap(*bitmap, 0, 0, &paint); |
| |
| *bitmap = uprighted; |
| bitmap->lockPixels(); |
| return ""; |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| PipeController controller(canvas, &SkImageDecoder::DecodeMemory); |
| SkGPipeWriter pipe; |
| const uint32_t kFlags = 0; |
| return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height())); |
| }); |
| } |
| |
| Error ViaRemote::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* target) { |
| SkAutoTDelete<SkRemote::Encoder> decoder(SkRemote::NewDecoder(target)); |
| SkAutoTDelete<SkRemote::Encoder> cache(fCache ? SkRemote::NewCachingEncoder(decoder) |
| : nullptr); |
| SkAutoTDelete<SkCanvas> canvas(SkRemote::NewCanvas(cache ? cache : decoder)); |
| return src.draw(canvas); |
| }); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| Error ViaSerialization::draw( |
| const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| // Record our Src into a picture. |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| SkAutoTUnref<SkPicture> pic(recorder.endRecording()); |
| |
| // Serialize it and then deserialize it. |
| SkDynamicMemoryWStream wStream; |
| pic->serialize(&wStream); |
| SkAutoTDelete<SkStream> rStream(wStream.detachAsStream()); |
| SkAutoTUnref<SkPicture> deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap)); |
| |
| return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { |
| canvas->drawPicture(deserialized); |
| return ""; |
| }); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) |
| : Via(sink) |
| , fW(w) |
| , fH(h) |
| , fFactory(factory) {} |
| |
| Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| SkPictureRecorder recorder; |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()), |
| fFactory.get())); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| SkAutoTUnref<SkPicture> pic(recorder.endRecordingAsPicture()); |
| |
| return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) { |
| const int xTiles = (size.width() + fW - 1) / fW, |
| yTiles = (size.height() + fH - 1) / fH; |
| SkMultiPictureDraw mpd(xTiles*yTiles); |
| SkTDArray<SkSurface*> surfaces; |
| surfaces.setReserve(xTiles*yTiles); |
| |
| SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); |
| for (int j = 0; j < yTiles; j++) { |
| for (int i = 0; i < xTiles; i++) { |
| // This lets our ultimate Sink determine the best kind of surface. |
| // E.g., if it's a GpuSink, the surfaces and images are textures. |
| SkSurface* s = canvas->newSurface(info); |
| if (!s) { |
| s = SkSurface::NewRaster(info); // Some canvases can't create surfaces. |
| } |
| surfaces.push(s); |
| SkCanvas* c = s->getCanvas(); |
| c->translate(SkIntToScalar(-i * fW), |
| SkIntToScalar(-j * fH)); // Line up the canvas with this tile. |
| mpd.add(c, pic); |
| } |
| } |
| mpd.draw(); |
| for (int j = 0; j < yTiles; j++) { |
| for (int i = 0; i < xTiles; i++) { |
| SkAutoTUnref<SkImage> image(surfaces[i+xTiles*j]->newImageSnapshot()); |
| canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); |
| } |
| } |
| surfaces.unrefAll(); |
| return ""; |
| }); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| // Draw the Src into two pictures, then draw the second picture into the wrapped Sink. |
| // This tests that any shortcuts we may take while recording that second picture are legal. |
| Error ViaSecondPicture::draw( |
| const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { |
| SkPictureRecorder recorder; |
| SkAutoTUnref<SkPicture> pic; |
| for (int i = 0; i < 2; i++) { |
| Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height()))); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| pic.reset(recorder.endRecordingAsPicture()); |
| } |
| canvas->drawPicture(pic); |
| return ""; |
| }); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| // Draw the Src twice. This can help exercise caching. |
| Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error { |
| for (int i = 0; i < 2; i++) { |
| SkAutoCanvasRestore acr(canvas, true/*save now*/); |
| canvas->clear(SK_ColorTRANSPARENT); |
| Error err = src.draw(canvas); |
| if (err.isEmpty()) { |
| return err; |
| } |
| } |
| return ""; |
| }); |
| } |
| |
| /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ |
| |
| // This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas. |
| // Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op. |
| // This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures. |
| struct DrawsAsSingletonPictures { |
| SkCanvas* fCanvas; |
| const SkDrawableList& fDrawables; |
| |
| template <typename T> |
| void draw(const T& op, SkCanvas* canvas) { |
| // We must pass SkMatrix::I() as our initial matrix. |
| // By default SkRecords::Draw() uses the canvas' matrix as its initial matrix, |
| // which would have the funky effect of applying transforms over and over. |
| SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I()); |
| d(op); |
| } |
| |
| // Draws get their own picture. |
| template <typename T> |
| SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) { |
| SkPictureRecorder rec; |
| this->draw(op, rec.beginRecording(SkRect::MakeLargest())); |
| SkAutoTUnref<SkPicture> pic(rec.endRecordingAsPicture()); |
| fCanvas->drawPicture(pic); |
| } |
| |
| // We'll just issue non-draws directly. |
| template <typename T> |
| skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) { |
| this->draw(op, fCanvas); |
| } |
| }; |
| |
| // Record Src into a picture, then record it into a macro picture with a sub-picture for each draw. |
| // Then play back that macro picture into our wrapped sink. |
| Error ViaSingletonPictures::draw( |
| const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { |
| auto size = src.size(); |
| return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { |
| // Use low-level (Skia-private) recording APIs so we can read the SkRecord. |
| SkRecord skr; |
| SkRecorder recorder(&skr, size.width(), size.height()); |
| Error err = src.draw(&recorder); |
| if (!err.isEmpty()) { |
| return err; |
| } |
| |
| // Record our macro-picture, with each draw op as its own sub-picture. |
| SkPictureRecorder macroRec; |
| SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()), |
| SkIntToScalar(size.height())); |
| |
| SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList()); |
| const SkDrawableList empty; |
| |
| DrawsAsSingletonPictures drawsAsSingletonPictures = { |
| macroCanvas, |
| drawables ? *drawables : empty, |
| }; |
| for (int i = 0; i < skr.count(); i++) { |
| skr.visit<void>(i, drawsAsSingletonPictures); |
| } |
| SkAutoTUnref<SkPicture> macroPic(macroRec.endRecordingAsPicture()); |
| |
| canvas->drawPicture(macroPic); |
| return ""; |
| }); |
| } |
| |
| } // namespace DM |