blob: 3a9eb7bfa740a018b6471f473a9ffedb7e0c7fab [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCCoverageProcessor.h"
#include "GrGpuCommandBuffer.h"
#include "GrOpFlushState.h"
#include "SkMakeUnique.h"
#include "ccpr/GrCCCubicShader.h"
#include "ccpr/GrCCQuadraticShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
int key = ((int)fRenderPass << 3);
if (GSTriangleSubpass::kCorners == fGSTriangleSubpass) {
key |= 4;
}
if (WindMethod::kInstanceData == fWindMethod) {
key |= 2;
}
if (Impl::kVertexShader == fImpl) {
key |= 1;
}
#ifdef SK_DEBUG
uint32_t bloatBits;
memcpy(&bloatBits, &fDebugBloat, 4);
b->add32(bloatBits);
#endif
b->add32(key);
}
GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
std::unique_ptr<Shader> shader;
switch (fRenderPass) {
case RenderPass::kTriangles:
shader = skstd::make_unique<Shader>();
break;
case RenderPass::kQuadratics:
shader = skstd::make_unique<GrCCQuadraticShader>();
break;
case RenderPass::kCubics:
shader = skstd::make_unique<GrCCCubicShader>();
break;
}
return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
: this->createVSImpl(std::move(shader));
}
void GrCCCoverageProcessor::draw(GrOpFlushState* flushState, const GrPipeline& pipeline,
const GrMesh meshes[],
const GrPipeline::DynamicState dynamicStates[], int meshCount,
const SkRect& drawBounds) const {
GrGpuRTCommandBuffer* cmdBuff = flushState->rtCommandBuffer();
cmdBuff->draw(pipeline, *this, meshes, dynamicStates, meshCount, drawBounds);
// Geometry shader backend draws triangles in two subpasses.
if (RenderPass::kTriangles == fRenderPass && Impl::kGeometryShader == fImpl) {
SkASSERT(GSTriangleSubpass::kHullsAndEdges == fGSTriangleSubpass);
GrCCCoverageProcessor cornerProc(*this, GSTriangleSubpass::kCorners);
cmdBuff->draw(pipeline, cornerProc, meshes, dynamicStates, meshCount, drawBounds);
}
}
void GrCCCoverageProcessor::Shader::emitVaryings(GrGLSLVaryingHandler* varyingHandler,
GrGLSLVarying::Scope scope, SkString* code,
const char* position, const char* coverage,
const char* wind) {
SkASSERT(GrGLSLVarying::Scope::kVertToGeo != scope);
code->appendf("half coverageTimesWind = %s * %s;", coverage, wind);
CoverageHandling coverageHandling = this->onEmitVaryings(varyingHandler, scope, code, position,
"coverageTimesWind");
if (CoverageHandling::kNotHandled == coverageHandling) {
fCoverageTimesWind.reset(kHalf_GrSLType, scope);
varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
code->appendf("%s = coverageTimesWind;", OutName(fCoverageTimesWind));
}
}
void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
GrGLSLFPFragmentBuilder* f,
const char* skOutputColor,
const char* skOutputCoverage) const {
f->codeAppendf("half coverage = +1;");
this->onEmitFragmentCode(proc, f, "coverage");
if (fCoverageTimesWind.fsIn()) {
f->codeAppendf("coverage *= %s;", fCoverageTimesWind.fsIn());
}
f->codeAppendf("%s.a = coverage;", skOutputColor);
f->codeAppendf("%s = half4(1);", skOutputCoverage);
#ifdef SK_DEBUG
if (proc.debugVisualizationsEnabled()) {
f->codeAppendf("%s = half4(-%s.a, %s.a, 0, abs(%s.a));",
skOutputColor, skOutputColor, skOutputColor, skOutputColor);
}
#endif
}
void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
const char* leftPt,
const char* rightPt,
const char* rasterVertexDir,
const char* outputCoverage) {
// Here we find an edge's coverage at one corner of a conservative raster bloat box whose center
// falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We
// always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at
// the center. Interpolated, these coverage values convert jagged conservative raster edges into
// smooth antialiased edges.
//
// d1 == (P + sign(n) * bloat) dot n (Distance at the bloat box vertex whose
// == P dot n + (abs(n.x) + abs(n.y)) * bloatSize coverage=-1, where the bloat box is
// centered on P.)
//
// d0 == (P - sign(n) * bloat) dot n (Distance at the bloat box vertex whose
// == P dot n - (abs(n.x) + abs(n.y)) * bloatSize coverage=0, where the bloat box is
// centered on P.)
//
// d == (P + rasterVertexDir * bloatSize) dot n (Distance at the bloat box vertex whose
// == P dot n + (rasterVertexDir dot n) * bloatSize coverage we wish to calculate.)
//
// coverage == -(d - d0) / (d1 - d0) (coverage=-1 at d=d1; coverage=0 at d=d0)
//
// == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5
//
s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
rightPt, leftPt, leftPt, rightPt);
s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
s->codeAppendf("float t = dot(%s, n);", rasterVertexDir);
// The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the
// GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage);
}
void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s,
const char* leftPt,
const char* rightPt,
const char* bloatDir1,
const char* bloatDir2,
const char* outputCoverages) {
// See comments in CalcEdgeCoverageAtBloatVertex.
s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
rightPt, leftPt, leftPt, rightPt);
s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
s->codeAppendf("float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2);
s->codeAppendf("for (int i = 0; i < 2; ++i) {");
s->codeAppendf( "%s[i] = (abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;",
outputCoverages);
s->codeAppendf("}");
}