| /* libs/graphics/sgl/SkEdge.cpp |
| ** |
| ** Copyright 2006, Google Inc. |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| #include "SkEdge.h" |
| #include "SkFDot6.h" |
| |
| /* |
| In setLine, setQuadratic, setCubic, the first thing we do is to convert |
| the points into FDot6. This is modulated by the shift parameter, which |
| will either be 0, or something like 2 for antialiasing. |
| |
| In the float case, we want to turn the float into .6 by saying pt * 64, |
| or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). |
| |
| In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, |
| or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). |
| */ |
| |
| ///////////////////////////////////////////////////////////////////////// |
| |
| int SkEdge::setLine(const SkPoint pts[2], const SkRect16* clip, int shift) |
| { |
| SkFDot6 x0, y0, x1, y1; |
| |
| { |
| #ifdef SK_SCALAR_IS_FLOAT |
| float scale = float(1 << (shift + 6)); |
| x0 = int(pts[0].fX * scale); |
| y0 = int(pts[0].fY * scale); |
| x1 = int(pts[1].fX * scale); |
| y1 = int(pts[1].fY * scale); |
| #else |
| shift = 10 - shift; |
| x0 = pts[0].fX >> shift; |
| y0 = pts[0].fY >> shift; |
| x1 = pts[1].fX >> shift; |
| y1 = pts[1].fY >> shift; |
| #endif |
| } |
| |
| int winding = 1; |
| |
| if (y0 > y1) |
| { |
| SkTSwap(x0, x1); |
| SkTSwap(y0, y1); |
| winding = -1; |
| } |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y1); |
| |
| // are we a zero-height line? |
| if (top == bot) |
| return 0; |
| |
| // are we completely above or below the clip? |
| if (clip && (top >= clip->fBottom || bot <= clip->fTop)) |
| return 0; |
| |
| SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); |
| |
| fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, (32 - y0) & 63)); // + SK_Fixed1/2 |
| fDX = slope; |
| fFirstY = SkToS16(top); |
| fLastY = SkToS16(bot - 1); |
| fCurveCount = 0; |
| fWinding = SkToS8(winding); |
| fCurveShift = 0; |
| |
| if (clip) |
| this->chopLineWithClip(*clip); |
| return 1; |
| } |
| |
| // called from a curve subclass |
| int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) |
| { |
| SkASSERT(fWinding == 1 || fWinding == -1); |
| SkASSERT(fCurveCount != 0); |
| SkASSERT(fCurveShift != 0); |
| |
| y0 >>= 10; |
| y1 >>= 10; |
| |
| SkASSERT(y0 <= y1); |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y1); |
| |
| // SkASSERT(top >= fFirstY); |
| |
| // are we a zero-height line? |
| if (top == bot) |
| return 0; |
| |
| x0 >>= 10; |
| x1 >>= 10; |
| |
| SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); |
| |
| fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, (32 - y0) & 63)); // + SK_Fixed1/2 |
| fDX = slope; |
| fFirstY = SkToS16(top); |
| fLastY = SkToS16(bot - 1); |
| |
| return 1; |
| } |
| |
| void SkEdge::chopLineWithClip(const SkRect16& clip) |
| { |
| int top = fFirstY; |
| |
| SkASSERT(top < clip.fBottom); |
| |
| // clip the line to the top |
| if (top < clip.fTop) |
| { |
| SkASSERT(fLastY >= clip.fTop); |
| fX += fDX * (clip.fTop - top); |
| fFirstY = clip.fTop; |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////////// |
| |
| static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) |
| { |
| dx = SkAbs32(dx); |
| dy = SkAbs32(dy); |
| // return max + min/2 |
| if (dx > dy) |
| dx += dy >> 1; |
| else |
| dx = dy + (dx >> 1); |
| return dx; |
| } |
| |
| static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy) |
| { |
| // cheap calc of distance from center of p0-p2 to the center of the curve |
| SkFDot6 dist = cheap_distance(dx, dy); |
| |
| // shift down dist (it is currently in dot6) |
| // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...) |
| // this is chosen by heuristic: make it as big as possible (to minimize segments) |
| // ... but small enough so that our curves still look smooth |
| dist >>= 5; |
| |
| // each subdivision (shift value) cuts this dist (error) by 1/4 |
| return (32 - SkCLZ(dist)) >> 1; |
| } |
| |
| int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], const SkRect16* clip, int shift) |
| { |
| SkFDot6 x0, y0, x1, y1, x2, y2; |
| |
| { |
| #ifdef SK_SCALAR_IS_FLOAT |
| float scale = float(1 << (shift + 6)); |
| x0 = int(pts[0].fX * scale); |
| y0 = int(pts[0].fY * scale); |
| x1 = int(pts[1].fX * scale); |
| y1 = int(pts[1].fY * scale); |
| x2 = int(pts[2].fX * scale); |
| y2 = int(pts[2].fY * scale); |
| #else |
| shift = 10 - shift; |
| x0 = pts[0].fX >> shift; |
| y0 = pts[0].fY >> shift; |
| x1 = pts[1].fX >> shift; |
| y1 = pts[1].fY >> shift; |
| x2 = pts[2].fX >> shift; |
| y2 = pts[2].fY >> shift; |
| #endif |
| } |
| |
| int winding = 1; |
| if (y0 > y2) |
| { |
| SkTSwap(x0, x2); |
| SkTSwap(y0, y2); |
| winding = -1; |
| } |
| SkASSERT(y0 <= y1 && y1 <= y2); |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y2); |
| |
| // are we a zero-height quad (line)? |
| if (top == bot) |
| return 0; |
| // are we completely above or below the clip? |
| if (clip && (top >= clip->fBottom || bot <= clip->fTop)) |
| return 0; |
| |
| // compute number of steps needed (1 << shift) |
| { |
| SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2; |
| SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2; |
| shift = diff_to_shift(dx, dy); |
| } |
| // need at least 1 subdivision for our bias trick |
| if (shift == 0) |
| shift = 1; |
| |
| fWinding = SkToS8(winding); |
| fCurveShift = SkToU8(shift); |
| fCurveCount = SkToS16(1 << shift); |
| |
| SkFixed A = SkFDot6ToFixed(x0 - x1 - x1 + x2); |
| SkFixed B = SkFDot6ToFixed(x1 - x0 + x1 - x0); |
| |
| fQx = SkFDot6ToFixed(x0); |
| fQDx = B + (A >> shift); // biased by shift |
| fQDDx = A >> (shift - 1); // biased by shift |
| |
| A = SkFDot6ToFixed(y0 - y1 - y1 + y2); |
| B = SkFDot6ToFixed(y1 - y0 + y1 - y0); |
| |
| fQy = SkFDot6ToFixed(y0); |
| fQDy = B + (A >> shift); // biased by shift |
| fQDDy = A >> (shift - 1); // biased by shift |
| |
| fQLastX = SkFDot6ToFixed(x2); |
| fQLastY = SkFDot6ToFixed(y2); |
| |
| if (clip) |
| { |
| do { |
| for (;!this->updateQuadratic();) |
| ; |
| } while (!this->intersectsClip(*clip)); |
| this->chopLineWithClip(*clip); |
| return 1; |
| } |
| return this->updateQuadratic(); |
| } |
| |
| int SkQuadraticEdge::updateQuadratic() |
| { |
| int success; |
| int count = fCurveCount; |
| SkFixed oldx = fQx; |
| SkFixed oldy = fQy; |
| SkFixed newx, newy; |
| int shift = fCurveShift; |
| |
| SkASSERT(count > 0); |
| |
| do { |
| if (--count > 0) |
| { |
| newx = oldx + (fQDx >> shift); |
| fQDx += fQDDx; |
| newy = oldy + (fQDy >> shift); |
| fQDy += fQDDy; |
| } |
| else // last segment |
| { |
| newx = fQLastX; |
| newy = fQLastY; |
| } |
| success = this->updateLine(oldx, oldy, newx, newy); |
| oldx = newx; |
| oldy = newy; |
| } while (count > 0 && !success); |
| |
| fQx = newx; |
| fQy = newy; |
| fCurveCount = SkToS16(count); |
| return success; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////// |
| |
| /* f(1/3) = (8a + 12b + 6c + d) / 27 |
| f(2/3) = (a + 6b + 12c + 8d) / 27 |
| |
| f(1/3)-b = (8a - 15b + 6c + d) / 27 |
| f(2/3)-c = (a + 6b - 15c + 8d) / 27 |
| |
| use 16/512 to approximate 1/27 |
| */ |
| static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) |
| { |
| SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9; |
| SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9; |
| |
| return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird)); |
| } |
| |
| int SkCubicEdge::setCubic(const SkPoint pts[4], const SkRect16* clip, int shift) |
| { |
| SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; |
| |
| { |
| #ifdef SK_SCALAR_IS_FLOAT |
| float scale = float(1 << (shift + 6)); |
| x0 = int(pts[0].fX * scale); |
| y0 = int(pts[0].fY * scale); |
| x1 = int(pts[1].fX * scale); |
| y1 = int(pts[1].fY * scale); |
| x2 = int(pts[2].fX * scale); |
| y2 = int(pts[2].fY * scale); |
| x3 = int(pts[3].fX * scale); |
| y3 = int(pts[3].fY * scale); |
| #else |
| shift = 10 - shift; |
| x0 = pts[0].fX >> shift; |
| y0 = pts[0].fY >> shift; |
| x1 = pts[1].fX >> shift; |
| y1 = pts[1].fY >> shift; |
| x2 = pts[2].fX >> shift; |
| y2 = pts[2].fY >> shift; |
| x3 = pts[3].fX >> shift; |
| y3 = pts[3].fY >> shift; |
| #endif |
| } |
| |
| int winding = 1; |
| if (y0 > y3) |
| { |
| SkTSwap(x0, x3); |
| SkTSwap(x1, x2); |
| SkTSwap(y0, y3); |
| SkTSwap(y1, y2); |
| winding = -1; |
| } |
| |
| int top = SkFDot6Round(y0); |
| int bot = SkFDot6Round(y3); |
| |
| // are we a zero-height cubic (line)? |
| if (top == bot) |
| return 0; |
| |
| // are we completely above or below the clip? |
| if (clip && (top >= clip->fBottom || bot <= clip->fTop)) |
| return 0; |
| |
| // compute number of steps needed (1 << shift) |
| { |
| // Can't use (center of curve - center of baseline), since center-of-curve |
| // need not be the max delta from the baseline (it could even be coincident) |
| // so we try just looking at the two off-curve points |
| SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); |
| SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); |
| // add 1 (by observation) |
| shift = diff_to_shift(dx, dy) + 1; |
| } |
| // need at least 1 subdivision for our bias trick |
| SkASSERT(shift > 0); |
| |
| fWinding = SkToS8(winding); |
| fCurveShift = SkToU8(shift); |
| fCurveCount = SkToS16(-1 << shift); |
| |
| SkFixed B = SkFDot6ToFixed(3 * (x1 - x0)); |
| SkFixed C = SkFDot6ToFixed(3 * (x0 - x1 - x1 + x2)); |
| SkFixed D = SkFDot6ToFixed(x3 + 3 * (x1 - x2) - x0); |
| |
| fCx = SkFDot6ToFixed(x0); |
| fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| fCDDDx = 3*D >> (shift - 1); // biased by 2*shift |
| |
| B = SkFDot6ToFixed(3 * (y1 - y0)); |
| C = SkFDot6ToFixed(3 * (y0 - y1 - y1 + y2)); |
| D = SkFDot6ToFixed(y3 + 3 * (y1 - y2) - y0); |
| |
| fCy = SkFDot6ToFixed(y0); |
| fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| fCDDDy = 3*D >> (shift - 1); // biased by 2*shift |
| |
| fCLastX = SkFDot6ToFixed(x3); |
| fCLastY = SkFDot6ToFixed(y3); |
| |
| if (clip) |
| { |
| do { |
| for (;!this->updateCubic();) |
| ; |
| } while (!this->intersectsClip(*clip)); |
| this->chopLineWithClip(*clip); |
| return 1; |
| } |
| return this->updateCubic(); |
| } |
| |
| int SkCubicEdge::updateCubic() |
| { |
| int success; |
| int count = fCurveCount; |
| SkFixed oldx = fCx; |
| SkFixed oldy = fCy; |
| SkFixed newx, newy; |
| int shift = fCurveShift; |
| |
| SkASSERT(count < 0); |
| |
| do { |
| if (++count < 0) |
| { |
| newx = oldx + (fCDx >> shift); |
| fCDx += fCDDx >> shift; |
| fCDDx += fCDDDx; |
| |
| newy = oldy + (fCDy >> shift); |
| fCDy += fCDDy >> shift; |
| fCDDy += fCDDDy; |
| } |
| else // last segment |
| { |
| // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); |
| newx = fCLastX; |
| newy = fCLastY; |
| } |
| success = this->updateLine(oldx, oldy, newx, newy); |
| oldx = newx; |
| oldy = newy; |
| } while (count < 0 && !success); |
| |
| fCx = newx; |
| fCy = newy; |
| fCurveCount = SkToS16(count); |
| return success; |
| } |
| |
| |
| |