| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkOpts.h" |
| |
| #define SK_OPTS_NS sk_sse41 |
| #include "SkBlurImageFilter_opts.h" |
| #include "SkBlitRow_opts.h" |
| |
| #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| |
| namespace sk_sse41_new { |
| |
| // An SSE register holding at most 64 bits of useful data in the low lanes. |
| struct m64i { |
| __m128i v; |
| /*implicit*/ m64i(__m128i v) : v(v) {} |
| operator __m128i() const { return v; } |
| }; |
| |
| // Load 4, 2, or 1 constant pixels or coverages (4x replicated). |
| static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } |
| static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } |
| static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } |
| |
| static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } |
| static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } |
| static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } |
| |
| // Load 4, 2, or 1 variable pixels or coverages (4x replicated), |
| // incrementing the pointer past what we read. |
| static __m128i next4(const uint32_t*& ptr) { |
| auto r = _mm_loadu_si128((const __m128i*)ptr); |
| ptr += 4; |
| return r; |
| } |
| static m64i next2(const uint32_t*& ptr) { |
| auto r = _mm_loadl_epi64((const __m128i*)ptr); |
| ptr += 2; |
| return r; |
| } |
| static m64i next1(const uint32_t*& ptr) { |
| auto r = _mm_cvtsi32_si128(*ptr); |
| ptr += 1; |
| return r; |
| } |
| |
| // xyzw -> xxxx yyyy zzzz wwww |
| static __m128i replicate_coverage(__m128i xyzw) { |
| return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)); |
| } |
| |
| static __m128i next4(const uint8_t*& ptr) { |
| auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); |
| ptr += 4; |
| return r; |
| } |
| static m64i next2(const uint8_t*& ptr) { |
| auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); |
| ptr += 2; |
| return r; |
| } |
| static m64i next1(const uint8_t*& ptr) { |
| auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); |
| ptr += 1; |
| return r; |
| } |
| |
| // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
| template <typename Dst, typename Src, typename Cov, typename Fn> |
| static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
| // We don't want to muck with the callers' pointers, so we make them const and copy here. |
| Dst d = dst; |
| Src s = src; |
| Cov c = cov; |
| |
| // Writing this as a single while-loop helps hoist loop invariants from fn. |
| while (n) { |
| if (n >= 4) { |
| _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
| t += 4; |
| n -= 4; |
| continue; |
| } |
| if (n & 2) { |
| _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); |
| t += 2; |
| } |
| if (n & 1) { |
| *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); |
| } |
| return; |
| } |
| } |
| |
| // packed |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
| // unpacked |
| |
| // Everything on the packed side of the squiggly line deals with densely packed 8-bit data, |
| // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
| // |
| // Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, |
| // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage, |
| // where _ is a zero byte. |
| // |
| // Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
| // by unpacking arguments, calling fn, then packing the results. |
| // |
| // This lets us write most of our code in terms of unpacked inputs (considerably simpler) |
| // and all the packing and unpacking is handled automatically. |
| |
| template <typename Fn> |
| struct Adapt { |
| Fn fn; |
| |
| __m128i operator()(__m128i d, __m128i s, __m128i c) { |
| auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
| auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }; |
| return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), |
| fn(hi(d), hi(s), hi(c))); |
| } |
| |
| m64i operator()(const m64i& d, const m64i& s, const m64i& c) { |
| auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
| auto r = fn(lo(d), lo(s), lo(c)); |
| return _mm_packus_epi16(r, r); |
| } |
| }; |
| |
| template <typename Fn> |
| static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
| |
| // These helpers all work exclusively with unpacked 8-bit values, |
| // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. |
| |
| // Divide by 255 with rounding. |
| // (x+127)/255 == ((x+128)*257)>>16. |
| // Sometimes we can be more efficient by breaking this into two parts. |
| static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } |
| static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } |
| static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
| |
| // (x*y+127)/255, a byte multiply. |
| static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); } |
| |
| // (255 * x). |
| static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); } |
| |
| // (255 - x). |
| static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); } |
| |
| // ARGB argb -> AAAA aaaa |
| static __m128i alphas(__m128i px) { |
| const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
| const int _ = ~0; |
| return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); |
| } |
| |
| // SrcOver, with a constant source and full coverage. |
| static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
| // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
| // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. |
| |
| // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
| // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
| __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), |
| s_255_128 = div255_part1(mul255(s)), |
| A = inv(alphas(s)); |
| |
| const uint8_t cov = 0xff; |
| loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { |
| return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
| })); |
| } |
| |
| // SrcOver, with a constant source and variable coverage. |
| // If the source is opaque, SrcOver becomes Src. |
| static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
| const SkAlpha* cov, size_t covRB, |
| SkColor color, int w, int h) { |
| if (SkColorGetA(color) == 0xFF) { |
| const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
| while (h --> 0) { |
| loop(w, dst, (const SkPMColor*)dst, src, cov, |
| adapt([](__m128i d, __m128i s, __m128i c) { |
| // Src blend mode: a simple lerp from d to s by c. |
| // TODO: try a pmaddubsw version? |
| return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), |
| _mm_mullo_epi16( c ,s))); |
| })); |
| dst += dstRB / sizeof(*dst); |
| cov += covRB / sizeof(*cov); |
| } |
| } else { |
| const SkPMColor src = SkPreMultiplyColor(color); |
| while (h --> 0) { |
| loop(w, dst, (const SkPMColor*)dst, src, cov, |
| adapt([](__m128i d, __m128i s, __m128i c) { |
| // SrcOver blend mode, with coverage folded into source alpha. |
| __m128i sc = scale(s,c), |
| AC = inv(alphas(sc)); |
| return _mm_add_epi16(sc, scale(d,AC)); |
| })); |
| dst += dstRB / sizeof(*dst); |
| cov += covRB / sizeof(*cov); |
| } |
| } |
| } |
| |
| } // namespace sk_sse41_new |
| |
| #endif |
| |
| namespace SkOpts { |
| void Init_sse41() { |
| box_blur_xx = sk_sse41::box_blur_xx; |
| box_blur_xy = sk_sse41::box_blur_xy; |
| box_blur_yx = sk_sse41::box_blur_yx; |
| |
| #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
| blit_row_color32 = sk_sse41_new::blit_row_color32; |
| blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8; |
| #endif |
| blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque; |
| } |
| } |