| // It is important _not_ to put header guards here. |
| // This file will be intentionally included three times. |
| |
| // Useful reading: |
| // https://software.intel.com/sites/landingpage/IntrinsicsGuide/ |
| |
| #include "SkTypes.h" // Keep this before any #ifdef for skbug.com/3362 |
| |
| #if defined(SK4X_PREAMBLE) |
| // Code in this file may assume SSE and SSE2. |
| #include <emmintrin.h> |
| |
| // It must check for later instruction sets. |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| #include <immintrin.h> |
| #endif |
| |
| // A little bit of template metaprogramming to map |
| // float to __m128 and int32_t to __m128i. |
| template <typename T> struct SkScalarToSIMD; |
| template <> struct SkScalarToSIMD<float> { typedef __m128 Type; }; |
| template <> struct SkScalarToSIMD<int32_t> { typedef __m128i Type; }; |
| |
| // These are all free, zero instructions. |
| // MSVC insists we use _mm_castA_B(a) instead of (B)a. |
| static inline __m128 as_4f(__m128i v) { return _mm_castsi128_ps(v); } |
| static inline __m128 as_4f(__m128 v) { return v ; } |
| static inline __m128i as_4i(__m128i v) { return v ; } |
| static inline __m128i as_4i(__m128 v) { return _mm_castps_si128(v); } |
| |
| #elif defined(SK4X_PRIVATE) |
| // It'd be slightly faster to call _mm_cmpeq_epi32() on an unintialized register and itself, |
| // but that has caused hard to debug issues when compilers recognize dealing with uninitialized |
| // memory as undefined behavior that can be optimized away. |
| static __m128i True() { return _mm_set1_epi8(~0); } |
| |
| // Leaving these implicit makes the rest of the code below a bit less noisy to read. |
| Sk4x(__m128i); |
| Sk4x(__m128); |
| |
| Sk4x andNot(const Sk4x&) const; |
| |
| typename SkScalarToSIMD<T>::Type fVec; |
| |
| #else//Method definitions. |
| |
| // Helps to get these in before anything else. |
| template <> inline Sk4f::Sk4x(__m128i v) : fVec(as_4f(v)) {} |
| template <> inline Sk4f::Sk4x(__m128 v) : fVec( v ) {} |
| template <> inline Sk4i::Sk4x(__m128i v) : fVec( v ) {} |
| template <> inline Sk4i::Sk4x(__m128 v) : fVec(as_4i(v)) {} |
| |
| // Next, methods whose implementation is the same for Sk4f and Sk4i. |
| template <typename T> Sk4x<T>::Sk4x() {} |
| template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; } |
| template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) { |
| fVec = other.fVec; |
| return *this; |
| } |
| |
| // We pun in these _mm_shuffle_* methods a little to use the fastest / most available methods. |
| // They're all bit-preserving operations so it shouldn't matter. |
| |
| template <typename T> |
| Sk4x<T> Sk4x<T>::aacc() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(2,2,0,0)); } |
| template <typename T> |
| Sk4x<T> Sk4x<T>::bbdd() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(3,3,1,1)); } |
| template <typename T> |
| Sk4x<T> Sk4x<T>::badc() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(2,3,0,1)); } |
| |
| // Now we'll write all Sk4f specific methods. This M() macro will remove some noise. |
| #define M(...) template <> inline __VA_ARGS__ Sk4f:: |
| |
| M() Sk4x(float v) : fVec(_mm_set1_ps(v)) {} |
| M() Sk4x(float a, float b, float c, float d) : fVec(_mm_set_ps(d,c,b,a)) {} |
| |
| M(Sk4f) Load (const float fs[4]) { return _mm_loadu_ps(fs); } |
| M(Sk4f) LoadAligned(const float fs[4]) { return _mm_load_ps (fs); } |
| |
| M(void) store (float fs[4]) const { _mm_storeu_ps(fs, fVec); } |
| M(void) storeAligned(float fs[4]) const { _mm_store_ps (fs, fVec); } |
| |
| template <> M(Sk4i) reinterpret<Sk4i>() const { return as_4i(fVec); } |
| |
| // cvttps truncates, same as (int) when positive. |
| template <> M(Sk4i) cast<Sk4i>() const { return _mm_cvttps_epi32(fVec); } |
| |
| // We're going to try a little experiment here and skip allTrue(), anyTrue(), and bit-manipulators |
| // for Sk4f. Code that calls them probably does so accidentally. |
| // Ask mtklein to fill these in if you really need them. |
| |
| M(Sk4f) add (const Sk4f& o) const { return _mm_add_ps(fVec, o.fVec); } |
| M(Sk4f) subtract(const Sk4f& o) const { return _mm_sub_ps(fVec, o.fVec); } |
| M(Sk4f) multiply(const Sk4f& o) const { return _mm_mul_ps(fVec, o.fVec); } |
| M(Sk4f) divide (const Sk4f& o) const { return _mm_div_ps(fVec, o.fVec); } |
| |
| M(Sk4f) rsqrt() const { return _mm_rsqrt_ps(fVec); } |
| M(Sk4f) sqrt() const { return _mm_sqrt_ps( fVec); } |
| |
| M(Sk4i) equal (const Sk4f& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
| M(Sk4i) notEqual (const Sk4f& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
| M(Sk4i) lessThan (const Sk4f& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
| M(Sk4i) greaterThan (const Sk4f& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
| M(Sk4i) lessThanEqual (const Sk4f& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
| M(Sk4i) greaterThanEqual(const Sk4f& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
| |
| M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return _mm_min_ps(a.fVec, b.fVec); } |
| M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return _mm_max_ps(a.fVec, b.fVec); } |
| |
| // Now we'll write all the Sk4i specific methods. Same deal for M(). |
| #undef M |
| #define M(...) template <> inline __VA_ARGS__ Sk4i:: |
| |
| M() Sk4x(int32_t v) : fVec(_mm_set1_epi32(v)) {} |
| M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_set_epi32(d,c,b,a)) {} |
| |
| M(Sk4i) Load (const int32_t is[4]) { return _mm_loadu_si128((const __m128i*)is); } |
| M(Sk4i) LoadAligned(const int32_t is[4]) { return _mm_load_si128 ((const __m128i*)is); } |
| |
| M(void) store (int32_t is[4]) const { _mm_storeu_si128((__m128i*)is, fVec); } |
| M(void) storeAligned(int32_t is[4]) const { _mm_store_si128 ((__m128i*)is, fVec); } |
| |
| template <> |
| M(Sk4f) reinterpret<Sk4f>() const { return as_4f(fVec); } |
| |
| template <> |
| M(Sk4f) cast<Sk4f>() const { return _mm_cvtepi32_ps(fVec); } |
| |
| M(bool) allTrue() const { return 0xf == _mm_movemask_ps(as_4f(fVec)); } |
| M(bool) anyTrue() const { return 0x0 != _mm_movemask_ps(as_4f(fVec)); } |
| |
| M(Sk4i) bitNot() const { return _mm_xor_si128(fVec, True()); } |
| M(Sk4i) bitAnd(const Sk4i& o) const { return _mm_and_si128(fVec, o.fVec); } |
| M(Sk4i) bitOr (const Sk4i& o) const { return _mm_or_si128 (fVec, o.fVec); } |
| |
| M(Sk4i) equal (const Sk4i& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } |
| M(Sk4i) lessThan (const Sk4i& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); } |
| M(Sk4i) greaterThan (const Sk4i& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); } |
| M(Sk4i) notEqual (const Sk4i& o) const { return this-> equal(o).bitNot(); } |
| M(Sk4i) lessThanEqual (const Sk4i& o) const { return this->greaterThan(o).bitNot(); } |
| M(Sk4i) greaterThanEqual(const Sk4i& o) const { return this-> lessThan(o).bitNot(); } |
| |
| M(Sk4i) add (const Sk4i& o) const { return _mm_add_epi32(fVec, o.fVec); } |
| M(Sk4i) subtract(const Sk4i& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
| |
| // SSE doesn't have integer division. Let's see how far we can get without Sk4i::divide(). |
| |
| // Sk4i's multiply(), Min(), and Max() all improve significantly with SSE4.1. |
| #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
| M(Sk4i) multiply(const Sk4i& o) const { return _mm_mullo_epi32(fVec, o.fVec); } |
| M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return _mm_min_epi32(a.fVec, b.fVec); } |
| M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return _mm_max_epi32(a.fVec, b.fVec); } |
| #else |
| M(Sk4i) multiply(const Sk4i& o) const { |
| // First 2 32->64 bit multiplies. |
| __m128i mul02 = _mm_mul_epu32(fVec, o.fVec), |
| mul13 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); |
| // Now recombine the high bits of the two products. |
| return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul02, _MM_SHUFFLE(0,0,2,0)), |
| _mm_shuffle_epi32(mul13, _MM_SHUFFLE(0,0,2,0))); |
| } |
| |
| M(Sk4i) andNot(const Sk4i& o) const { return _mm_andnot_si128(o.fVec, fVec); } |
| |
| M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { |
| Sk4i less = a.lessThan(b); |
| return a.bitAnd(less).bitOr(b.andNot(less)); |
| } |
| M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { |
| Sk4i less = a.lessThan(b); |
| return b.bitAnd(less).bitOr(a.andNot(less)); |
| } |
| #endif |
| |
| #undef M |
| |
| #endif//Method definitions. |