blob: 53a542ec2ea833d97ecc097f6fc150fdc76bfc9f [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SampleCode.h"
#include "Resources.h"
#include "SkCanvas.h"
#include "SkErrorInternals.h"
#include "SkGr.h"
#include "SkPoint3.h"
#include "SkReadBuffer.h"
#include "SkShader.h"
#include "SkWriteBuffer.h"
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
///////////////////////////////////////////////////////////////////////////////
class LightingShader : public SkShader {
public:
struct Light {
SkVector3 fDirection;
SkColor fColor; // assumed to be linear color
};
LightingShader(const SkBitmap& diffuse, const SkBitmap& normal, const Light& light,
const SkColor ambient)
: fDiffuseMap(diffuse)
, fNormalMap(normal)
, fLight(light)
, fAmbientColor(ambient) {}
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(LightingShader);
void flatten(SkWriteBuffer& buf) const override {
buf.writeBitmap(fDiffuseMap);
buf.writeBitmap(fNormalMap);
buf.writeScalarArray(&fLight.fDirection.fX, 3);
buf.writeColor(fLight.fColor);
buf.writeColor(fAmbientColor);
}
bool asFragmentProcessor(GrContext*, const SkPaint& paint, const SkMatrix& viewM,
const SkMatrix* localMatrix, GrColor* color,
GrProcessorDataManager*, GrFragmentProcessor** fp) const override;
SkShader::BitmapType asABitmap(SkBitmap* bitmap, SkMatrix* matrix,
SkShader::TileMode* xy) const override {
if (bitmap) {
*bitmap = fDiffuseMap;
}
if (matrix) {
matrix->reset();
}
if (xy) {
xy[0] = kClamp_TileMode;
xy[1] = kClamp_TileMode;
}
return kDefault_BitmapType;
}
#ifndef SK_IGNORE_TO_STRING
void toString(SkString* str) const override {
str->appendf("LightingShader: ()");
}
#endif
void setLight(const Light& light) { fLight = light; }
private:
SkBitmap fDiffuseMap;
SkBitmap fNormalMap;
Light fLight;
SkColor fAmbientColor;
};
SkFlattenable* LightingShader::CreateProc(SkReadBuffer& buf) {
SkBitmap diffuse;
if (!buf.readBitmap(&diffuse)) {
return NULL;
}
diffuse.setImmutable();
SkBitmap normal;
if (!buf.readBitmap(&normal)) {
return NULL;
}
normal.setImmutable();
Light light;
if (!buf.readScalarArray(&light.fDirection.fX, 3)) {
return NULL;
}
light.fColor = buf.readColor();
SkColor ambient = buf.readColor();
return SkNEW_ARGS(LightingShader, (diffuse, normal, light, ambient));
}
////////////////////////////////////////////////////////////////////////////
class LightingFP : public GrFragmentProcessor {
public:
LightingFP(GrTexture* diffuse, GrTexture* normal, const SkMatrix& matrix,
SkVector3 lightDir, GrColor lightColor, GrColor ambientColor)
: fDeviceTransform(kDevice_GrCoordSet, matrix)
, fDiffuseTextureAccess(diffuse)
, fNormalTextureAccess(normal)
, fLightDir(lightDir)
, fLightColor(lightColor)
, fAmbientColor(ambientColor) {
this->addCoordTransform(&fDeviceTransform);
this->addTextureAccess(&fDiffuseTextureAccess);
this->addTextureAccess(&fNormalTextureAccess);
this->initClassID<LightingFP>();
}
class LightingGLFP : public GrGLFragmentProcessor {
public:
LightingGLFP() : fLightColor(GrColor_ILLEGAL) {
fLightDir.fX = 10000.0f;
}
void emitCode(EmitArgs& args) override {
GrGLFragmentBuilder* fpb = args.fBuilder->getFragmentShaderBuilder();
// add uniforms
const char* lightDirUniName = NULL;
fLightDirUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightDir", &lightDirUniName);
const char* lightColorUniName = NULL;
fLightColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"LightColor", &lightColorUniName);
const char* ambientColorUniName = NULL;
fAmbientColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec4f_GrSLType, kDefault_GrSLPrecision,
"AmbientColor", &ambientColorUniName);
fpb->codeAppend("vec4 diffuseColor = ");
fpb->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0],
args.fCoords[0].c_str(), args.fCoords[0].getType());
fpb->codeAppend(";");
fpb->codeAppend("vec4 normalColor = ");
fpb->appendTextureLookup(args.fSamplers[1], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fpb->codeAppend(";");
fpb->codeAppend("vec3 normal = normalize(2.0*(normalColor.rgb - vec3(0.5)));");
fpb->codeAppendf("vec3 lightDir = normalize(%s);", lightDirUniName);
fpb->codeAppend("float NdotL = dot(normal, lightDir);");
// diffuse light
fpb->codeAppendf("vec3 result = %s.rgb*diffuseColor.rgb*NdotL;", lightColorUniName);
// ambient light
fpb->codeAppendf("result += %s.rgb;", ambientColorUniName);
fpb->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOutputColor);
}
void setData(const GrGLProgramDataManager& pdman, const GrProcessor& proc) override {
const LightingFP& lightingFP = proc.cast<LightingFP>();
SkVector3 lightDir = lightingFP.lightDir();
if (lightDir != fLightDir) {
pdman.set3fv(fLightDirUni, 1, &lightDir.fX);
fLightDir = lightDir;
}
GrColor lightColor = lightingFP.lightColor();
if (lightColor != fLightColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(lightColor, c);
pdman.set4fv(fLightColorUni, 1, c);
fLightColor = lightColor;
}
GrColor ambientColor = lightingFP.ambientColor();
if (ambientColor != fAmbientColor) {
GrGLfloat c[4];
GrColorToRGBAFloat(ambientColor, c);
pdman.set4fv(fAmbientColorUni, 1, c);
fAmbientColor = ambientColor;
}
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
// const LightingFP& lightingFP = proc.cast<LightingFP>();
// only one shader generated currently
b->add32(0x0);
}
private:
SkVector3 fLightDir;
GrGLProgramDataManager::UniformHandle fLightDirUni;
GrColor fLightColor;
GrGLProgramDataManager::UniformHandle fLightColorUni;
GrColor fAmbientColor;
GrGLProgramDataManager::UniformHandle fAmbientColorUni;
};
GrGLFragmentProcessor* createGLInstance() const override { return SkNEW(LightingGLFP); }
void getGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
LightingGLFP::GenKey(*this, caps, b);
}
const char* name() const override { return "LightingFP"; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->mulByUnknownFourComponents();
}
SkVector3 lightDir() const { return fLightDir; }
GrColor lightColor() const { return fLightColor; }
GrColor ambientColor() const { return fAmbientColor; }
private:
bool onIsEqual(const GrFragmentProcessor& proc) const override {
const LightingFP& lightingFP = proc.cast<LightingFP>();
return fDeviceTransform == lightingFP.fDeviceTransform &&
fDiffuseTextureAccess == lightingFP.fDiffuseTextureAccess &&
fNormalTextureAccess == lightingFP.fNormalTextureAccess &&
fLightDir == lightingFP.fLightDir &&
fLightColor == lightingFP.fLightColor &&
fAmbientColor == lightingFP.fAmbientColor;
}
GrCoordTransform fDeviceTransform;
GrTextureAccess fDiffuseTextureAccess;
GrTextureAccess fNormalTextureAccess;
SkVector3 fLightDir;
GrColor fLightColor;
GrColor fAmbientColor;
};
bool LightingShader::asFragmentProcessor(GrContext* context, const SkPaint& paint,
const SkMatrix& viewM, const SkMatrix* localMatrix,
GrColor* color, GrProcessorDataManager*,
GrFragmentProcessor** fp) const {
// we assume diffuse and normal maps have same width and height
// TODO: support different sizes
SkASSERT(fDiffuseMap.width() == fNormalMap.width() &&
fDiffuseMap.height() == fNormalMap.height());
SkMatrix matrix;
matrix.setIDiv(fDiffuseMap.width(), fDiffuseMap.height());
SkMatrix lmInverse;
if (!this->getLocalMatrix().invert(&lmInverse)) {
return false;
}
if (localMatrix) {
SkMatrix inv;
if (!localMatrix->invert(&inv)) {
return false;
}
lmInverse.postConcat(inv);
}
matrix.preConcat(lmInverse);
// Must set wrap and filter on the sampler before requesting a texture. In two places below
// we check the matrix scale factors to determine how to interpret the filter quality setting.
// This completely ignores the complexity of the drawVertices case where explicit local coords
// are provided by the caller.
GrTextureParams::FilterMode textureFilterMode = GrTextureParams::kBilerp_FilterMode;
switch (paint.getFilterQuality()) {
case kNone_SkFilterQuality:
textureFilterMode = GrTextureParams::kNone_FilterMode;
break;
case kLow_SkFilterQuality:
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
break;
case kMedium_SkFilterQuality:{
SkMatrix matrix;
matrix.setConcat(viewM, this->getLocalMatrix());
if (matrix.getMinScale() < SK_Scalar1) {
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
} else {
// Don't trigger MIP level generation unnecessarily.
textureFilterMode = GrTextureParams::kBilerp_FilterMode;
}
break;
}
case kHigh_SkFilterQuality:
default:
SkErrorInternals::SetError(kInvalidPaint_SkError,
"Sorry, I don't understand the filtering "
"mode you asked for. Falling back to "
"MIPMaps.");
textureFilterMode = GrTextureParams::kMipMap_FilterMode;
break;
}
// TODO: support other tile modes
GrTextureParams params(kClamp_TileMode, textureFilterMode);
SkAutoTUnref<GrTexture> diffuseTexture(GrRefCachedBitmapTexture(context, fDiffuseMap, &params));
if (!diffuseTexture) {
SkErrorInternals::SetError(kInternalError_SkError,
"Couldn't convert bitmap to texture.");
return false;
}
SkAutoTUnref<GrTexture> normalTexture(GrRefCachedBitmapTexture(context, fNormalMap, &params));
if (!normalTexture) {
SkErrorInternals::SetError(kInternalError_SkError,
"Couldn't convert bitmap to texture.");
return false;
}
GrColor lightColor = GrColorPackRGBA(SkColorGetR(fLight.fColor), SkColorGetG(fLight.fColor),
SkColorGetB(fLight.fColor), SkColorGetA(fLight.fColor));
GrColor ambientColor = GrColorPackRGBA(SkColorGetR(fAmbientColor), SkColorGetG(fAmbientColor),
SkColorGetB(fAmbientColor), SkColorGetA(fAmbientColor));
*fp = SkNEW_ARGS(LightingFP, (diffuseTexture, normalTexture, matrix,
fLight.fDirection, lightColor, ambientColor));
*color = GrColorPackA4(paint.getAlpha());
return true;
}
////////////////////////////////////////////////////////////////////////////
class LightingView : public SampleView {
public:
SkAutoTUnref<LightingShader> fShader;
SkBitmap fDiffuseBitmap;
SkBitmap fNormalBitmap;
SkScalar fLightAngle;
int fColorFactor;
LightingView() {
SkString diffusePath = GetResourcePath("brickwork-texture.jpg");
SkImageDecoder::DecodeFile(diffusePath.c_str(), &fDiffuseBitmap);
SkString normalPath = GetResourcePath("brickwork_normal-map.jpg");
SkImageDecoder::DecodeFile(normalPath.c_str(), &fNormalBitmap);
fLightAngle = 0.0f;
fColorFactor = 0;
LightingShader::Light light;
light.fColor = SkColorSetRGB(0xff, 0xff, 0xff);
light.fDirection.fX = SkScalarSin(fLightAngle)*SkScalarSin(SK_ScalarPI*0.25f);
light.fDirection.fY = SkScalarCos(fLightAngle)*SkScalarSin(SK_ScalarPI*0.25f);
light.fDirection.fZ = SkScalarCos(SK_ScalarPI*0.25f);
SkColor ambient = SkColorSetRGB(0x1f, 0x1f, 0x1f);
fShader.reset(SkNEW_ARGS(LightingShader, (fDiffuseBitmap, fNormalBitmap, light, ambient)));
}
virtual ~LightingView() {}
protected:
// overrides from SkEventSink
bool onQuery(SkEvent* evt) override {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "Lighting");
return true;
}
return this->INHERITED::onQuery(evt);
}
void onDrawContent(SkCanvas* canvas) override {
fLightAngle += 0.015f;
fColorFactor++;
LightingShader::Light light;
light.fColor = SkColorSetRGB(0xff, 0xff, (fColorFactor >> 1) & 0xff);
light.fDirection.fX = SkScalarSin(fLightAngle)*SkScalarSin(SK_ScalarPI*0.25f);
light.fDirection.fY = SkScalarCos(fLightAngle)*SkScalarSin(SK_ScalarPI*0.25f);
light.fDirection.fZ = SkScalarCos(SK_ScalarPI*0.25f);
fShader.get()->setLight(light);
SkPaint paint;
paint.setShader(fShader);
paint.setColor(SK_ColorBLACK);
SkRect r = SkRect::MakeWH((SkScalar)fDiffuseBitmap.width(),
(SkScalar)fDiffuseBitmap.height());
canvas->drawRect(r, paint);
// so we're constantly updating
this->inval(NULL);
}
SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned modi) override {
this->inval(NULL);
return this->INHERITED::onFindClickHandler(x, y, modi);
}
private:
typedef SampleView INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
static SkView* MyFactory() { return new LightingView; }
static SkViewRegister reg(MyFactory);