blob: c0fe10678beaa0f2d267693a2891c6c9860fd45b [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrClipStackClip.h"
#include "GrAppliedClip.h"
#include "GrContextPriv.h"
#include "GrDeferredProxyUploader.h"
#include "GrDrawingManager.h"
#include "GrRenderTargetContextPriv.h"
#include "GrFixedClip.h"
#include "GrGpuResourcePriv.h"
#include "GrResourceProvider.h"
#include "GrStencilAttachment.h"
#include "GrSWMaskHelper.h"
#include "GrTextureProxy.h"
#include "effects/GrConvexPolyEffect.h"
#include "effects/GrRRectEffect.h"
#include "effects/GrTextureDomain.h"
#include "SkClipOpPriv.h"
#include "SkMakeUnique.h"
#include "SkTaskGroup.h"
#include "SkTraceEvent.h"
typedef SkClipStack::Element Element;
typedef GrReducedClip::InitialState InitialState;
typedef GrReducedClip::ElementList ElementList;
static const int kMaxAnalyticElements = 4;
const char GrClipStackClip::kMaskTestTag[] = "clip_mask";
bool GrClipStackClip::quickContains(const SkRect& rect) const {
if (!fStack || fStack->isWideOpen()) {
return true;
}
return fStack->quickContains(rect);
}
bool GrClipStackClip::quickContains(const SkRRect& rrect) const {
if (!fStack || fStack->isWideOpen()) {
return true;
}
return fStack->quickContains(rrect);
}
bool GrClipStackClip::isRRect(const SkRect& origRTBounds, SkRRect* rr, GrAA* aa) const {
if (!fStack) {
return false;
}
const SkRect* rtBounds = &origRTBounds;
bool isAA;
if (fStack->isRRect(*rtBounds, rr, &isAA)) {
*aa = GrBoolToAA(isAA);
return true;
}
return false;
}
void GrClipStackClip::getConservativeBounds(int width, int height, SkIRect* devResult,
bool* isIntersectionOfRects) const {
if (!fStack) {
devResult->setXYWH(0, 0, width, height);
if (isIntersectionOfRects) {
*isIntersectionOfRects = true;
}
return;
}
SkRect devBounds;
fStack->getConservativeBounds(0, 0, width, height, &devBounds, isIntersectionOfRects);
devBounds.roundOut(devResult);
}
////////////////////////////////////////////////////////////////////////////////
// set up the draw state to enable the aa clipping mask.
static std::unique_ptr<GrFragmentProcessor> create_fp_for_mask(sk_sp<GrTextureProxy> mask,
const SkIRect& devBound) {
SkIRect domainTexels = SkIRect::MakeWH(devBound.width(), devBound.height());
return GrDeviceSpaceTextureDecalFragmentProcessor::Make(std::move(mask), domainTexels,
{devBound.fLeft, devBound.fTop});
}
// Does the path in 'element' require SW rendering? If so, return true (and,
// optionally, set 'prOut' to NULL. If not, return false (and, optionally, set
// 'prOut' to the non-SW path renderer that will do the job).
bool GrClipStackClip::PathNeedsSWRenderer(GrContext* context,
const SkIRect& scissorRect,
bool hasUserStencilSettings,
const GrRenderTargetContext* renderTargetContext,
const SkMatrix& viewMatrix,
const Element* element,
GrPathRenderer** prOut,
bool needsStencil) {
if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) {
// rects can always be drawn directly w/o using the software path
// TODO: skip rrects once we're drawing them directly.
if (prOut) {
*prOut = nullptr;
}
return false;
} else {
// We shouldn't get here with an empty clip element.
SkASSERT(Element::DeviceSpaceType::kEmpty != element->getDeviceSpaceType());
// the gpu alpha mask will draw the inverse paths as non-inverse to a temp buffer
SkPath path;
element->asDeviceSpacePath(&path);
if (path.isInverseFillType()) {
path.toggleInverseFillType();
}
GrPathRendererChain::DrawType type =
needsStencil ? GrPathRendererChain::DrawType::kStencilAndColor
: GrPathRendererChain::DrawType::kColor;
GrShape shape(path, GrStyle::SimpleFill());
GrPathRenderer::CanDrawPathArgs canDrawArgs;
canDrawArgs.fCaps = context->caps();
canDrawArgs.fClipConservativeBounds = &scissorRect;
canDrawArgs.fViewMatrix = &viewMatrix;
canDrawArgs.fShape = &shape;
canDrawArgs.fAAType = GrChooseAAType(GrBoolToAA(element->isAA()),
renderTargetContext->fsaaType(),
GrAllowMixedSamples::kYes,
*context->caps());
canDrawArgs.fHasUserStencilSettings = hasUserStencilSettings;
// the 'false' parameter disallows use of the SW path renderer
GrPathRenderer* pr =
context->contextPriv().drawingManager()->getPathRenderer(canDrawArgs, false, type);
if (prOut) {
*prOut = pr;
}
return SkToBool(!pr);
}
}
/*
* This method traverses the clip stack to see if the GrSoftwarePathRenderer
* will be used on any element. If so, it returns true to indicate that the
* entire clip should be rendered in SW and then uploaded en masse to the gpu.
*/
bool GrClipStackClip::UseSWOnlyPath(GrContext* context,
bool hasUserStencilSettings,
const GrRenderTargetContext* renderTargetContext,
const GrReducedClip& reducedClip) {
// TODO: generalize this function so that when
// a clip gets complex enough it can just be done in SW regardless
// of whether it would invoke the GrSoftwarePathRenderer.
// If we're avoiding stencils, always use SW:
if (context->caps()->avoidStencilBuffers())
return true;
// Set the matrix so that rendered clip elements are transformed to mask space from clip
// space.
SkMatrix translate;
translate.setTranslate(SkIntToScalar(-reducedClip.left()), SkIntToScalar(-reducedClip.top()));
for (ElementList::Iter iter(reducedClip.maskElements()); iter.get(); iter.next()) {
const Element* element = iter.get();
SkClipOp op = element->getOp();
bool invert = element->isInverseFilled();
bool needsStencil = invert ||
kIntersect_SkClipOp == op || kReverseDifference_SkClipOp == op;
if (PathNeedsSWRenderer(context, reducedClip.scissor(), hasUserStencilSettings,
renderTargetContext, translate, element, nullptr, needsStencil)) {
return true;
}
}
return false;
}
static bool get_analytic_clip_processor(const ElementList& elements,
bool abortIfAA,
const SkRect& drawDevBounds,
std::unique_ptr<GrFragmentProcessor>* resultFP) {
SkASSERT(elements.count() <= kMaxAnalyticElements);
SkSTArray<kMaxAnalyticElements, std::unique_ptr<GrFragmentProcessor>> fps;
ElementList::Iter iter(elements);
while (iter.get()) {
SkClipOp op = iter.get()->getOp();
bool invert;
bool skip = false;
switch (op) {
case kReplace_SkClipOp:
SkASSERT(iter.get() == elements.head());
// Fallthrough, handled same as intersect.
case kIntersect_SkClipOp:
invert = false;
if (iter.get()->contains(drawDevBounds)) {
skip = true;
}
break;
case kDifference_SkClipOp:
invert = true;
// We don't currently have a cheap test for whether a rect is fully outside an
// element's primitive, so don't attempt to set skip.
break;
default:
return false;
}
if (!skip) {
GrClipEdgeType edgeType;
if (iter.get()->isAA()) {
if (abortIfAA) {
return false;
}
edgeType =
invert ? GrClipEdgeType::kInverseFillAA : GrClipEdgeType::kFillAA;
} else {
edgeType =
invert ? GrClipEdgeType::kInverseFillBW : GrClipEdgeType::kFillBW;
}
switch (iter.get()->getDeviceSpaceType()) {
case SkClipStack::Element::DeviceSpaceType::kPath:
fps.emplace_back(
GrConvexPolyEffect::Make(edgeType, iter.get()->getDeviceSpacePath()));
break;
case SkClipStack::Element::DeviceSpaceType::kRRect: {
fps.emplace_back(
GrRRectEffect::Make(edgeType, iter.get()->getDeviceSpaceRRect()));
break;
}
case SkClipStack::Element::DeviceSpaceType::kRect: {
fps.emplace_back(
GrConvexPolyEffect::Make(edgeType, iter.get()->getDeviceSpaceRect()));
break;
}
default:
break;
}
if (!fps.back()) {
return false;
}
}
iter.next();
}
*resultFP = nullptr;
if (fps.count()) {
*resultFP = GrFragmentProcessor::RunInSeries(fps.begin(), fps.count());
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
// sort out what kind of clip mask needs to be created: alpha, stencil,
// scissor, or entirely software
bool GrClipStackClip::apply(GrContext* context, GrRenderTargetContext* renderTargetContext,
bool useHWAA, bool hasUserStencilSettings, GrAppliedClip* out,
SkRect* bounds) const {
SkRect devBounds = SkRect::MakeIWH(renderTargetContext->width(), renderTargetContext->height());
if (!devBounds.intersect(*bounds)) {
return false;
}
if (!fStack || fStack->isWideOpen()) {
return true;
}
const GrReducedClip reducedClip(*fStack, devBounds,
renderTargetContext->priv().maxWindowRectangles());
if (reducedClip.hasScissor() && !GrClip::IsInsideClip(reducedClip.scissor(), devBounds)) {
out->hardClip().addScissor(reducedClip.scissor(), bounds);
}
if (!reducedClip.windowRectangles().empty()) {
out->hardClip().addWindowRectangles(reducedClip.windowRectangles(),
GrWindowRectsState::Mode::kExclusive);
}
if (reducedClip.maskElements().isEmpty()) {
return InitialState::kAllIn == reducedClip.initialState();
}
#ifdef SK_DEBUG
SkASSERT(reducedClip.hasScissor());
SkIRect rtIBounds = SkIRect::MakeWH(renderTargetContext->width(),
renderTargetContext->height());
const SkIRect& scissor = reducedClip.scissor();
SkASSERT(rtIBounds.contains(scissor)); // Mask shouldn't be larger than the RT.
#endif
bool avoidStencilBuffers = context->caps()->avoidStencilBuffers();
// An element count of 4 was chosen because of the common pattern in Blink of:
// isect RR
// diff RR
// isect convex_poly
// isect convex_poly
// when drawing rounded div borders. This could probably be tuned based on a
// configuration's relative costs of switching RTs to generate a mask vs
// longer shaders.
if (reducedClip.maskElements().count() <= kMaxAnalyticElements) {
// When there are multiple samples we want to do per-sample clipping, not compute a
// fractional pixel coverage.
bool disallowAnalyticAA =
GrFSAAType::kNone != renderTargetContext->fsaaType() && !avoidStencilBuffers;
if (disallowAnalyticAA && !renderTargetContext->numColorSamples()) {
// With a single color sample, any coverage info is lost from color once it hits the
// color buffer anyway, so we may as well use coverage AA if nothing else in the pipe
// is multisampled.
disallowAnalyticAA = useHWAA || hasUserStencilSettings;
}
std::unique_ptr<GrFragmentProcessor> clipFP;
if ((reducedClip.maskRequiresAA() || avoidStencilBuffers) &&
get_analytic_clip_processor(reducedClip.maskElements(), disallowAnalyticAA, devBounds,
&clipFP)) {
if (clipFP) {
out->addCoverageFP(std::move(clipFP));
}
return true;
}
}
// If the stencil buffer is multisampled we can use it to do everything.
if ((GrFSAAType::kNone == renderTargetContext->fsaaType() && reducedClip.maskRequiresAA()) ||
avoidStencilBuffers) {
sk_sp<GrTextureProxy> result;
if (UseSWOnlyPath(context, hasUserStencilSettings, renderTargetContext, reducedClip)) {
// The clip geometry is complex enough that it will be more efficient to create it
// entirely in software
result = this->createSoftwareClipMask(context, reducedClip, renderTargetContext);
} else {
result = this->createAlphaClipMask(context, reducedClip);
}
if (result) {
// The mask's top left coord should be pinned to the rounded-out top left corner of
// the clip's device space bounds.
out->addCoverageFP(create_fp_for_mask(std::move(result), reducedClip.scissor()));
return true;
}
// If alpha or software clip mask creation fails, fall through to the stencil code paths,
// unless stencils are disallowed.
if (context->caps()->avoidStencilBuffers()) {
SkDebugf("WARNING: Clip mask requires stencil, but stencil unavailable. Clip will be ignored.\n");
return false;
}
}
renderTargetContext->setNeedsStencil();
// This relies on the property that a reduced sub-rect of the last clip will contain all the
// relevant window rectangles that were in the last clip. This subtle requirement will go away
// after clipping is overhauled.
if (renderTargetContext->priv().mustRenderClip(reducedClip.maskGenID(),
reducedClip.scissor())) {
reducedClip.drawStencilClipMask(context, renderTargetContext);
renderTargetContext->priv().setLastClip(reducedClip.maskGenID(), reducedClip.scissor());
}
out->hardClip().addStencilClip(reducedClip.maskGenID());
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
static void create_clip_mask_key(uint32_t clipGenID, const SkIRect& bounds, GrUniqueKey* key) {
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kDomain, 3, GrClipStackClip::kMaskTestTag);
builder[0] = clipGenID;
// SkToS16 because image filters outset layers to a size indicated by the filter, which can
// sometimes result in negative coordinates from device space.
builder[1] = SkToS16(bounds.fLeft) | (SkToS16(bounds.fRight) << 16);
builder[2] = SkToS16(bounds.fTop) | (SkToS16(bounds.fBottom) << 16);
}
static void add_invalidate_on_pop_message(const SkClipStack& stack, uint32_t clipGenID,
const GrUniqueKey& clipMaskKey) {
SkClipStack::Iter iter(stack, SkClipStack::Iter::kTop_IterStart);
while (const Element* element = iter.prev()) {
if (element->getGenID() == clipGenID) {
std::unique_ptr<GrUniqueKeyInvalidatedMessage> msg(
new GrUniqueKeyInvalidatedMessage(clipMaskKey));
element->addResourceInvalidationMessage(std::move(msg));
return;
}
}
SkDEBUGFAIL("Gen ID was not found in stack.");
}
sk_sp<GrTextureProxy> GrClipStackClip::createAlphaClipMask(GrContext* context,
const GrReducedClip& reducedClip) const {
GrResourceProvider* resourceProvider = context->resourceProvider();
GrUniqueKey key;
create_clip_mask_key(reducedClip.maskGenID(), reducedClip.scissor(), &key);
sk_sp<GrTextureProxy> proxy(resourceProvider->findOrCreateProxyByUniqueKey(
key, kBottomLeft_GrSurfaceOrigin));
if (proxy) {
return proxy;
}
sk_sp<GrRenderTargetContext> rtc(context->makeDeferredRenderTargetContextWithFallback(
SkBackingFit::kApprox,
reducedClip.width(),
reducedClip.height(),
kAlpha_8_GrPixelConfig,
nullptr));
if (!rtc) {
return nullptr;
}
if (!reducedClip.drawAlphaClipMask(rtc.get())) {
return nullptr;
}
sk_sp<GrTextureProxy> result(rtc->asTextureProxyRef());
if (!result) {
return nullptr;
}
SkASSERT(result->origin() == kBottomLeft_GrSurfaceOrigin);
resourceProvider->assignUniqueKeyToProxy(key, result.get());
add_invalidate_on_pop_message(*fStack, reducedClip.maskGenID(), key);
return result;
}
namespace {
/**
* Payload class for use with GrTDeferredProxyUploader. The clip mask code renders multiple
* elements, each storing their own AA setting (and already transformed into device space). This
* stores all of the information needed by the worker thread to draw all clip elements (see below,
* in createSoftwareClipMask).
*/
class ClipMaskData {
public:
ClipMaskData(const GrReducedClip& reducedClip)
: fScissor(reducedClip.scissor())
, fInitialState(reducedClip.initialState()) {
for (ElementList::Iter iter(reducedClip.maskElements()); iter.get(); iter.next()) {
fElements.addToTail(*iter.get());
}
}
const SkIRect& scissor() const { return fScissor; }
InitialState initialState() const { return fInitialState; }
const ElementList& elements() const { return fElements; }
private:
SkIRect fScissor;
InitialState fInitialState;
ElementList fElements;
};
}
static void draw_clip_elements_to_mask_helper(GrSWMaskHelper& helper, const ElementList& elements,
const SkIRect& scissor, InitialState initialState) {
// Set the matrix so that rendered clip elements are transformed to mask space from clip space.
SkMatrix translate;
translate.setTranslate(SkIntToScalar(-scissor.left()), SkIntToScalar(-scissor.top()));
helper.clear(InitialState::kAllIn == initialState ? 0xFF : 0x00);
for (ElementList::Iter iter(elements); iter.get(); iter.next()) {
const Element* element = iter.get();
SkClipOp op = element->getOp();
GrAA aa = GrBoolToAA(element->isAA());
if (kIntersect_SkClipOp == op || kReverseDifference_SkClipOp == op) {
// Intersect and reverse difference require modifying pixels outside of the geometry
// that is being "drawn". In both cases we erase all the pixels outside of the geometry
// but leave the pixels inside the geometry alone. For reverse difference we invert all
// the pixels before clearing the ones outside the geometry.
if (kReverseDifference_SkClipOp == op) {
SkRect temp = SkRect::Make(scissor);
// invert the entire scene
helper.drawRect(temp, translate, SkRegion::kXOR_Op, GrAA::kNo, 0xFF);
}
SkPath clipPath;
element->asDeviceSpacePath(&clipPath);
clipPath.toggleInverseFillType();
GrShape shape(clipPath, GrStyle::SimpleFill());
helper.drawShape(shape, translate, SkRegion::kReplace_Op, aa, 0x00);
continue;
}
// The other ops (union, xor, diff) only affect pixels inside
// the geometry so they can just be drawn normally
if (Element::DeviceSpaceType::kRect == element->getDeviceSpaceType()) {
helper.drawRect(element->getDeviceSpaceRect(), translate, (SkRegion::Op)op, aa, 0xFF);
} else {
SkPath path;
element->asDeviceSpacePath(&path);
GrShape shape(path, GrStyle::SimpleFill());
helper.drawShape(shape, translate, (SkRegion::Op)op, aa, 0xFF);
}
}
}
sk_sp<GrTextureProxy> GrClipStackClip::createSoftwareClipMask(
GrContext* context, const GrReducedClip& reducedClip,
GrRenderTargetContext* renderTargetContext) const {
GrUniqueKey key;
create_clip_mask_key(reducedClip.maskGenID(), reducedClip.scissor(), &key);
sk_sp<GrTextureProxy> proxy(context->resourceProvider()->findOrCreateProxyByUniqueKey(
key, kTopLeft_GrSurfaceOrigin));
if (proxy) {
return proxy;
}
// The mask texture may be larger than necessary. We round out the clip bounds and pin the top
// left corner of the resulting rect to the top left of the texture.
SkIRect maskSpaceIBounds = SkIRect::MakeWH(reducedClip.width(), reducedClip.height());
SkTaskGroup* taskGroup = context->contextPriv().getTaskGroup();
if (taskGroup && renderTargetContext) {
// Create our texture proxy
GrSurfaceDesc desc;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
desc.fWidth = maskSpaceIBounds.width();
desc.fHeight = maskSpaceIBounds.height();
desc.fConfig = kAlpha_8_GrPixelConfig;
// MDB TODO: We're going to fill this proxy with an ASAP upload (which is out of order wrt
// to ops), so it can't have any pending IO.
proxy = GrSurfaceProxy::MakeDeferred(context->resourceProvider(), desc,
SkBackingFit::kApprox, SkBudgeted::kYes,
GrResourceProvider::kNoPendingIO_Flag);
auto uploader = skstd::make_unique<GrTDeferredProxyUploader<ClipMaskData>>(reducedClip);
GrTDeferredProxyUploader<ClipMaskData>* uploaderRaw = uploader.get();
auto drawAndUploadMask = [uploaderRaw, maskSpaceIBounds] {
TRACE_EVENT0("skia", "Threaded SW Clip Mask Render");
GrSWMaskHelper helper(uploaderRaw->getPixels());
if (helper.init(maskSpaceIBounds)) {
draw_clip_elements_to_mask_helper(helper, uploaderRaw->data().elements(),
uploaderRaw->data().scissor(),
uploaderRaw->data().initialState());
} else {
SkDEBUGFAIL("Unable to allocate SW clip mask.");
}
uploaderRaw->signalAndFreeData();
};
taskGroup->add(std::move(drawAndUploadMask));
proxy->texPriv().setDeferredUploader(std::move(uploader));
} else {
GrSWMaskHelper helper;
if (!helper.init(maskSpaceIBounds)) {
return nullptr;
}
draw_clip_elements_to_mask_helper(helper, reducedClip.maskElements(), reducedClip.scissor(),
reducedClip.initialState());
proxy = helper.toTextureProxy(context, SkBackingFit::kApprox);
}
SkASSERT(proxy->origin() == kTopLeft_GrSurfaceOrigin);
context->resourceProvider()->assignUniqueKeyToProxy(key, proxy.get());
add_invalidate_on_pop_message(*fStack, reducedClip.maskGenID(), key);
return proxy;
}