blob: 82dd7aafe3792e4895c042a3648fe1d9df5512e7 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLIRGenerator.h"
#include "limits.h"
#include <iterator>
#include <memory>
#include <unordered_set>
#include "include/private/SkTArray.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLConstantFolder.h"
#include "src/sksl/SkSLOperators.h"
#include "src/sksl/SkSLParser.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalFunctionReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionPrototype.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLayout.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLStructDefinition.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
static void fill_caps(const SkSL::ShaderCapsClass& caps,
std::unordered_map<String, Program::Settings::Value>* capsMap) {
#define CAP(name) capsMap->insert({String(#name), Program::Settings::Value(caps.name())})
CAP(fbFetchSupport);
CAP(fbFetchNeedsCustomOutput);
CAP(flatInterpolationSupport);
CAP(noperspectiveInterpolationSupport);
CAP(externalTextureSupport);
CAP(mustEnableAdvBlendEqs);
CAP(mustEnableSpecificAdvBlendEqs);
CAP(mustDeclareFragmentShaderOutput);
CAP(mustDoOpBetweenFloorAndAbs);
CAP(mustGuardDivisionEvenAfterExplicitZeroCheck);
CAP(inBlendModesFailRandomlyForAllZeroVec);
CAP(atan2ImplementedAsAtanYOverX);
CAP(canUseAnyFunctionInShader);
CAP(floatIs32Bits);
CAP(integerSupport);
CAP(builtinFMASupport);
CAP(builtinDeterminantSupport);
#undef CAP
}
IRGenerator::IRGenerator(const Context* context,
const ShaderCapsClass* caps)
: fContext(*context)
, fCaps(caps)
, fModifiers(new ModifiersPool()) {
if (fCaps) {
fill_caps(*fCaps, &fCapsMap);
} else {
fCapsMap.insert({String("integerSupport"), Program::Settings::Value(true)});
}
}
void IRGenerator::pushSymbolTable() {
auto childSymTable = std::make_shared<SymbolTable>(std::move(fSymbolTable), fIsBuiltinCode);
fSymbolTable = std::move(childSymTable);
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
bool IRGenerator::detectVarDeclarationWithoutScope(const Statement& stmt) {
// Parsing an AST node containing a single variable declaration creates a lone VarDeclaration
// statement. An AST with multiple variable declarations creates an unscoped Block containing
// multiple VarDeclaration statements. We need to detect either case.
const Variable* var;
if (stmt.is<VarDeclaration>()) {
// The single-variable case. No blocks at all.
var = &stmt.as<VarDeclaration>().var();
} else if (stmt.is<Block>()) {
// The multiple-variable case: an unscoped, non-empty block...
const Block& block = stmt.as<Block>();
if (block.isScope() || block.children().empty()) {
return false;
}
// ... holding a variable declaration.
const Statement& innerStmt = *block.children().front();
if (!innerStmt.is<VarDeclaration>()) {
return false;
}
var = &innerStmt.as<VarDeclaration>().var();
} else {
// This statement wasn't a variable declaration. No problem.
return false;
}
// Report an error.
SkASSERT(var);
this->errorReporter().error(stmt.fOffset,
"variable '" + var->name() + "' must be created in a scope");
return true;
}
std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) {
if (fKind != Program::kFragment_Kind &&
fKind != Program::kVertex_Kind &&
fKind != Program::kGeometry_Kind) {
this->errorReporter().error(offset, "extensions are not allowed here");
return nullptr;
}
return std::make_unique<Extension>(offset, name);
}
std::unique_ptr<ModifiersPool> IRGenerator::releaseModifiers() {
std::unique_ptr<ModifiersPool> result = std::move(fModifiers);
fModifiers = std::make_unique<ModifiersPool>();
return result;
}
std::unique_ptr<Statement> IRGenerator::convertSingleStatement(const ASTNode& statement) {
switch (statement.fKind) {
case ASTNode::Kind::kBlock:
return this->convertBlock(statement);
case ASTNode::Kind::kVarDeclarations:
return this->convertVarDeclarationStatement(statement);
case ASTNode::Kind::kIf:
return this->convertIf(statement);
case ASTNode::Kind::kFor:
return this->convertFor(statement);
case ASTNode::Kind::kWhile:
return this->convertWhile(statement);
case ASTNode::Kind::kDo:
return this->convertDo(statement);
case ASTNode::Kind::kSwitch:
return this->convertSwitch(statement);
case ASTNode::Kind::kReturn:
return this->convertReturn(statement);
case ASTNode::Kind::kBreak:
return this->convertBreak(statement);
case ASTNode::Kind::kContinue:
return this->convertContinue(statement);
case ASTNode::Kind::kDiscard:
return this->convertDiscard(statement);
case ASTNode::Kind::kType:
// TODO: add IRNode for struct definition inside a function
return nullptr;
default:
// it's an expression
std::unique_ptr<Statement> result = this->convertExpressionStatement(statement);
if (fRTAdjust && fKind == Program::kGeometry_Kind) {
SkASSERT(result->kind() == Statement::Kind::kExpression);
Expression& expr = *result->as<ExpressionStatement>().expression();
if (expr.kind() == Expression::Kind::kFunctionCall) {
FunctionCall& fc = expr.as<FunctionCall>();
if (fc.function().isBuiltin() && fc.function().name() == "EmitVertex") {
StatementArray statements;
statements.reserve_back(2);
statements.push_back(getNormalizeSkPositionCode());
statements.push_back(std::move(result));
return std::make_unique<Block>(statement.fOffset, std::move(statements),
fSymbolTable);
}
}
}
return result;
}
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) {
StatementArray oldExtraStatements = std::move(fExtraStatements);
std::unique_ptr<Statement> result = this->convertSingleStatement(statement);
if (!result) {
fExtraStatements = std::move(oldExtraStatements);
return nullptr;
}
if (fExtraStatements.size()) {
fExtraStatements.push_back(std::move(result));
auto block = std::make_unique<Block>(/*offset=*/-1, std::move(fExtraStatements),
/*symbols=*/nullptr, /*isScope=*/false);
fExtraStatements = std::move(oldExtraStatements);
return std::move(block);
}
fExtraStatements = std::move(oldExtraStatements);
return result;
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) {
SkASSERT(block.fKind == ASTNode::Kind::kBlock);
AutoSymbolTable table(this);
StatementArray statements;
for (const auto& child : block) {
std::unique_ptr<Statement> statement = this->convertStatement(child);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return std::make_unique<Block>(block.fOffset, std::move(statements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations);
auto decls = this->convertVarDeclarations(s, Variable::Storage::kLocal);
if (decls.empty()) {
return nullptr;
}
if (decls.size() == 1) {
return std::move(decls.front());
} else {
return std::make_unique<Block>(s.fOffset, std::move(decls), /*symbols=*/nullptr,
/*isScope=*/false);
}
}
int IRGenerator::convertArraySize(const Type& type, int offset, const ASTNode& s) {
if (!s) {
this->errorReporter().error(offset, "array must have a size");
return 0;
}
auto size = this->convertExpression(s);
if (!size) {
return 0;
}
return this->convertArraySize(type, std::move(size));
}
int IRGenerator::convertArraySize(const Type& type, std::unique_ptr<Expression> size) {
size = this->coerce(std::move(size), *fContext.fTypes.fInt);
if (!size) {
return 0;
}
if (type == *fContext.fTypes.fVoid) {
this->errorReporter().error(size->fOffset, "type 'void' may not be used in an array");
return 0;
}
if (type.isOpaque()) {
this->errorReporter().error(
size->fOffset, "opaque type '" + type.name() + "' may not be used in an array");
return 0;
}
if (!size->is<IntLiteral>()) {
this->errorReporter().error(size->fOffset, "array size must be an integer");
return 0;
}
SKSL_INT count = size->as<IntLiteral>().value();
if (count <= 0) {
this->errorReporter().error(size->fOffset, "array size must be positive");
return 0;
}
if (!SkTFitsIn<int>(count)) {
this->errorReporter().error(size->fOffset, "array size is too large");
return 0;
}
return static_cast<int>(count);
}
void IRGenerator::checkVarDeclaration(int offset, const Modifiers& modifiers, const Type* baseType,
Variable::Storage storage) {
if (this->strictES2Mode() && baseType->isArray()) {
this->errorReporter().error(offset, "array size must appear after variable name");
}
if (baseType->componentType().isOpaque() && storage != Variable::Storage::kGlobal) {
this->errorReporter().error(
offset,
"variables of type '" + baseType->displayName() + "' must be global");
}
if (fKind != Program::kFragmentProcessor_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) && baseType->isMatrix()) {
this->errorReporter().error(offset, "'in' variables may not have matrix type");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(
offset,
"'in uniform' variables only permitted within fragment processors");
}
if (modifiers.fLayout.fWhen.fLength) {
this->errorReporter().error(offset,
"'when' is only permitted within fragment processors");
}
if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) {
this->errorReporter().error(offset,
"'tracked' is only permitted within fragment processors");
}
if (modifiers.fLayout.fCType != Layout::CType::kDefault) {
this->errorReporter().error(offset,
"'ctype' is only permitted within fragment processors");
}
if (modifiers.fLayout.fKey) {
this->errorReporter().error(offset,
"'key' is only permitted within fragment processors");
}
}
if (fKind == Program::kRuntimeEffect_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
*baseType != *fContext.fTypes.fFragmentProcessor) {
this->errorReporter().error(offset,
"'in' variables not permitted in runtime effects");
}
}
if (modifiers.fLayout.fKey && (modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset, "'key' is not permitted on 'uniform' variables");
}
if (modifiers.fLayout.fMarker.fLength) {
if (fKind != Program::kRuntimeEffect_Kind) {
this->errorReporter().error(offset,
"'marker' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset,
"'marker' is only permitted on 'uniform' variables");
}
if (*baseType != *fContext.fTypes.fFloat4x4) {
this->errorReporter().error(offset,
"'marker' is only permitted on float4x4 variables");
}
}
if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) {
if (fKind != Program::kRuntimeEffect_Kind) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted on 'uniform' variables");
}
auto validColorXformType = [](const Type& t) {
return t.isVector() && t.componentType().isFloat() &&
(t.columns() == 3 || t.columns() == 4);
};
if (!validColorXformType(*baseType) && !(baseType->isArray() &&
validColorXformType(baseType->componentType()))) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted on half3, half4, "
"float3, or float4 variables");
}
}
if (modifiers.fFlags & Modifiers::kVarying_Flag) {
if (fKind != Program::kRuntimeEffect_Kind) {
this->errorReporter().error(offset, "'varying' is only permitted in runtime effects");
}
if (!baseType->isFloat() &&
!(baseType->isVector() && baseType->componentType().isFloat())) {
this->errorReporter().error(offset, "'varying' must be float scalar or vector");
}
}
int permitted = Modifiers::kConst_Flag;
if (storage == Variable::Storage::kGlobal) {
permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag |
Modifiers::kFlat_Flag | Modifiers::kVarying_Flag |
Modifiers::kNoPerspective_Flag | Modifiers::kPLS_Flag |
Modifiers::kPLSIn_Flag | Modifiers::kPLSOut_Flag |
Modifiers::kRestrict_Flag | Modifiers::kVolatile_Flag |
Modifiers::kReadOnly_Flag | Modifiers::kWriteOnly_Flag |
Modifiers::kCoherent_Flag | Modifiers::kBuffer_Flag;
}
this->checkModifiers(offset, modifiers, permitted);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(int offset,
const Modifiers& modifiers,
const Type* baseType,
StringFragment name,
bool isArray,
std::unique_ptr<Expression> arraySize,
std::unique_ptr<Expression> value,
Variable::Storage storage) {
if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 &&
(modifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind &&
name != "sk_FragColor") {
this->errorReporter().error(offset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const Type* type = baseType;
int arraySizeValue = 0;
if (isArray) {
SkASSERT(arraySize);
arraySizeValue = this->convertArraySize(*type, std::move(arraySize));
if (!arraySizeValue) {
return {};
}
type = fSymbolTable->addArrayDimension(type, arraySizeValue);
}
auto var = std::make_unique<Variable>(offset, fModifiers->addToPool(modifiers),
name, type, fIsBuiltinCode, storage);
if (var->name() == Compiler::RTADJUST_NAME) {
SkASSERT(!fRTAdjust);
SkASSERT(var->type() == *fContext.fTypes.fFloat4);
fRTAdjust = var.get();
}
if (value) {
if (type->isOpaque()) {
this->errorReporter().error(
value->fOffset,
"opaque type '" + type->name() + "' cannot use initializer expressions");
}
if (modifiers.fFlags & Modifiers::kIn_Flag) {
this->errorReporter().error(value->fOffset,
"'in' variables cannot use initializer expressions");
}
value = this->coerce(std::move(value), *type);
if (!value) {
return {};
}
}
const Symbol* symbol = (*fSymbolTable)[var->name()];
if (symbol && storage == Variable::Storage::kGlobal && var->name() == "sk_FragColor") {
// Already defined, ignore.
return nullptr;
} else {
auto result = std::make_unique<VarDeclaration>(var.get(), baseType, arraySizeValue,
std::move(value));
var->setDeclaration(result.get());
fSymbolTable->add(std::move(var));
return std::move(result);
}
}
StatementArray IRGenerator::convertVarDeclarations(const ASTNode& decls,
Variable::Storage storage) {
SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations);
auto declarationsIter = decls.begin();
const Modifiers& modifiers = declarationsIter++->getModifiers();
const ASTNode& rawType = *(declarationsIter++);
const Type* baseType = this->convertType(rawType);
if (!baseType) {
return {};
}
this->checkVarDeclaration(decls.fOffset, modifiers, baseType, storage);
StatementArray varDecls;
for (; declarationsIter != decls.end(); ++declarationsIter) {
const ASTNode& varDecl = *declarationsIter;
const ASTNode::VarData& varData = varDecl.getVarData();
std::unique_ptr<Expression> arraySize;
std::unique_ptr<Expression> value;
auto iter = varDecl.begin();
if (iter != varDecl.end() && varData.fIsArray) {
if (*iter) {
arraySize = this->convertExpression(*iter++);
} else {
this->errorReporter().error(decls.fOffset, "array must have a size");
return {};
}
}
if (iter != varDecl.end()) {
value = this->convertExpression(*iter);
if (!value) {
return {};
}
}
std::unique_ptr<Statement> varDeclStmt = this->convertVarDeclaration(varDecl.fOffset,
modifiers,
baseType,
varData.fName,
varData.fIsArray,
std::move(arraySize),
std::move(value),
storage);
if (varDeclStmt) {
varDecls.push_back(std::move(varDeclStmt));
}
}
return varDecls;
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) {
if (fKind != Program::kFragment_Kind &&
fKind != Program::kVertex_Kind &&
fKind != Program::kGeometry_Kind) {
this->errorReporter().error(m.fOffset, "layout qualifiers are not allowed here");
return nullptr;
}
SkASSERT(m.fKind == ASTNode::Kind::kModifiers);
Modifiers modifiers = m.getModifiers();
if (modifiers.fLayout.fInvocations != -1) {
if (fKind != Program::kGeometry_Kind) {
this->errorReporter().error(m.fOffset,
"'invocations' is only legal in geometry shaders");
return nullptr;
}
fInvocations = modifiers.fLayout.fInvocations;
if (fCaps && !fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fInvocations = -1;
if (modifiers.fLayout.description() == "") {
return nullptr;
}
}
}
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fCaps &&
!fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fMaxVertices *= fInvocations;
}
return std::make_unique<ModifiersDeclaration>(fModifiers->addToPool(modifiers));
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) {
SkASSERT(n.fKind == ASTNode::Kind::kIf);
auto iter = n.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (iter != n.end()) {
ifFalse = this->convertStatement(*(iter++));
if (!ifFalse) {
return nullptr;
}
}
bool isStatic = n.getBool();
return this->convertIf(n.fOffset, isStatic, std::move(test), std::move(ifTrue),
std::move(ifFalse));
}
std::unique_ptr<Statement> IRGenerator::convertIf(int offset, bool isStatic,
std::unique_ptr<Expression> test,
std::unique_ptr<Statement> ifTrue,
std::unique_ptr<Statement> ifFalse) {
test = this->coerce(std::move(test), *fContext.fTypes.fBool);
if (!test) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*ifTrue)) {
return nullptr;
}
if (ifFalse && this->detectVarDeclarationWithoutScope(*ifFalse)) {
return nullptr;
}
if (test->is<BoolLiteral>()) {
// Static Boolean values can fold down to a single branch.
if (test->as<BoolLiteral>().value()) {
return ifTrue;
}
if (ifFalse) {
return ifFalse;
}
// False, but no else-clause. Not an error, so don't return null!
return std::make_unique<Nop>();
}
return std::make_unique<IfStatement>(offset, isStatic, std::move(test), std::move(ifTrue),
std::move(ifFalse));
}
std::unique_ptr<Statement> IRGenerator::convertFor(int offset,
std::unique_ptr<Statement> initializer,
std::unique_ptr<Expression> test,
std::unique_ptr<Expression> next,
std::unique_ptr<Statement> statement) {
if (test) {
test = this->coerce(std::move(test), *fContext.fTypes.fBool);
if (!test) {
return nullptr;
}
}
auto forStmt =
std::make_unique<ForStatement>(offset, std::move(initializer), std::move(test),
std::move(next), std::move(statement), fSymbolTable);
if (this->strictES2Mode()) {
if (!Analysis::ForLoopIsValidForES2(*forStmt, /*outLoopInfo=*/nullptr,
&this->errorReporter())) {
return nullptr;
}
}
return std::move(forStmt);
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) {
SkASSERT(f.fKind == ASTNode::Kind::kFor);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
auto iter = f.begin();
if (*iter) {
initializer = this->convertStatement(*iter);
if (!initializer) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> test;
if (*iter) {
test = this->convertExpression(*iter);
if (!test) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> next;
if (*iter) {
next = this->convertExpression(*iter);
if (!next) {
return nullptr;
}
}
++iter;
std::unique_ptr<Statement> statement = this->convertStatement(*iter);
if (!statement) {
return nullptr;
}
return this->convertFor(f.fOffset, std::move(initializer), std::move(test), std::move(next),
std::move(statement));
}
std::unique_ptr<Statement> IRGenerator::convertWhile(int offset, std::unique_ptr<Expression> test,
std::unique_ptr<Statement> statement) {
if (this->strictES2Mode()) {
this->errorReporter().error(offset, "while loops are not supported");
return nullptr;
}
test = this->coerce(std::move(test), *fContext.fTypes.fBool);
if (!test) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*statement)) {
return nullptr;
}
return std::make_unique<ForStatement>(offset, /*initializer=*/nullptr, std::move(test),
/*next=*/nullptr, std::move(statement), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) {
SkASSERT(w.fKind == ASTNode::Kind::kWhile);
auto iter = w.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
return this->convertWhile(w.fOffset, std::move(test), std::move(statement));
}
std::unique_ptr<Statement> IRGenerator::convertDo(std::unique_ptr<Statement> stmt,
std::unique_ptr<Expression> test) {
if (this->strictES2Mode()) {
this->errorReporter().error(stmt->fOffset, "do-while loops are not supported");
return nullptr;
}
test = this->coerce(std::move(test), *fContext.fTypes.fBool);
if (!test) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*stmt)) {
return nullptr;
}
return std::make_unique<DoStatement>(stmt->fOffset, std::move(stmt), std::move(test));
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDo);
auto iter = d.begin();
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
return this->convertDo(std::move(statement), std::move(test));
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(
int offset,
bool isStatic,
std::unique_ptr<Expression> value,
ExpressionArray caseValues,
SkTArray<StatementArray> caseStatements,
std::shared_ptr<SymbolTable> symbolTable) {
SkASSERT(caseValues.size() == caseStatements.size());
if (this->strictES2Mode()) {
this->errorReporter().error(offset, "switch statements are not supported");
return nullptr;
}
if (!value->type().isEnum()) {
value = this->coerce(std::move(value), *fContext.fTypes.fInt);
if (!value) {
return nullptr;
}
}
SkTHashSet<SKSL_INT> intValues;
std::vector<std::unique_ptr<SwitchCase>> cases;
for (size_t i = 0; i < caseValues.size(); ++i) {
int caseOffset;
std::unique_ptr<Expression> caseValue;
if (caseValues[i]) {
caseOffset = caseValues[i]->fOffset;
caseValue = this->coerce(std::move(caseValues[i]), value->type());
if (!caseValue) {
return nullptr;
}
SKSL_INT v = 0;
if (!ConstantFolder::GetConstantInt(*caseValue, &v)) {
this->errorReporter().error(caseValue->fOffset,
"case value must be a constant integer");
return nullptr;
}
if (intValues.contains(v)) {
this->errorReporter().error(caseValue->fOffset, "duplicate case value");
}
intValues.add(v);
} else {
caseOffset = offset;
}
cases.push_back(std::make_unique<SwitchCase>(caseOffset, std::move(caseValue),
std::move(caseStatements[i])));
}
return std::make_unique<SwitchStatement>(offset, isStatic, std::move(value),
std::move(cases), symbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kSwitch);
auto iter = s.begin();
std::unique_ptr<Expression> value = this->convertExpression(*(iter++));
if (!value) {
return nullptr;
}
AutoSymbolTable table(this);
ExpressionArray caseValues;
SkTArray<StatementArray> caseStatements;
for (; iter != s.end(); ++iter) {
const ASTNode& c = *iter;
SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase);
std::unique_ptr<Expression>& caseValue = caseValues.emplace_back();
auto childIter = c.begin();
if (*childIter) {
caseValue = this->convertExpression(*childIter);
if (!caseValue) {
return nullptr;
}
}
++childIter;
StatementArray statements;
for (; childIter != c.end(); ++childIter) {
std::unique_ptr<Statement> converted = this->convertStatement(*childIter);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
caseStatements.push_back(std::move(statements));
}
return this->convertSwitch(s.fOffset, s.getBool(), std::move(value), std::move(caseValues),
std::move(caseStatements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) {
std::unique_ptr<Expression> e = this->convertExpression(s);
if (!e) {
return nullptr;
}
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(int offset,
std::unique_ptr<Expression> result) {
if (result) {
return std::make_unique<ReturnStatement>(std::move(result));
} else {
return std::make_unique<ReturnStatement>(offset);
}
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) {
SkASSERT(r.fKind == ASTNode::Kind::kReturn);
if (r.begin() != r.end()) {
std::unique_ptr<Expression> value = this->convertExpression(*r.begin());
if (!value) {
return nullptr;
}
return this->convertReturn(r.fOffset, std::move(value));
} else {
return this->convertReturn(r.fOffset, /*result=*/nullptr);
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) {
SkASSERT(b.fKind == ASTNode::Kind::kBreak);
return std::make_unique<BreakStatement>(b.fOffset);
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) {
SkASSERT(c.fKind == ASTNode::Kind::kContinue);
return std::make_unique<ContinueStatement>(c.fOffset);
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDiscard);
if (fKind != Program::kFragment_Kind && fKind != Program::kFragmentProcessor_Kind) {
this->errorReporter().error(d.fOffset,
"discard statement is only permitted in fragment shaders");
return nullptr;
}
return std::make_unique<DiscardStatement>(d.fOffset);
}
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
Layout invokeLayout;
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
const FunctionDeclaration* invokeDecl = fSymbolTable->add(std::make_unique<FunctionDeclaration>(
/*offset=*/-1,
fModifiers->addToPool(invokeModifiers),
"_invoke",
std::vector<const Variable*>(),
fContext.fTypes.fVoid.get(),
fIsBuiltinCode));
auto invokeDef = std::make_unique<FunctionDefinition>(/*offset=*/-1, invokeDecl, fIsBuiltinCode,
std::move(main));
invokeDecl->setDefinition(invokeDef.get());
fProgramElements->push_back(std::move(invokeDef));
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Variable* loopIdx = &(*fSymbolTable)["sk_InvocationID"]->as<Variable>();
auto test = std::make_unique<BinaryExpression>(
/*offset=*/-1,
std::make_unique<VariableReference>(/*offset=*/-1, loopIdx),
Token::Kind::TK_LT,
std::make_unique<IntLiteral>(fContext, /*offset=*/-1, fInvocations),
fContext.fTypes.fBool.get());
auto next = std::make_unique<PostfixExpression>(
std::make_unique<VariableReference>(/*offset=*/-1, loopIdx,
VariableReference::RefKind::kReadWrite),
Token::Kind::TK_PLUSPLUS);
ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive");
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
SkASSERT(endPrimitive);
StatementArray loopBody;
loopBody.reserve_back(2);
loopBody.push_back(std::make_unique<ExpressionStatement>(this->call(/*offset=*/-1,
*invokeDecl,
ExpressionArray{})));
loopBody.push_back(std::make_unique<ExpressionStatement>(this->call(/*offset=*/-1,
std::move(endPrimitive),
ExpressionArray{})));
auto assignment = std::make_unique<BinaryExpression>(
/*offset=*/-1,
std::make_unique<VariableReference>(/*offset=*/-1, loopIdx,
VariableReference::RefKind::kWrite),
Token::Kind::TK_EQ,
std::make_unique<IntLiteral>(fContext, /*offset=*/-1, /*value=*/0),
fContext.fTypes.fInt.get());
auto initializer = std::make_unique<ExpressionStatement>(std::move(assignment));
auto loop = std::make_unique<ForStatement>(/*offset=*/-1,
std::move(initializer),
std::move(test), std::move(next),
std::make_unique<Block>(-1, std::move(loopBody)),
fSymbolTable);
StatementArray children;
children.push_back(std::move(loop));
return std::make_unique<Block>(/*offset=*/-1, std::move(children));
}
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
const Variable* skPerVertex = nullptr;
if (const ProgramElement* perVertexDecl = fIntrinsics->find(Compiler::PERVERTEX_NAME)) {
SkASSERT(perVertexDecl->is<InterfaceBlock>());
skPerVertex = &perVertexDecl->as<InterfaceBlock>().variable();
}
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
// 0,
// sk_Position.w);
SkASSERT(skPerVertex && fRTAdjust);
auto Ref = [](const Variable* var) -> std::unique_ptr<Expression> {
return std::make_unique<VariableReference>(/*offset=*/-1, var,
VariableReference::RefKind::kRead);
};
auto WRef = [](const Variable* var) -> std::unique_ptr<Expression> {
return std::make_unique<VariableReference>(/*offset=*/-1, var,
VariableReference::RefKind::kWrite);
};
auto Field = [&](const Variable* var, int idx) -> std::unique_ptr<Expression> {
return std::make_unique<FieldAccess>(Ref(var), idx,
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
};
auto Pos = [&]() -> std::unique_ptr<Expression> {
return std::make_unique<FieldAccess>(WRef(skPerVertex), 0,
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
};
auto Adjust = [&]() -> std::unique_ptr<Expression> {
return fRTAdjustInterfaceBlock ? Field(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex)
: Ref(fRTAdjust);
};
auto Swizzle = [&](std::unique_ptr<Expression> expr,
const ComponentArray& comp) -> std::unique_ptr<Expression> {
return std::make_unique<SkSL::Swizzle>(fContext, std::move(expr), comp);
};
auto Op = [&](std::unique_ptr<Expression> left, Token::Kind op,
std::unique_ptr<Expression> right) -> std::unique_ptr<Expression> {
return std::make_unique<BinaryExpression>(/*offset=*/-1, std::move(left), op,
std::move(right), fContext.fTypes.fFloat2.get());
};
static const ComponentArray kXYIndices{0, 1};
static const ComponentArray kXZIndices{0, 2};
static const ComponentArray kYWIndices{1, 3};
static const ComponentArray kWWIndices{3, 3};
static const ComponentArray kWIndex{3};
ExpressionArray children;
children.reserve_back(3);
children.push_back(Op(
Op(Swizzle(Pos(), kXYIndices), Token::Kind::TK_STAR, Swizzle(Adjust(), kXZIndices)),
Token::Kind::TK_PLUS,
Op(Swizzle(Pos(), kWWIndices), Token::Kind::TK_STAR, Swizzle(Adjust(), kYWIndices))));
children.push_back(std::make_unique<FloatLiteral>(fContext, /*offset=*/-1, /*value=*/0.0));
children.push_back(Swizzle(Pos(), kWIndex));
std::unique_ptr<Expression> result = Op(Pos(), Token::Kind::TK_EQ,
std::make_unique<Constructor>(/*offset=*/-1,
fContext.fTypes.fFloat4.get(),
std::move(children)));
return std::make_unique<ExpressionStatement>(std::move(result));
}
template<typename T>
class AutoClear {
public:
AutoClear(T* container)
: fContainer(container) {
SkASSERT(container->empty());
}
~AutoClear() {
fContainer->clear();
}
private:
T* fContainer;
};
template <typename T> AutoClear(T* c) -> AutoClear<T>;
void IRGenerator::checkModifiers(int offset, const Modifiers& modifiers, int permitted) {
int flags = modifiers.fFlags;
#define CHECK(flag, name) \
if (!flags) return; \
if (flags & flag) { \
if (!(permitted & flag)) { \
this->errorReporter().error(offset, "'" name "' is not permitted here"); \
} \
flags &= ~flag; \
}
CHECK(Modifiers::kConst_Flag, "const")
CHECK(Modifiers::kIn_Flag, "in")
CHECK(Modifiers::kOut_Flag, "out")
CHECK(Modifiers::kUniform_Flag, "uniform")
CHECK(Modifiers::kFlat_Flag, "flat")
CHECK(Modifiers::kNoPerspective_Flag, "noperspective")
CHECK(Modifiers::kReadOnly_Flag, "readonly")
CHECK(Modifiers::kWriteOnly_Flag, "writeonly")
CHECK(Modifiers::kCoherent_Flag, "coherent")
CHECK(Modifiers::kVolatile_Flag, "volatile")
CHECK(Modifiers::kRestrict_Flag, "restrict")
CHECK(Modifiers::kBuffer_Flag, "buffer")
CHECK(Modifiers::kHasSideEffects_Flag, "sk_has_side_effects")
CHECK(Modifiers::kPLS_Flag, "__pixel_localEXT")
CHECK(Modifiers::kPLSIn_Flag, "__pixel_local_inEXT")
CHECK(Modifiers::kPLSOut_Flag, "__pixel_local_outEXT")
CHECK(Modifiers::kVarying_Flag, "varying")
CHECK(Modifiers::kInline_Flag, "inline")
SkASSERT(flags == 0);
}
void IRGenerator::finalizeFunction(FunctionDefinition& f) {
class Finalizer : public ProgramWriter {
public:
Finalizer(IRGenerator* irGenerator, const FunctionDeclaration* function)
: fIRGenerator(irGenerator)
, fFunction(function) {}
~Finalizer() override {
SkASSERT(!fBreakableLevel);
SkASSERT(!fContinuableLevel);
}
bool visitStatement(Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kReturn: {
// early returns from a vertex main function will bypass the sk_Position
// normalization, so SkASSERT that we aren't doing that. It is of course
// possible to fix this by adding a normalization before each return, but it
// will probably never actually be necessary.
SkASSERT(fIRGenerator->fKind != Program::kVertex_Kind ||
!fIRGenerator->fRTAdjust ||
fFunction->name() != "main");
ReturnStatement& r = stmt.as<ReturnStatement>();
const Type& returnType = fFunction->returnType();
std::unique_ptr<Expression> result;
if (r.expression()) {
if (returnType == *fIRGenerator->fContext.fTypes.fVoid) {
fIRGenerator->errorReporter().error(r.fOffset,
"may not return a value from a void function");
} else {
result = fIRGenerator->coerce(std::move(r.expression()), returnType);
}
} else if (returnType != *fIRGenerator->fContext.fTypes.fVoid) {
fIRGenerator->errorReporter().error(r.fOffset,
"expected function to return '" +
returnType.displayName() + "'");
}
r.setExpression(std::move(result));
break;
}
case Statement::Kind::kDo:
case Statement::Kind::kFor: {
++fBreakableLevel;
++fContinuableLevel;
bool result = INHERITED::visitStatement(stmt);
--fContinuableLevel;
--fBreakableLevel;
return result;
}
case Statement::Kind::kSwitch: {
++fBreakableLevel;
bool result = INHERITED::visitStatement(stmt);
--fBreakableLevel;
return result;
}
case Statement::Kind::kBreak:
if (!fBreakableLevel) {
fIRGenerator->errorReporter().error(stmt.fOffset,
"break statement must be inside a loop or switch");
}
break;
case Statement::Kind::kContinue:
if (!fContinuableLevel) {
fIRGenerator->errorReporter().error(stmt.fOffset,
"continue statement must be inside a loop");
}
break;
default:
break;
}
return INHERITED::visitStatement(stmt);
}
private:
IRGenerator* fIRGenerator;
const FunctionDeclaration* fFunction;
// how deeply nested we are in breakable constructs (for, do, switch).
int fBreakableLevel = 0;
// how deeply nested we are in continuable constructs (for, do).
int fContinuableLevel = 0;
using INHERITED = ProgramWriter;
};
Finalizer(this, &f.declaration()).visitStatement(*f.body());
}
void IRGenerator::convertFunction(const ASTNode& f) {
AutoClear clear(&fReferencedIntrinsics);
auto iter = f.begin();
const Type* returnType = this->convertType(*(iter++), /*allowVoid=*/true);
if (returnType == nullptr) {
return;
}
if (returnType->isArray()) {
this->errorReporter().error(
f.fOffset, "functions may not return type '" + returnType->displayName() + "'");
return;
}
if (!fIsBuiltinCode && *returnType != *fContext.fTypes.fVoid &&
returnType->componentType().isOpaque()) {
this->errorReporter().error(
f.fOffset,
"functions may not return opaque type '" + returnType->displayName() + "'");
return;
}
const ASTNode::FunctionData& funcData = f.getFunctionData();
this->checkModifiers(f.fOffset, funcData.fModifiers, Modifiers::kHasSideEffects_Flag |
Modifiers::kInline_Flag);
std::vector<const Variable*> parameters;
for (size_t i = 0; i < funcData.fParameterCount; ++i) {
const ASTNode& param = *(iter++);
SkASSERT(param.fKind == ASTNode::Kind::kParameter);
ASTNode::ParameterData pd = param.getParameterData();
this->checkModifiers(param.fOffset, pd.fModifiers, Modifiers::kIn_Flag |
Modifiers::kOut_Flag);
auto paramIter = param.begin();
const Type* type = this->convertType(*(paramIter++));
if (!type) {
return;
}
if (pd.fIsArray) {
int arraySize = this->convertArraySize(*type, param.fOffset, *paramIter++);
if (!arraySize) {
return;
}
type = fSymbolTable->addArrayDimension(type, arraySize);
}
// Only the (builtin) declarations of 'sample' are allowed to have FP parameters.
// (You can pass other opaque types to functions safely; this restriction is
// fragment-processor specific.)
if (*type == *fContext.fTypes.fFragmentProcessor && !fIsBuiltinCode) {
this->errorReporter().error(
param.fOffset, "parameters of type '" + type->displayName() + "' not allowed");
return;
}
Modifiers m = pd.fModifiers;
if (funcData.fName == "main" && (fKind == Program::kRuntimeEffect_Kind ||
fKind == Program::kFragmentProcessor_Kind)) {
if (i == 0) {
// We verify that the type is correct later, for now, if there is a parameter to
// a .fp or runtime-effect main(), it's supposed to be the coords:
m.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN;
}
}
const Variable* var = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Variable>(param.fOffset, fModifiers->addToPool(m), pd.fName, type,
fIsBuiltinCode, Variable::Storage::kParameter));
parameters.push_back(var);
}
auto paramIsCoords = [&](int idx) {
return parameters[idx]->type() == *fContext.fTypes.fFloat2 &&
parameters[idx]->modifiers().fFlags == 0 &&
parameters[idx]->modifiers().fLayout.fBuiltin == SK_MAIN_COORDS_BUILTIN;
};
if (funcData.fName == "main") {
switch (fKind) {
case Program::kRuntimeEffect_Kind: {
// (half4|float4) main() -or- (half4|float4) main(float2)
if (*returnType != *fContext.fTypes.fHalf4 &&
*returnType != *fContext.fTypes.fFloat4) {
this->errorReporter().error(f.fOffset,
"'main' must return: 'vec4', 'float4', or 'half4'");
return;
}
bool validParams = (parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0));
if (!validParams) {
this->errorReporter().error(
f.fOffset, "'main' parameters must be: (), (vec2), or (float2)");
return;
}
break;
}
case Program::kFragmentProcessor_Kind: {
if (*returnType != *fContext.fTypes.fHalf4) {
this->errorReporter().error(f.fOffset, ".fp 'main' must return 'half4'");
return;
}
bool validParams = (parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0));
if (!validParams) {
this->errorReporter().error(
f.fOffset, ".fp 'main' must be declared main() or main(float2)");
return;
}
break;
}
case Program::kGeneric_Kind:
break;
default:
if (parameters.size()) {
this->errorReporter().error(f.fOffset,
"shader 'main' must have zero parameters");
}
break;
}
}
// find existing declaration
const FunctionDeclaration* decl = nullptr;
const Symbol* entry = (*fSymbolTable)[funcData.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->kind()) {
case Symbol::Kind::kUnresolvedFunction:
functions = entry->as<UnresolvedFunction>().functions();
break;
case Symbol::Kind::kFunctionDeclaration:
functions.push_back(&entry->as<FunctionDeclaration>());
break;
default:
this->errorReporter().error(f.fOffset,
"symbol '" + funcData.fName + "' was already defined");
return;
}
for (const FunctionDeclaration* other : functions) {
SkASSERT(other->name() == funcData.fName);
if (parameters.size() == other->parameters().size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->type() != other->parameters()[i]->type()) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->returnType()) {
FunctionDeclaration newDecl(f.fOffset,
fModifiers->addToPool(funcData.fModifiers),
funcData.fName,
parameters,
returnType,
fIsBuiltinCode);
this->errorReporter().error(
f.fOffset, "functions '" + newDecl.description() + "' and '" +
other->description() + "' differ only in return type");
return;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->modifiers() != other->parameters()[i]->modifiers()) {
this->errorReporter().error(
f.fOffset,
"modifiers on parameter " + to_string((uint64_t)i + 1) +
" differ between declaration and definition");
return;
}
}
if (other->definition() && !other->isBuiltin()) {
this->errorReporter().error(
f.fOffset, "duplicate definition of " + other->description());
return;
}
break;
}
}
}
}
if (!decl) {
// Conservatively assume all user-defined functions have side effects.
Modifiers declModifiers = funcData.fModifiers;
if (!fIsBuiltinCode) {
declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag;
}
// Create a new declaration.
decl = fSymbolTable->add(
std::make_unique<FunctionDeclaration>(f.fOffset,
fModifiers->addToPool(declModifiers),
funcData.fName,
parameters,
returnType,
fIsBuiltinCode));
}
if (iter == f.end()) {
// If there's no body, we've found a prototype.
fProgramElements->push_back(std::make_unique<FunctionPrototype>(f.fOffset, decl,
fIsBuiltinCode));
} else {
// Compile function body.
AutoSymbolTable table(this);
for (const Variable* param : decl->parameters()) {
fSymbolTable->addWithoutOwnership(param);
}
bool needInvocationIDWorkaround = fInvocations != -1 && funcData.fName == "main" &&
fCaps && !fCaps->gsInvocationsSupport();
std::unique_ptr<Block> body = this->convertBlock(*iter);
if (!body) {
return;
}
if (needInvocationIDWorkaround) {
body = this->applyInvocationIDWorkaround(std::move(body));
}
if (Program::kVertex_Kind == fKind && funcData.fName == "main" && fRTAdjust) {
body->children().push_back(this->getNormalizeSkPositionCode());
}
auto result = std::make_unique<FunctionDefinition>(
f.fOffset, decl, fIsBuiltinCode, std::move(body), std::move(fReferencedIntrinsics));
this->finalizeFunction(*result);
decl->setDefinition(result.get());
result->setSource(&f);
fProgramElements->push_back(std::move(result));
}
}
std::unique_ptr<StructDefinition> IRGenerator::convertStructDefinition(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kType);
const Type* type = this->convertType(node);
if (!type) {
return nullptr;
}
if (!type->isStruct()) {
this->errorReporter().error(node.fOffset,
"expected a struct here, found '" + type->name() + "'");
return nullptr;
}
SkDEBUGCODE(auto [iter, wasInserted] =) fDefinedStructs.insert(type);
SkASSERT(wasInserted);
return std::make_unique<StructDefinition>(node.fOffset, *type);
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) {
if (fKind != Program::kFragment_Kind &&
fKind != Program::kVertex_Kind &&
fKind != Program::kGeometry_Kind) {
this->errorReporter().error(intf.fOffset, "interface block is not allowed here");
return nullptr;
}
SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock);
ASTNode::InterfaceBlockData id = intf.getInterfaceBlockData();
std::shared_ptr<SymbolTable> old = fSymbolTable;
std::shared_ptr<SymbolTable> symbols;
std::vector<Type::Field> fields;
bool foundRTAdjust = false;
auto iter = intf.begin();
{
AutoSymbolTable table(this);
symbols = fSymbolTable;
for (size_t i = 0; i < id.fDeclarationCount; ++i) {
StatementArray decls = this->convertVarDeclarations(*(iter++),
Variable::Storage::kInterfaceBlock);
if (decls.empty()) {
return nullptr;
}
for (const auto& decl : decls) {
const VarDeclaration& vd = decl->as<VarDeclaration>();
if (vd.var().type().isOpaque()) {
this->errorReporter().error(decl->fOffset,
"opaque type '" + vd.var().type().name() +
"' is not permitted in an interface block");
}
if (&vd.var() == fRTAdjust) {
foundRTAdjust = true;
SkASSERT(vd.var().type() == *fContext.fTypes.fFloat4);
fRTAdjustFieldIndex = fields.size();
}
fields.push_back(Type::Field(vd.var().modifiers(), vd.var().name(),
&vd.var().type()));
if (vd.value()) {
this->errorReporter().error(
decl->fOffset,
"initializers are not permitted on interface block fields");
}
}
}
}
const Type* type = old->takeOwnershipOfSymbol(Type::MakeStructType(intf.fOffset, id.fTypeName,
fields));
int arraySize = 0;
if (id.fIsArray) {
const ASTNode& size = *(iter++);
if (size) {
// convertArraySize rejects unsized arrays. This is the one place we allow those, but
// we've already checked for that, so this is verifying the other aspects (constant,
// positive, not too large).
arraySize = this->convertArraySize(*type, size.fOffset, size);
if (!arraySize) {
return nullptr;
}
} else {
arraySize = Type::kUnsizedArray;
}
type = symbols->addArrayDimension(type, arraySize);
}
const Variable* var = old->takeOwnershipOfSymbol(
std::make_unique<Variable>(intf.fOffset,
fModifiers->addToPool(id.fModifiers),
id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName,
type,
fIsBuiltinCode,
Variable::Storage::kGlobal));
if (foundRTAdjust) {
fRTAdjustInterfaceBlock = var;
}
if (id.fInstanceName.fLength) {
old->addWithoutOwnership(var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(std::make_unique<Field>(intf.fOffset, var, (int)i));
}
}
return std::make_unique<InterfaceBlock>(intf.fOffset,
var,
id.fTypeName,
id.fInstanceName,
arraySize,
symbols);
}
void IRGenerator::convertGlobalVarDeclarations(const ASTNode& decl) {
StatementArray decls = this->convertVarDeclarations(decl, Variable::Storage::kGlobal);
for (std::unique_ptr<Statement>& stmt : decls) {
const Type* type = &stmt->as<VarDeclaration>().baseType();
if (type->isStruct()) {
auto [iter, wasInserted] = fDefinedStructs.insert(type);
if (wasInserted) {
fProgramElements->push_back(
std::make_unique<StructDefinition>(decl.fOffset, *type));
}
}
fProgramElements->push_back(std::make_unique<GlobalVarDeclaration>(decl.fOffset,
std::move(stmt)));
}
}
void IRGenerator::convertEnum(const ASTNode& e) {
if (this->strictES2Mode()) {
this->errorReporter().error(e.fOffset, "enum is not allowed here");
return;
}
SkASSERT(e.fKind == ASTNode::Kind::kEnum);
SKSL_INT currentValue = 0;
Layout layout;
ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType, e.getString());
const Type* type = this->convertType(enumType);
Modifiers modifiers(layout, Modifiers::kConst_Flag);
std::shared_ptr<SymbolTable> oldTable = fSymbolTable;
fSymbolTable = std::make_shared<SymbolTable>(fSymbolTable, fIsBuiltinCode);
for (auto iter = e.begin(); iter != e.end(); ++iter) {
const ASTNode& child = *iter;
SkASSERT(child.fKind == ASTNode::Kind::kEnumCase);
std::unique_ptr<Expression> value;
if (child.begin() != child.end()) {
value = this->convertExpression(*child.begin());
if (!value) {
fSymbolTable = oldTable;
return;
}
if (!ConstantFolder::GetConstantInt(*value, &currentValue)) {
this->errorReporter().error(value->fOffset,
"enum value must be a constant integer");
fSymbolTable = oldTable;
return;
}
}
value = std::make_unique<IntLiteral>(fContext, e.fOffset, currentValue);
++currentValue;
auto var = std::make_unique<Variable>(e.fOffset, fModifiers->addToPool(modifiers),
child.getString(), type, fIsBuiltinCode,
Variable::Storage::kGlobal);
// enum variables aren't really 'declared', but we have to create a declaration to store
// the value
auto declaration = std::make_unique<VarDeclaration>(var.get(), &var->type(),
/*arraySize=*/0, std::move(value));
var->setDeclaration(declaration.get());
fSymbolTable->add(std::move(var));
fSymbolTable->takeOwnershipOfIRNode(std::move(declaration));
}
// Now we orphanize the Enum's symbol table, so that future lookups in it are strict
fSymbolTable->fParent = nullptr;
fProgramElements->push_back(std::make_unique<Enum>(e.fOffset, e.getString(), fSymbolTable,
/*isSharedWithCpp=*/fIsBuiltinCode,
/*isBuiltin=*/fIsBuiltinCode));
fSymbolTable = oldTable;
}
bool IRGenerator::typeContainsPrivateFields(const Type& type) {
// Checks for usage of private types, including fields inside a struct.
if (type.isPrivate()) {
return true;
}
if (type.isStruct()) {
for (const auto& f : type.fields()) {
if (this->typeContainsPrivateFields(*f.fType)) {
return true;
}
}
}
return false;
}
const Type* IRGenerator::convertType(const ASTNode& type, bool allowVoid) {
StringFragment name = type.getString();
const Symbol* symbol = (*fSymbolTable)[name];
if (!symbol || !symbol->is<Type>()) {
this->errorReporter().error(type.fOffset, "unknown type '" + name + "'");
return nullptr;
}
const Type* result = &symbol->as<Type>();
const bool isArray = (type.begin() != type.end());
if (*result == *fContext.fTypes.fVoid && !allowVoid) {
this->errorReporter().error(type.fOffset,
"type '" + name + "' not allowed in this context");
return nullptr;
}
if (!fIsBuiltinCode && this->typeContainsPrivateFields(*result)) {
this->errorReporter().error(type.fOffset, "type '" + name + "' is private");
return nullptr;
}
if (isArray) {
auto iter = type.begin();
int arraySize = this->convertArraySize(*result, type.fOffset, *iter);
if (!arraySize) {
return nullptr;
}
result = fSymbolTable->addArrayDimension(result, arraySize);
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) {
switch (expr.fKind) {
case ASTNode::Kind::kBinary:
return this->convertBinaryExpression(expr);
case ASTNode::Kind::kBool:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
expr.getBool()));
case ASTNode::Kind::kCall:
return this->convertCallExpression(expr);
case ASTNode::Kind::kField:
return this->convertFieldExpression(expr);
case ASTNode::Kind::kFloat:
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
expr.getFloat()));
case ASTNode::Kind::kIdentifier:
return this->convertIdentifier(expr);
case ASTNode::Kind::kIndex:
return this->convertIndexExpression(expr);
case ASTNode::Kind::kInt:
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
expr.getInt()));
case ASTNode::Kind::kPostfix:
return this->convertPostfixExpression(expr);
case ASTNode::Kind::kPrefix:
return this->convertPrefixExpression(expr);
case ASTNode::Kind::kScope:
return this->convertScopeExpression(expr);
case ASTNode::Kind::kTernary:
return this->convertTernaryExpression(expr);
default:
SkDEBUGFAILF("unsupported expression: %s\n", expr.description().c_str());
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(int offset, StringFragment name) {
const Symbol* result = (*fSymbolTable)[name];
if (!result) {
this->errorReporter().error(offset, "unknown identifier '" + name + "'");
return nullptr;
}
switch (result->kind()) {
case Symbol::Kind::kFunctionDeclaration: {
std::vector<const FunctionDeclaration*> f = {
&result->as<FunctionDeclaration>()
};
return std::make_unique<FunctionReference>(fContext, offset, f);
}
case Symbol::Kind::kUnresolvedFunction: {
const UnresolvedFunction* f = &result->as<UnresolvedFunction>();
return std::make_unique<FunctionReference>(fContext, offset, f->functions());
}
case Symbol::Kind::kVariable: {
const Variable* var = &result->as<Variable>();
const Modifiers& modifiers = var->modifiers();
switch (modifiers.fLayout.fBuiltin) {
case SK_WIDTH_BUILTIN:
fInputs.fRTWidth = true;
break;
case SK_HEIGHT_BUILTIN:
fInputs.fRTHeight = true;
break;
#ifndef SKSL_STANDALONE
case SK_FRAGCOORD_BUILTIN:
fInputs.fFlipY = true;
if (fSettings->fFlipY &&
(!fCaps || !fCaps->fragCoordConventionsExtensionString())) {
fInputs.fRTHeight = true;
}
#endif
}
if (fKind == Program::kFragmentProcessor_Kind &&
(modifiers.fFlags & Modifiers::kIn_Flag) &&
!(modifiers.fFlags & Modifiers::kUniform_Flag) &&
!modifiers.fLayout.fKey &&
modifiers.fLayout.fBuiltin == -1 &&
var->type() != *fContext.fTypes.fFragmentProcessor &&
var->type().typeKind() != Type::TypeKind::kSampler) {
bool valid = false;
for (const auto& decl : fFile->root()) {
if (decl.fKind == ASTNode::Kind::kSection) {
ASTNode::SectionData section = decl.getSectionData();
if (section.fName == "setData") {
valid = true;
break;
}
}
}
if (!valid) {
this->errorReporter().error(
offset,
"'in' variable must be either 'uniform' or 'layout(key)', or there "
"must be a custom @setData function");
}
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::make_unique<VariableReference>(offset,
var,
VariableReference::RefKind::kRead);
}
case Symbol::Kind::kField: {
const Field* field = &result->as<Field>();
auto base = std::make_unique<VariableReference>(offset, &field->owner(),
VariableReference::RefKind::kRead);
return std::make_unique<FieldAccess>(std::move(base),
field->fieldIndex(),
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
}
case Symbol::Kind::kType: {
const Type* t = &result->as<Type>();
return std::make_unique<TypeReference>(fContext, offset, t);
}
case Symbol::Kind::kExternal: {
const ExternalFunction* r = &result->as<ExternalFunction>();
return std::make_unique<ExternalFunctionReference>(offset, r);
}
default:
SK_ABORT("unsupported symbol type %d\n", (int) result->kind());
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) {
return this->convertIdentifier(identifier.fOffset, identifier.getString());
}
std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) {
if (fKind != Program::kFragmentProcessor_Kind) {
this->errorReporter().error(s.fOffset, "syntax error");
return nullptr;
}
ASTNode::SectionData section = s.getSectionData();
return std::make_unique<Section>(s.fOffset, section.fName, section.fArgument,
section.fText);
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
if (!expr) {
return nullptr;
}
if (expr->type() == type) {
return expr;
}
this->checkValid(*expr);
if (expr->type() == *fContext.fTypes.fInvalid) {
return nullptr;
}
int offset = expr->fOffset;
if (!expr->coercionCost(type).isPossible(fSettings->fAllowNarrowingConversions)) {
this->errorReporter().error(offset, "expected '" + type.displayName() + "', but found '" +
expr->type().displayName() + "'");
return nullptr;
}
ExpressionArray args;
args.push_back(std::move(expr));
if (!type.isScalar()) {
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
return this->convertConstructor(offset, type.scalarTypeForLiteral(), std::move(args));
}
static bool is_matrix_multiply(const Type& left, Operator op, const Type& right) {
if (op.kind() != Token::Kind::TK_STAR && op.kind() != Token::Kind::TK_STAREQ) {
return false;
}
if (left.isMatrix()) {
return right.isMatrix() || right.isVector();
}
return left.isVector() && right.isMatrix();
}
/**
* Determines the operand and result types of a binary expression. Returns true if the expression is
* legal, false otherwise. If false, the values of the out parameters are undefined.
*/
static bool determine_binary_type(const Context& context,
bool allowNarrowing,
Operator op,
const Type& left,
const Type& right,
const Type** outLeftType,
const Type** outRightType,
const Type** outResultType) {
switch (op.kind()) {
case Token::Kind::TK_EQ: // left = right
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left, allowNarrowing);
case Token::Kind::TK_EQEQ: // left == right
case Token::Kind::TK_NEQ: { // left != right
CoercionCost rightToLeft = right.coercionCost(left),
leftToRight = left.coercionCost(right);
if (rightToLeft < leftToRight) {
if (rightToLeft.isPossible(allowNarrowing)) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = context.fTypes.fBool.get();
return true;
}
} else {
if (leftToRight.isPossible(allowNarrowing)) {
*outLeftType = &right;
*outRightType = &right;
*outResultType = context.fTypes.fBool.get();
return true;
}
}
return false;
}
case Token::Kind::TK_LOGICALOR: // left || right
case Token::Kind::TK_LOGICALAND: // left && right
case Token::Kind::TK_LOGICALXOR: // left ^^ right
*outLeftType = context.fTypes.fBool.get();
*outRightType = context.fTypes.fBool.get();
*outResultType = context.fTypes.fBool.get();
return left.canCoerceTo(*context.fTypes.fBool, allowNarrowing) &&
right.canCoerceTo(*context.fTypes.fBool, allowNarrowing);
case Token::Kind::TK_COMMA: // left, right
*outLeftType = &left;
*outRightType = &right;
*outResultType = &right;
return true;
default:
break;
}
// Boolean types only support the operators listed above (, = == != || && ^^).
// If we've gotten this far with a boolean, we have an unsupported operator.
const Type& leftComponentType = left.componentType();
const Type& rightComponentType = right.componentType();
if (leftComponentType.isBoolean() || rightComponentType.isBoolean()) {
return false;
}
bool isAssignment = op.isAssignment();
if (is_matrix_multiply(left, op, right)) { // left * right
// Determine final component type.
if (!determine_binary_type(context, allowNarrowing, op,
left.componentType(), right.componentType(),
outLeftType, outRightType, outResultType)) {
return false;
}
*outLeftType = &(*outResultType)->toCompound(context, left.columns(), left.rows());
*outRightType = &(*outResultType)->toCompound(context, right.columns(), right.rows());
int leftColumns = left.columns(), leftRows = left.rows();
int rightColumns = right.columns(), rightRows = right.rows();
if (right.isVector()) {
// `matrix * vector` treats the vector as a column vector; we need to transpose it.
std::swap(rightColumns, rightRows);
SkASSERT(rightColumns == 1);
}
if (rightColumns > 1) {
*outResultType = &(*outResultType)->toCompound(context, rightColumns, leftRows);
} else {
// The result was a column vector. Transpose it back to a row.
*outResultType = &(*outResultType)->toCompound(context, leftRows, rightColumns);
}
if (isAssignment && ((*outResultType)->columns() != leftColumns ||
(*outResultType)->rows() != leftRows)) {
return false;
}
return leftColumns == rightRows;
}
bool leftIsVectorOrMatrix = left.isVector() || left.isMatrix();
bool validMatrixOrVectorOp = op.isValidForMatrixOrVector();
if (leftIsVectorOrMatrix && validMatrixOrVectorOp && right.isScalar()) {
if (determine_binary_type(context, allowNarrowing, op, left.componentType(), right,
outLeftType, outRightType, outResultType)) {
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
if (!op.isLogical()) {
*outResultType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
}
return true;
}
return false;
}
bool rightIsVectorOrMatrix = right.isVector() || right.isMatrix();
if (!isAssignment && rightIsVectorOrMatrix && validMatrixOrVectorOp && left.isScalar()) {
if (determine_binary_type(context, allowNarrowing, op, left, right.componentType(),
outLeftType, outRightType, outResultType)) {
*outRightType = &(*outRightType)->toCompound(context, right.columns(), right.rows());
if (!op.isLogical()) {
*outResultType = &(*outResultType)->toCompound(context, right.columns(),
right.rows());
}
return true;
}
return false;
}
CoercionCost rightToLeftCost = right.coercionCost(left);
CoercionCost leftToRightCost = isAssignment ? CoercionCost::Impossible()
: left.coercionCost(right);
if ((left.isScalar() && right.isScalar()) || (leftIsVectorOrMatrix && validMatrixOrVectorOp)) {
if (op.isOnlyValidForIntegralTypes()) {
if (!leftComponentType.isInteger() || !rightComponentType.isInteger()) {
return false;
}
}
if (rightToLeftCost.isPossible(allowNarrowing) && rightToLeftCost < leftToRightCost) {
// Right-to-Left conversion is possible and cheaper
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
} else if (leftToRightCost.isPossible(allowNarrowing)) {
// Left-to-Right conversion is possible (and at least as cheap as Right-to-Left)
*outLeftType = &right;
*outRightType = &right;
*outResultType = &right;
} else {
return false;
}
if (op.isLogical()) {
*outResultType = context.fTypes.fBool.get();
}
return true;
}
return false;
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kBinary);
auto iter = expression.begin();
std::unique_ptr<Expression> left = this->convertExpression(*(iter++));
if (!left) {
return nullptr;
}
std::unique_ptr<Expression> right = this->convertExpression(*(iter++));
if (!right) {
return nullptr;
}
return this->convertBinaryExpression(std::move(left), expression.getOperator(),
std::move(right));
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(
std::unique_ptr<Expression> left,
Operator op,
std::unique_ptr<Expression> right) {
if (!left || !right) {
return nullptr;
}
int offset = left->fOffset;
const Type* leftType;
const Type* rightType;
const Type* resultType;
const Type* rawLeftType;
if (left->is<IntLiteral>() && right->type().isInteger()) {
rawLeftType = &right->type();
} else {
rawLeftType = &left->type();
}
const Type* rawRightType;
if (right->is<IntLiteral>() && left->type().isInteger()) {
rawRightType = &left->type();
} else {
rawRightType = &right->type();
}
if (this->strictES2Mode() && !op.isAllowedInStrictES2Mode()) {
this->errorReporter().error(offset,
String("operator '") + op.operatorName() + "' is not allowed");
return nullptr;
}
bool isAssignment = op.isAssignment();
if (isAssignment && !this->setRefKind(*left, op.kind() != Token::Kind::TK_EQ
? VariableReference::RefKind::kReadWrite
: VariableReference::RefKind::kWrite)) {
return nullptr;
}
if (!determine_binary_type(fContext, fSettings->fAllowNarrowingConversions, op,
*rawLeftType, *rawRightType, &leftType, &rightType, &resultType)) {
this->errorReporter().error(
offset, String("type mismatch: '") + op.operatorName() +
"' cannot operate on '" + left->type().displayName() + "', '" +
right->type().displayName() + "'");
return nullptr;
}
if (isAssignment && leftType->componentType().isOpaque()) {
this->errorReporter().error(offset, "assignments to opaque type '" +
left->type().displayName() + "' are not permitted");
}
left = this->coerce(std::move(left), *leftType);
right = this->coerce(std::move(right), *rightType);
if (!left || !right) {
return nullptr;
}
std::unique_ptr<Expression> result;
if (!ConstantFolder::ErrorOnDivideByZero(fContext, offset, op, *right)) {
result = ConstantFolder::Simplify(fContext, offset, *left, op, *right);
}
if (!result) {
result = std::make_unique<BinaryExpression>(offset, std::move(left), op, std::move(right),
resultType);
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(
std::unique_ptr<Expression> test,
std::unique_ptr<Expression> ifTrue,
std::unique_ptr<Expression> ifFalse) {
test = this->coerce(std::move(test), *fContext.fTypes.fBool);
if (!test || !ifTrue || !ifFalse) {
return nullptr;
}
int offset = test->fOffset;
const Type* trueType;
const Type* falseType;
const Type* resultType;
if (!determine_binary_type(fContext, fSettings->fAllowNarrowingConversions,
Token::Kind::TK_EQEQ, ifTrue->type(), ifFalse->type(),
&trueType, &falseType, &resultType) ||
trueType != falseType) {
this->errorReporter().error(offset, "ternary operator result mismatch: '" +
ifTrue->type().displayName() + "', '" +
ifFalse->type().displayName() + "'");
return nullptr;
}
if (trueType->componentType().isOpaque()) {
this->errorReporter().error(
offset,
"ternary expression of opaque type '" + trueType->displayName() + "' not allowed");
return nullptr;
}
ifTrue = this->coerce(std::move(ifTrue), *trueType);
if (!ifTrue) {
return nullptr;
}
ifFalse = this->coerce(std::move(ifFalse), *falseType);
if (!ifFalse) {
return nullptr;
}
if (test->kind() == Expression::Kind::kBoolLiteral) {
// static boolean test, just return one of the branches
if (test->as<BoolLiteral>().value()) {
return ifTrue;
} else {
return ifFalse;
}
}
return std::make_unique<TernaryExpression>(offset,
std::move(test),
std::move(ifTrue),
std::move(ifFalse));
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kTernary);
auto iter = node.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++));
if (!ifFalse) {
return nullptr;
}
return this->convertTernaryExpression(std::move(test), std::move(ifTrue), std::move(ifFalse));
}
void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) {
if (const ProgramElement* found = fIntrinsics->findAndInclude(function.description())) {
const FunctionDefinition& original = found->as<FunctionDefinition>();
// Sort the referenced intrinsics into a consistent order; otherwise our output will become
// non-deterministic.
std::vector<const FunctionDeclaration*> intrinsics(original.referencedIntrinsics().begin(),
original.referencedIntrinsics().end());
std::sort(intrinsics.begin(), intrinsics.end(),
[](const FunctionDeclaration* a, const FunctionDeclaration* b) {
if (a->isBuiltin() != b->isBuiltin()) {
return a->isBuiltin() < b->isBuiltin();
}
if (a->fOffset != b->fOffset) {
return a->fOffset < b->fOffset;
}
if (a->name() != b->name()) {
return a->name() < b->name();
}
return a->description() < b->description();
});
for (const FunctionDeclaration* f : intrinsics) {
this->copyIntrinsicIfNeeded(*f);
}
fSharedElements->push_back(found);
}
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
ExpressionArray arguments) {
if (function.isBuiltin()) {
if (function.definition()) {
fReferencedIntrinsics.insert(&function);
}
if (!fIsBuiltinCode && fIntrinsics) {
this->copyIntrinsicIfNeeded(function);
}
}
if (function.parameters().size() != arguments.size()) {
String msg = "call to '" + function.name() + "' expected " +
to_string((uint64_t) function.parameters().size()) +
" argument";
if (function.parameters().size() != 1) {
msg += "s";
}
msg += ", but found " + to_string((uint64_t) arguments.size());
this->errorReporter().error(offset, msg);
return nullptr;
}
// GLSL ES 1.0 requires static recursion be rejected by the compiler. Also, our CPU back-end
// can not handle recursion (and is tied to strictES2Mode front-ends). The safest way to reject
// all (potentially) recursive code is to disallow calls to functions before they're defined.
if (this->strictES2Mode() && !function.definition() && !function.isBuiltin()) {
String msg = "call to undefined function '" + function.name() + "'";
this->errorReporter().error(offset, msg);
return nullptr;
}
FunctionDeclaration::ParamTypes types;
const Type* returnType;
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
String msg = "no match for " + function.name() + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
this->errorReporter().error(offset, msg);
return nullptr;
}
for (size_t i = 0; i < arguments.size(); i++) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
const Modifiers& paramModifiers = function.parameters()[i]->modifiers();
if (paramModifiers.fFlags & Modifiers::kOut_Flag) {
if (!this->setRefKind(*arguments[i], paramModifiers.fFlags & Modifiers::kIn_Flag
? VariableReference::RefKind::kReadWrite
: VariableReference::RefKind::kPointer)) {
return nullptr;
}
}
}
return std::make_unique<FunctionCall>(offset, returnType, &function, std::move(arguments));
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns CoercionCost::Impossible() if
* the call is not valid.
*/
CoercionCost IRGenerator::callCost(const FunctionDeclaration& function,
const ExpressionArray& arguments) {
if (function.parameters().size() != arguments.size()) {
return CoercionCost::Impossible();
}
FunctionDeclaration::ParamTypes types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return CoercionCost::Impossible();
}
CoercionCost total = CoercionCost::Free();
for (size_t i = 0; i < arguments.size(); i++) {
total = total + arguments[i]->coercionCost(*types[i]);
}
return total;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
std::unique_ptr<Expression> functionValue,
ExpressionArray arguments) {
switch (functionValue->kind()) {
case Expression::Kind::kTypeReference:
return this->convertConstructor(offset,
functionValue->as<TypeReference>().value(),
std::move(arguments));
case Expression::Kind::kExternalFunctionReference: {
const ExternalFunction& f = functionValue->as<ExternalFunctionReference>().function();
int count = f.callParameterCount();
if (count != (int) arguments.size()) {
this->errorReporter().error(offset, "external function expected " +
to_string(count) + " arguments, but found " +
to_string((int)arguments.size()));
return nullptr;
}
static constexpr int PARAMETER_MAX = 16;
SkASSERT(count < PARAMETER_MAX);
const Type* types[PARAMETER_MAX];
f.getCallParameterTypes(types);
for (int i = 0; i < count; ++i) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
}
return std::make_unique<ExternalFunctionCall>(offset, &f, std::move(arguments));
}
case Expression::Kind::kFunctionReference: {
const FunctionReference& ref = functionValue->as<FunctionReference>();
const std::vector<const FunctionDeclaration*>& functions = ref.functions();
CoercionCost bestCost = CoercionCost::Impossible();
const FunctionDeclaration* best = nullptr;
if (functions.size() > 1) {
for (const auto& f : functions) {
CoercionCost cost = this->callCost(*f, arguments);
if (cost < bestCost) {
bestCost = cost;
best = f;
}
}
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + functions[0]->name() + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
this->errorReporter().error(offset, msg);
return nullptr;
}
return this->call(offset, *functions[0], std::move(arguments));
}
default:
this->errorReporter().error(offset, "not a function");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertScalarConstructor(int offset,
const Type& type,
ExpressionArray args) {
SkASSERT(type.isScalar());
if (args.size() != 1) {
this->errorReporter().error(
offset, "invalid arguments to '" + type.displayName() +
"' constructor, (expected exactly 1 argument, but found " +
to_string((uint64_t)args.size()) + ")");
return nullptr;
}
const Type& argType = args[0]->type();
if (!argType.isScalar()) {
this->errorReporter().error(
offset, "invalid argument to '" + type.displayName() +
"' constructor (expected a number or bool, but found '" +
argType.displayName() + "')");
return nullptr;
}
std::unique_ptr<Expression> converted = Constructor::SimplifyConversion(type, *args[0]);
if (converted) {
return converted;
}
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor(int offset,
const Type& type,
ExpressionArray args) {
SkASSERT(type.isVector() || type.isMatrix());
if (type.isMatrix() && args.size() == 1 && args[0]->type().isMatrix()) {
// Matrix-from-matrix is always legal.
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
if (args.size() == 1 && args[0]->type().isScalar()) {
// A constructor containing a single scalar is a splat (for vectors) or diagonal matrix (for
// matrices). In either event, it's legal regardless of the scalar's type. Synthesize an
// explicit conversion to the proper type (this is a no-op if it's unnecessary).
ExpressionArray castArgs;
castArgs.push_back(this->convertConstructor(offset, type.componentType(), std::move(args)));
return std::make_unique<Constructor>(offset, &type, std::move(castArgs));
}
int expected = type.rows() * type.columns();
if (type.isVector() && args.size() == 1 && args[0]->type().isVector() &&
args[0]->type().columns() == expected) {
// A vector constructor containing a single vector with the same number of columns is a
// cast (e.g. float3 -> int3).
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
// For more complex cases, we walk the argument list and fix up the arguments as needed.
int actual = 0;
for (std::unique_ptr<Expression>& arg : args) {
if (!arg->type().isScalar() && !arg->type().isVector()) {
this->errorReporter().error(offset, "'" + arg->type().displayName() +
"' is not a valid parameter to '" +
type.displayName() + "' constructor");
return nullptr;
}
// Rely on convertConstructor to force this subexpression to the proper type. If it's a
// literal, this will make sure it's the right type of literal. If an expression of
// matching type, the expression will be returned as-is. If it's an expression of
// mismatched type, this adds a cast.
int offset = arg->fOffset;
const Type& ctorType = type.componentType().toCompound(fContext, arg->type().columns(),
/*rows=*/1);
ExpressionArray ctorArg;
ctorArg.push_back(std::move(arg));
arg = this->convertConstructor(offset, ctorType, std::move(ctorArg));
if (!arg) {
return nullptr;
}
actual += ctorType.columns();
}
if (actual != expected) {
this->errorReporter().error(offset, "invalid arguments to '" + type.displayName() +
"' constructor (expected " + to_string(expected) +
" scalars, but found " + to_string(actual) + ")");
return nullptr;
}
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
std::unique_ptr<Expression> IRGenerator::convertConstructor(int offset,
const Type& type,
ExpressionArray args) {
// FIXME: add support for structs
if (args.size() == 1 && args[0]->type() == type && !type.componentType().isOpaque()) {
// Strip off redundant casts--i.e., convert Type(exprOfType) into exprOfType.
return std::move(args[0]);
}
if (type.isScalar()) {
return this->convertScalarConstructor(offset, type, std::move(args));
}
if (type.isVector() || type.isMatrix()) {
return this->convertCompoundConstructor(offset, type, std::move(args));
}
if (type.isArray() && type.columns() > 0) {
return this->convertArrayConstructor(offset, type, std::move(args));
}
this->errorReporter().error(offset, "cannot construct '" + type.displayName() + "'");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertArrayConstructor(int offset,
const Type& type,
ExpressionArray args) {
SkASSERTF(type.isArray() && type.columns() > 0, "%s", type.description().c_str());
// ES2 doesn't support first-class array types.
if (this->strictES2Mode()) {
this->errorReporter().error(
offset, "construction of array type '" + type.displayName() + "' is not supported");
return nullptr;
}
// Check that the number of constructor arguments matches the array size.
if (type.columns() != args.count()) {
this->errorReporter().error(
offset,
String::printf("invalid arguments to '%s' constructor "
"(expected %d elements, but found %d)",
type.displayName().c_str(), type.columns(), args.count()));
return nullptr;
}
// Convert each constructor argument to the array's component type.
const Type& base = type.componentType();
for (std::unique_ptr<Expression>& argument : args) {
argument = this->coerce(std::move(argument), base);
if (!argument) {
return nullptr;
}
}
return std::make_unique<Constructor>(offset, &type, std::move(args));
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPrefix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
return this->convertPrefixExpression(expression.getOperator(), std::move(base));
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(Operator op,
std::unique_ptr<Expression> base) {
const Type& baseType = base->type();
switch (op.kind()) {
case Token::Kind::TK_PLUS:
if (!baseType.componentType().isNumber()) {
this->errorReporter().error(
base->fOffset, "'+' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
return base;
case Token::Kind::TK_MINUS:
if (!baseType.componentType().isNumber()) {
this->errorReporter().error(
base->fOffset, "'-' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (base->is<IntLiteral>()) {
return std::make_unique<IntLiteral>(base->fOffset,
-base->as<IntLiteral>().value(),
&base->type());
}
if (base->is<FloatLiteral>()) {
return std::make_unique<FloatLiteral>(base->fOffset,
-base->as<FloatLiteral>().value(),
&base->type());
}
return std::make_unique<PrefixExpression>(Token::Kind::TK_MINUS, std::move(base));
case Token::Kind::TK_PLUSPLUS:
if (!baseType.isNumber()) {
this->errorReporter().error(base->fOffset,
String("'") + op.operatorName() +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (!this->setRefKind(*base, VariableReference::RefKind::kReadWrite)) {
return nullptr;
}
break;
case Token::Kind::TK_MINUSMINUS:
if (!baseType.isNumber()) {
this->errorReporter().error(base->fOffset,
String("'") + op.operatorName() +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (!this->setRefKind(*base, VariableReference::RefKind::kReadWrite)) {
return nullptr;
}
break;
case Token::Kind::TK_LOGICALNOT:
if (!baseType.isBoolean()) {
this->errorReporter().error(base->fOffset,
String("'") + op.operatorName() +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (base->is<BoolLiteral>()) {
return std::make_unique<BoolLiteral>(base->fOffset,
!base->as<BoolLiteral>().value(),
&base->type());
}
break;
case Token::Kind::TK_BITWISENOT:
if (this->strictES2Mode()) {
// GLSL ES 1.00, Section 5.1
this->errorReporter().error(
base->fOffset,
String("operator '") + op.operatorName() + "' is not allowed");
return nullptr;
}
if (!baseType.isInteger()) {
this->errorReporter().error(base->fOffset,
String("'") + op.operatorName() +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
break;
default:
SK_ABORT("unsupported prefix operator\n");
}
return std::make_unique<PrefixExpression>(op, std::move(base));
}
std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
StringFragment field) {
const Type& baseType = base->type();
auto fields = baseType.fields();
for (size_t i = 0; i < fields.size(); i++) {
if (fields[i].fName == field) {
return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
}
}
this->errorReporter().error(
base->fOffset,
"type '" + baseType.displayName() + "' does not have a field named '" + field + "'");
return nullptr;
}
// Swizzles are complicated due to constant components. The most difficult case is a mask like
// '.x1w0'. A naive approach might turn that into 'float4(base.x, 1, base.w, 0)', but that evaluates
// 'base' twice. We instead group the swizzle mask ('xw') and constants ('1, 0') together and use a
// secondary swizzle to put them back into the right order, so in this case we end up with
// 'float4(base.xw, 1, 0).xzyw'.
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
String fields) {
const int offset = base->fOffset;
const Type& baseType = base->type();
if (!baseType.isVector() && !baseType.isNumber()) {
this->errorReporter().error(
offset, "cannot swizzle value of type '" + baseType.displayName() + "'");
return nullptr;
}
if (fields.length() > 4) {
this->errorReporter().error(offset, "too many components in swizzle mask '" + fields + "'");
return nullptr;
}
ComponentArray maskComponents;
for (size_t i = 0; i < fields.length(); i++) {
switch (fields[i]) {
case '0':
case '1':
// Skip over constant fields for now.
break;
case 'x':
case 'r':
case 's':
case 'L':
maskComponents.push_back(0);
break;
case 'y':
case 'g':
case 't':
case 'T':
if (baseType.columns() >= 2) {
maskComponents.push_back(1);
break;
}
[[fallthrough]];
case 'z':
case 'b':
case 'p':
case 'R':
if (baseType.columns() >= 3) {
maskComponents.push_back(2);
break;
}
[[fallthrough]];
case 'w':
case 'a':
case 'q':
case 'B':
if (baseType.columns() >= 4) {
maskComponents.push_back(3);
break;
}
[[fallthrough]];
default:
this->errorReporter().error(
offset, String::printf("invalid swizzle component '%c'", fields[i]));
return nullptr;
}
}
if (maskComponents.empty()) {
this->errorReporter().error(offset, "swizzle must refer to base expression");
return nullptr;
}
// First, we need a vector expression that is the non-constant portion of the swizzle, packed:
// scalar.xxx -> type3(scalar)
// scalar.x0x0 -> type2(scalar)
// vector.zyx -> vector.zyx
// vector.x0y0 -> vector.xy
std::unique_ptr<Expression> expr;
if (baseType.isNumber()) {
ExpressionArray scalarConstructorArgs;
scalarConstructorArgs.push_back(std::move(base));
expr = std::make_unique<Constructor>(
offset, &baseType.toCompound(fContext, maskComponents.size(), 1),
std::move(scalarConstructorArgs));
} else {
expr = std::make_unique<Swizzle>(fContext, std::move(base), maskComponents);
}
// If we have processed the entire swizzle, we're done.
if (maskComponents.size() == fields.length()) {
return expr;
}
// Now we create a constructor that has the correct number of elements for the final swizzle,
// with all fields at the start. It's not finished yet; constants we need will be added below.
// scalar.x0x0 -> type4(type2(x), ...)
// vector.y111 -> type4(vector.y, ...)
// vector.z10x -> type4(vector.zx, ...)
//
// We could create simpler IR in some cases by reordering here, if all fields are packed
// contiguously. The benefits are minor, so skip the optimization to keep the algorithm simple.
// The constructor will have at most three arguments: { base value, constant 0, constant 1 }
ExpressionArray constructorArgs;
constructorArgs.reserve_back(3);
constructorArgs.push_back(std::move(expr));
// Apply another swizzle to shuffle the constants into the correct place. Any constant values we
// need are also tacked on to the end of the constructor.
// scalar.x0x0 -> type4(type2(x), 0).xyxy
// vector.y111 -> type4(vector.y, 1).xyyy
// vector.z10x -> type4(vector.zx, 1, 0).xzwy
const Type* numberType = baseType.isNumber() ? &baseType : &baseType.componentType();
ComponentArray swizzleComponents;
int maskFieldIdx = 0;
int constantFieldIdx = maskComponents.size();
int constantZeroIdx = -1, constantOneIdx = -1;
for (size_t i = 0; i < fields.length(); i++) {
switch (fields[i]) {
case '0':
if (constantZeroIdx == -1) {
// Synthesize a 'type(0)' argument at the end of the constructor.
auto zero = std::make_unique<Constructor>(offset, numberType,
ExpressionArray{});
zero->arguments().push_back(std::make_unique<IntLiteral>(fContext, offset,
/*fValue=*/0));
constructorArgs.push_back(std::move(zero));
constantZeroIdx = constantFieldIdx++;
}
swizzleComponents.push_back(constantZeroIdx);
break;
case '1':
if (constantOneIdx == -1) {
// Synthesize a 'type(1)' argument at the end of the constructor.
auto one = std::make_unique<Constructor>(offset, numberType, ExpressionArray{});
one->arguments().push_back(std::make_unique<IntLiteral>(fContext, offset,
/*fValue=*/1));
constructorArgs.push_back(std::move(one));
constantOneIdx = constantFieldIdx++;
}
swizzleComponents.push_back(constantOneIdx);
break;
default:
// The non-constant fields are already in the expected order.
swizzleComponents.push_back(maskFieldIdx++);
break;
}
}
expr = std::make_unique<Constructor>(offset,
&numberType->toCompound(fContext, constantFieldIdx, 1),
std::move(constructorArgs));
// For some of our most common use cases ('.xyz0', '.xyz1'), we will now have an identity
// swizzle; in those cases we can just return the constructor without the swizzle attached.
for (size_t i = 0; i < swizzleComponents.size(); ++i) {
if (swizzleComponents[i] != int(i)) {
// The swizzle has an effect, so apply it.
return std::make_unique<Swizzle>(fContext, std::move(expr), swizzleComponents);
}
}
// The swizzle was a no-op; return the constructor expression directly.
return expr;
}
const Type* IRGenerator::typeForSetting(int offset, String name) const {
auto found = fCapsMap.find(name);
if (found == fCapsMap.end()) {
this->errorReporter().error(offset, "unknown capability flag '" + name + "'");
return nullptr;
}
switch (found->second.fKind) {
case Program::Settings::Value::kBool_Kind: return fContext.fTypes.fBool.get();
case Program::Settings::Value::kFloat_Kind: return fContext.fTypes.fFloat.get();
case Program::Settings::Value::kInt_Kind: return fContext.fTypes.fInt.get();
}
SkUNREACHABLE;
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::valueForSetting(int offset, String name) const {
auto found = fCapsMap.find(name);
if (found == fCapsMap.end()) {
this->errorReporter().error(offset, "unknown capability flag '" + name + "'");
return nullptr;
}
return found->second.literal(fContext, offset);
}
std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
StringFragment field) {
const ProgramElement* enumElement = nullptr;
// Find the Enum element that this type refers to, start by searching our elements
for (const std::unique_ptr<ProgramElement>& e : *fProgramElements) {
if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) {
enumElement = e.get();
break;
}
}
// ... if that fails, look in our shared elements
if (!enumElement) {
for (const ProgramElement* e : *fSharedElements) {
if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) {
enumElement = e;
break;
}
}
}
// ... and if that fails, check the intrinsics, add it to our shared elements
if (!enumElement && !fIsBuiltinCode && fIntrinsics) {
if (const ProgramElement* found = fIntrinsics->findAndInclude(type.name())) {
fSharedElements->push_back(found);
enumElement = found;
}
}
if (!enumElement) {
this->errorReporter().error(offset,
"type '" + type.displayName() + "' is not a known enum");
return nullptr;
}
// We found the Enum element. Look for 'field' as a member.
std::shared_ptr<SymbolTable> old = fSymbolTable;
fSymbolTable = enumElement->as<Enum>().symbols();
std::unique_ptr<Expression> result =
convertIdentifier(ASTNode(&fFile->fNodes, offset, ASTNode::Kind::kIdentifier, field));
if (result) {
const Variable& v = *result->as<VariableReference>().variable();
SkASSERT(v.initialValue());
result = std::make_unique<IntLiteral>(offset, v.initialValue()->as<IntLiteral>().value(),
&type);
} else {
this->errorReporter().error(
offset, "type '" + type.name() + "' does not contain enumerator '" + field + "'");
}
fSymbolTable = old;
return result;
}
std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) {
SkASSERT(index.fKind == ASTNode::Kind::kIndex);
auto iter = index.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
if (base->is<TypeReference>()) {
// Convert an index expression starting with a type name: `int[12]`
if (iter == index.end()) {
this->errorReporter().error(index.fOffset, "array must have a size");
return nullptr;
}
const Type* type = &base->as<TypeReference>().value();
int arraySize = this->convertArraySize(*type, index.fOffset, *iter);
if (!arraySize) {
return nullptr;
}
type = fSymbolTable->addArrayDimension(type, arraySize);
return std::make_unique<TypeReference>(fContext, base->fOffset, type);
}
if (iter == index.end()) {
this->errorReporter().error(base->fOffset, "missing index in '[]'");
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(*(iter++));
if (!converted) {
return nullptr;
}
return this->convertIndex(std::move(base), std::move(converted));
}
std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
std::unique_ptr<Expression> index) {
// Convert an index expression with an expression inside of it: `arr[a * 3]`.
const Type& baseType = base->type();
if (!baseType.isArray() && !baseType.isMatrix() && !baseType.isVector()) {
this->errorReporter().error(base->fOffset,
"expected array, but found '" + baseType.displayName() + "'");
return nullptr;
}
if (!index->type().isInteger()) {
index = this->coerce(std::move(index), *fContext.fTypes.fInt);
if (!index) {
return nullptr;
}
}
// Perform compile-time bounds checking on constant indices.
if (index->is<IntLiteral>()) {
SKSL_INT indexValue = index->as<IntLiteral>().value();
const int upperBound = (baseType.isArray() && baseType.columns() == Type::kUnsizedArray)
? INT_MAX
: baseType.columns();
if (indexValue < 0 || indexValue >= upperBound) {
this->errorReporter().error(base->fOffset, "index " + to_string(indexValue) +
" out of range for '" +
baseType.displayName() + "'");
return nullptr;
}
// Constant array indexes on vectors can be converted to swizzles: `myHalf4.z`.
// (Using a swizzle gives our optimizer a bit more to work with, compared to array indices.)
if (baseType.isVector()) {
return std::make_unique<Swizzle>(fContext, std::move(base),
ComponentArray{(int8_t)indexValue});
}
}
return std::make_unique<IndexExpression>(fContext, std::move(base), std::move(index));
}
std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) {
SkASSERT(callNode.fKind == ASTNode::Kind::kCall);
auto iter = callNode.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
ExpressionArray arguments;
for (; iter != callNode.end(); ++iter) {
std::unique_ptr<Expression> converted = this->convertExpression(*iter);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(callNode.fOffset, std::move(base), std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) {
std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin());
if (!base) {
return nullptr;
}
StringFragment field = fieldNode.getString();
const Type& baseType = base->type();
if (baseType == *fContext.fTypes.fSkCaps) {
if (fSettings->fReplaceSettings && !fIsBuiltinCode) {
return this->valueForSetting(fieldNode.fOffset, field);
}
const Type* type = this->typeForSetting(fieldNode.fOffset, field);
if (!type) {
return nullptr;
}
return std::make_unique<Setting>(fieldNode.fOffset, field, type);
}
switch (baseType.typeKind()) {
case Type::TypeKind::kOther:
case Type::TypeKind::kStruct:
return this->convertField(std::move(base), field);
default:
return this->convertSwizzle(std::move(base), field);
}
}
std::unique_ptr<Expression> IRGenerator::convertScopeExpression(const ASTNode& scopeNode) {
std::unique_ptr<Expression> base = this->convertExpression(*scopeNode.begin());
if (!base) {
return nullptr;
}
if (!base->is<TypeReference>()) {
this->errorReporter().error(scopeNode.fOffset, "'::' must follow a type name");
return nullptr;
}
StringFragment member = scopeNode.getString();
return this->convertTypeField(base->fOffset, base->as<TypeReference>().value(), member);
}
std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPostfix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
return this->convertPostfixExpression(std::move(base), expression.getOperator());
}
std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(std::unique_ptr<Expression> base,
Operator op) {
const Type& baseType = base->type();
if (!baseType.isNumber()) {
this->errorReporter().error(base->fOffset,
"'" + String(op.operatorName()) +
"' cannot operate on '" + baseType.displayName() + "'");
return nullptr;
}
if (!this->setRefKind(*base, VariableReference::RefKind::kReadWrite)) {
return nullptr;
}
return std::make_unique<PostfixExpression>(std::move(base), op);
}
void IRGenerator::checkValid(const Expression& expr) {
switch (expr.kind()) {
case Expression::Kind::kFunctionReference:
this->errorReporter().error(expr.fOffset, "expected '(' to begin function call");
break;
case Expression::Kind::kTypeReference:
this->errorReporter().error(expr.fOffset,
"expected '(' to begin constructor invocation");
break;
case Expression::Kind::kFunctionCall: {
const FunctionDeclaration& decl = expr.as<FunctionCall>().function();
if (!decl.isBuiltin() && !decl.definition()) {
this->errorReporter().error(expr.fOffset,
"function '" + decl.description() + "' is not defined");
}
break;
}
default:
if (expr.type() == *fContext.fTypes.fInvalid) {
this->errorReporter().error(expr.fOffset, "invalid expression");
}
}
}
bool IRGenerator::setRefKind(Expression& expr, VariableReference::RefKind kind) {
Analysis::AssignmentInfo info;
if (!Analysis::IsAssignable(expr, &info, &this->errorReporter())) {
return false;
}
if (info.fAssignedVar) {
info.fAssignedVar->setRefKind(kind);
}
return true;
}
void IRGenerator::findAndDeclareBuiltinVariables() {
class BuiltinVariableScanner : public ProgramVisitor {
public:
BuiltinVariableScanner(IRGenerator* generator) : fGenerator(generator) {}
void addDeclaringElement(const String& name) {
// If this is the *first* time we've seen this builtin, findAndInclude will return
// the corresponding ProgramElement.
if (const ProgramElement* decl = fGenerator->fIntrinsics->findAndInclude(name)) {
SkASSERT(decl->is<GlobalVarDeclaration>() || decl->is<InterfaceBlock>());
fNewElements.push_back(decl);
}
}
bool visitProgramElement(const ProgramElement& pe) override {
if (pe.is<FunctionDefinition>()) {
const FunctionDefinition& funcDef = pe.as<FunctionDefinition>();
// We synthesize writes to sk_FragColor if main() returns a color, even if it's
// otherwise unreferenced. Check main's return type to see if it's half4.
if (funcDef.declaration().name() == "main" &&
funcDef.declaration().returnType() == *fGenerator->fContext.fTypes.fHalf4) {
fPreserveFragColor = true;
}
}
return INHERITED::visitProgramElement(pe);
}
bool visitExpression(const Expression& e) override {
if (e.is<VariableReference>() && e.as<VariableReference>().variable()->isBuiltin()) {
this->addDeclaringElement(e.as<VariableReference>().variable()->name());
}
return INHERITED::visitExpression(e);
}
IRGenerator* fGenerator;
std::vector<const ProgramElement*> fNewElements;
bool fPreserveFragColor = false;
using INHERITED = ProgramVisitor;
using INHERITED::visitProgramElement;
};
BuiltinVariableScanner scanner(this);
for (auto& e : *fProgramElements) {
scanner.visitProgramElement(*e);
}
if (scanner.fPreserveFragColor) {
// main() returns a half4, so make sure we don't dead-strip sk_FragColor.
scanner.addDeclaringElement("sk_FragColor");
}
switch (fKind) {
case Program::kFragment_Kind:
// Vulkan requires certain builtin variables be present, even if they're unused. At one
// time, validation errors would result if sk_Clockwise was missing. Now, it's just
// (Adreno) driver bugs that drop or corrupt draws if they're missing.
scanner.addDeclaringElement("sk_Clockwise");
break;
default:
break;
}
fSharedElements->insert(
fSharedElements->begin(), scanner.fNewElements.begin(), scanner.fNewElements.end());
}
IRGenerator::IRBundle IRGenerator::convertProgram(
Program::Kind kind,
const Program::Settings* settings,
const ParsedModule& base,
bool isBuiltinCode,
const char* text,
size_t length,
const std::vector<std::unique_ptr<ExternalFunction>>* externalFunctions) {
fKind = kind;
fSettings = settings;
fSymbolTable = base.fSymbols;
fIntrinsics = base.fIntrinsics.get();
if (fIntrinsics) {
fIntrinsics->resetAlreadyIncluded();
}
fIsBuiltinCode = isBuiltinCode;
std::vector<std::unique_ptr<ProgramElement>> elements;
std::vector<const ProgramElement*> sharedElements;
fProgramElements = &elements;
fSharedElements = &sharedElements;
fInputs.reset();
fInvocations = -1;
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
fDefinedStructs.clear();
AutoSymbolTable table(this);
if (kind == Program::kGeometry_Kind && !fIsBuiltinCode) {
// Declare sk_InvocationID programmatically. With invocations support, it's an 'in' builtin.
// If we're applying the workaround, then it's a plain global.
bool workaround = fCaps && !fCaps->gsInvocationsSupport();
Modifiers m;
if (!workaround) {
m.fFlags = Modifiers::kIn_Flag;
m.fLayout.fBuiltin = SK_INVOCATIONID_BUILTIN;
}
auto var = std::make_unique<Variable>(-1, fModifiers->addToPool(m), "sk_InvocationID",
fContext.fTypes.fInt.get(), false,
Variable::Storage::kGlobal);
auto decl = std::make_unique<VarDeclaration>(var.get(), fContext.fTypes.fInt.get(),
/*arraySize=*/0, /*value=*/nullptr);
fSymbolTable->add(std::move(var));
fProgramElements->push_back(
std::make_unique<GlobalVarDeclaration>(/*offset=*/-1, std::move(decl)));
}
if (externalFunctions) {
// Add any external values to the new symbol table, so they're only visible to this Program
for (const auto& ef : *externalFunctions) {
fSymbolTable->addWithoutOwnership(ef.get());
}
}
Parser parser(text, length, *fSymbolTable, this->errorReporter());
fFile = parser.compilationUnit();
if (this->errorReporter().errorCount()) {
return {};
}
SkASSERT(fFile);
for (const auto& decl : fFile->root()) {
switch (decl.fKind) {
case ASTNode::Kind::kVarDeclarations:
this->convertGlobalVarDeclarations(decl);
break;
case ASTNode::Kind::kEnum:
this->convertEnum(decl);
break;
case ASTNode::Kind::kFunction:
this->convertFunction(decl);
break;
case ASTNode::Kind::kModifiers: {
std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(decl);
if (f) {
fProgramElements->push_back(std::move(f));
}
break;
}
case ASTNode::Kind::kInterfaceBlock: {
std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(decl);
if (i) {
fProgramElements->push_back(std::move(i));
}
break;
}
case ASTNode::Kind::kExtension: {
std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset,
decl.getString());
if (e) {
fProgramElements->push_back(std::move(e));
}
break;
}
case ASTNode::Kind::kSection: {
std::unique_ptr<Section> s = this->convertSection(decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
case ASTNode::Kind::kType: {
std::unique_ptr<StructDefinition> s = this->convertStructDefinition(decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
default:
SkDEBUGFAILF("unsupported declaration: %s\n", decl.description().c_str());
break;
}
}
// Variables defined in the pre-includes need their declaring elements added to the program
if (!fIsBuiltinCode && fIntrinsics) {
this->findAndDeclareBuiltinVariables();
}
// Do a pass looking for dangling FunctionReference or TypeReference expressions
class FindIllegalExpressions : public ProgramVisitor {
public:
FindIllegalExpressions(IRGenerator* generator) : fGenerator(generator) {}
bool visitExpression(const Expression& e) override {
fGenerator->checkValid(e);
return INHERITED::visitExpression(e);
}
IRGenerator* fGenerator;
using INHERITED = ProgramVisitor;
using INHERITED::visitProgramElement;
};
for (const auto& pe : *fProgramElements) {
FindIllegalExpressions{this}.visitProgramElement(*pe);
}
// If we're in ES2 mode (runtime effects), do a pass to enforce Appendix A, Section 5 of the
// GLSL ES 1.00 spec -- Indexing. Don't bother if we've already found errors - this logic
// assumes that all loops meet the criteria of Section 4, and if they don't, could crash.
if (this->strictES2Mode() && this->errorReporter().errorCount() == 0) {
for (const auto& pe : *fProgramElements) {
Analysis::ValidateIndexingForES2(*pe, this->errorReporter());
}
}
fSettings = nullptr;
return IRBundle{std::move(elements), std::move(sharedElements), this->releaseModifiers(),
fSymbolTable, fInputs};
}
} // namespace SkSL