| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrGpuResource_DEFINED |
| #define GrGpuResource_DEFINED |
| |
| #include "GrResourceKey.h" |
| #include "GrTypesPriv.h" |
| #include "SkData.h" |
| |
| class GrContext; |
| class GrGpu; |
| class GrResourceCache; |
| |
| /** |
| * Base class for GrGpuResource. Handles the various types of refs we need. Separated out as a base |
| * class to isolate the ref-cnting behavior and provide friendship without exposing all of |
| * GrGpuResource. |
| * |
| * Gpu resources can have three types of refs: |
| * 1) Normal ref (+ by ref(), - by unref()): These are used by code that is issuing draw calls |
| * that read and write the resource via GrDrawTarget and by any object that must own a |
| * GrGpuResource and is itself owned (directly or indirectly) by Skia-client code. |
| * 2) Pending read (+ by addPendingRead(), - by completedRead()): GrContext has scheduled a read |
| * of the resource by the GPU as a result of a skia API call but hasn't executed it yet. |
| * 3) Pending write (+ by addPendingWrite(), - by completedWrite()): GrContext has scheduled a |
| * write to the resource by the GPU as a result of a skia API call but hasn't executed it yet. |
| * |
| * The latter two ref types are private and intended only for Gr core code. |
| * |
| * When all the ref/io counts reach zero DERIVED::notifyAllCntsAreZero() will be called (static poly |
| * morphism using CRTP). Similarly when the ref (but not necessarily pending read/write) count |
| * reaches 0 DERIVED::notifyRefCountIsZero() will be called. In the case when an unref() causes both |
| * the ref cnt to reach zero and the other counts are zero, notifyRefCountIsZero() will be called |
| * before notifyIsPurgeable(). Moreover, if notifyRefCountIsZero() returns false then |
| * notifyAllRefCntsAreZero() won't be called at all. notifyRefCountIsZero() must return false if the |
| * object may be deleted after notifyRefCntIsZero() returns. |
| * |
| * GrIORef and GrGpuResource are separate classes for organizational reasons and to be |
| * able to give access via friendship to only the functions related to pending IO operations. |
| */ |
| template <typename DERIVED> class GrIORef : public SkNoncopyable { |
| public: |
| // Some of the signatures are written to mirror SkRefCnt so that GrGpuResource can work with |
| // templated helper classes (e.g. SkAutoTUnref). However, we have different categories of |
| // refs (e.g. pending reads). We also don't require thread safety as GrCacheable objects are |
| // not intended to cross thread boundaries. |
| void ref() const { |
| this->validate(); |
| ++fRefCnt; |
| } |
| |
| void unref() const { |
| this->validate(); |
| |
| if (!(--fRefCnt)) { |
| if (!static_cast<const DERIVED*>(this)->notifyRefCountIsZero()) { |
| return; |
| } |
| } |
| |
| this->didRemoveRefOrPendingIO(kRef_CntType); |
| } |
| |
| void validate() const { |
| #ifdef SK_DEBUG |
| SkASSERT(fRefCnt >= 0); |
| SkASSERT(fPendingReads >= 0); |
| SkASSERT(fPendingWrites >= 0); |
| SkASSERT(fRefCnt + fPendingReads + fPendingWrites >= 0); |
| #endif |
| } |
| |
| protected: |
| GrIORef() : fRefCnt(1), fPendingReads(0), fPendingWrites(0) { } |
| |
| enum CntType { |
| kRef_CntType, |
| kPendingRead_CntType, |
| kPendingWrite_CntType, |
| }; |
| |
| bool isPurgeable() const { return !this->internalHasRef() && !this->internalHasPendingIO(); } |
| |
| bool internalHasPendingRead() const { return SkToBool(fPendingReads); } |
| bool internalHasPendingWrite() const { return SkToBool(fPendingWrites); } |
| bool internalHasPendingIO() const { return SkToBool(fPendingWrites | fPendingReads); } |
| |
| bool internalHasRef() const { return SkToBool(fRefCnt); } |
| |
| private: |
| void addPendingRead() const { |
| this->validate(); |
| ++fPendingReads; |
| } |
| |
| void completedRead() const { |
| this->validate(); |
| --fPendingReads; |
| this->didRemoveRefOrPendingIO(kPendingRead_CntType); |
| } |
| |
| void addPendingWrite() const { |
| this->validate(); |
| ++fPendingWrites; |
| } |
| |
| void completedWrite() const { |
| this->validate(); |
| --fPendingWrites; |
| this->didRemoveRefOrPendingIO(kPendingWrite_CntType); |
| } |
| |
| private: |
| void didRemoveRefOrPendingIO(CntType cntTypeRemoved) const { |
| if (0 == fPendingReads && 0 == fPendingWrites && 0 == fRefCnt) { |
| static_cast<const DERIVED*>(this)->notifyAllCntsAreZero(cntTypeRemoved); |
| } |
| } |
| |
| mutable int32_t fRefCnt; |
| mutable int32_t fPendingReads; |
| mutable int32_t fPendingWrites; |
| |
| // This class is used to manage conversion of refs to pending reads/writes. |
| friend class GrGpuResourceRef; |
| friend class GrResourceCache; // to check IO ref counts. |
| |
| template <typename, GrIOType> friend class GrPendingIOResource; |
| }; |
| |
| /** |
| * Base class for objects that can be kept in the GrResourceCache. |
| */ |
| class SK_API GrGpuResource : public GrIORef<GrGpuResource> { |
| public: |
| |
| |
| enum LifeCycle { |
| /** |
| * The resource is cached and owned by Skia. Resources with this status may be kept alive |
| * by the cache as either scratch or unique resources even when there are no refs to them. |
| * The cache may release them whenever there are no refs. |
| */ |
| kCached_LifeCycle, |
| |
| /** |
| * The resource is uncached. As soon as there are no more refs to it, it is released. Under |
| * the hood the cache may opaquely recycle it as a cached resource. |
| */ |
| kUncached_LifeCycle, |
| |
| /** |
| * Similar to uncached, but Skia does not manage the lifetime of the underlying backend |
| * 3D API object(s). The client is responsible for freeing those. Used to inject client- |
| * created GPU resources into Skia (e.g. to render to a client-created texture). |
| */ |
| kBorrowed_LifeCycle, |
| |
| /** |
| * An external resource with ownership transfered into Skia. Skia will free the resource. |
| */ |
| kAdopted_LifeCycle, |
| }; |
| |
| /** |
| * Tests whether a object has been abandoned or released. All objects will |
| * be in this state after their creating GrContext is destroyed or has |
| * contextLost called. It's up to the client to test wasDestroyed() before |
| * attempting to use an object if it holds refs on objects across |
| * ~GrContext, freeResources with the force flag, or contextLost. |
| * |
| * @return true if the object has been released or abandoned, |
| * false otherwise. |
| */ |
| bool wasDestroyed() const { return NULL == fGpu; } |
| |
| /** |
| * Retrieves the context that owns the object. Note that it is possible for |
| * this to return NULL. When objects have been release()ed or abandon()ed |
| * they no longer have an owning context. Destroying a GrContext |
| * automatically releases all its resources. |
| */ |
| const GrContext* getContext() const; |
| GrContext* getContext(); |
| |
| /** |
| * Retrieves the amount of GPU memory used by this resource in bytes. It is |
| * approximate since we aren't aware of additional padding or copies made |
| * by the driver. |
| * |
| * @return the amount of GPU memory used in bytes |
| */ |
| size_t gpuMemorySize() const { |
| if (kInvalidGpuMemorySize == fGpuMemorySize) { |
| fGpuMemorySize = this->onGpuMemorySize(); |
| SkASSERT(kInvalidGpuMemorySize != fGpuMemorySize); |
| } |
| return fGpuMemorySize; |
| } |
| |
| /** |
| * Gets an id that is unique for this GrGpuResource object. It is static in that it does |
| * not change when the content of the GrGpuResource object changes. This will never return |
| * 0. |
| */ |
| uint32_t getUniqueID() const { return fUniqueID; } |
| |
| /** Returns the current unique key for the resource. It will be invalid if the resource has no |
| associated unique key. */ |
| const GrUniqueKey& getUniqueKey() const { return fUniqueKey; } |
| |
| /** |
| * Attach a custom data object to this resource. The data will remain attached |
| * for the lifetime of this resource (until it is abandoned or released). |
| * Takes a ref on data. Previously attached data, if any, is unrefed. |
| * Returns the data argument, for convenience. |
| */ |
| const SkData* setCustomData(const SkData* data); |
| |
| /** |
| * Returns the custom data object that was attached to this resource by |
| * calling setCustomData. |
| */ |
| const SkData* getCustomData() const { return fData.get(); } |
| |
| /** |
| * Internal-only helper class used for manipulations of the resource by the cache. |
| */ |
| class CacheAccess; |
| inline CacheAccess cacheAccess(); |
| inline const CacheAccess cacheAccess() const; |
| |
| /** |
| * Internal-only helper class used for manipulations of the resource by internal code. |
| */ |
| class ResourcePriv; |
| inline ResourcePriv resourcePriv(); |
| inline const ResourcePriv resourcePriv() const; |
| |
| /** |
| * Removes references to objects in the underlying 3D API without freeing them. |
| * Called by CacheAccess. |
| * In general this method should not be called outside of skia. It was |
| * made by public for a special case where it needs to be called in Blink |
| * when a texture becomes unsafe to use after having been shared through |
| * a texture mailbox. |
| */ |
| void abandon(); |
| |
| protected: |
| // This must be called by every GrGpuObject. It should be called once the object is fully |
| // initialized (i.e. not in a base class constructor). |
| void registerWithCache(); |
| |
| GrGpuResource(GrGpu*, LifeCycle); |
| virtual ~GrGpuResource(); |
| |
| GrGpu* getGpu() const { return fGpu; } |
| |
| /** Overridden to free GPU resources in the backend API. */ |
| virtual void onRelease() { } |
| /** Overridden to abandon any internal handles, ptrs, etc to backend API resources. |
| This may be called when the underlying 3D context is no longer valid and so no |
| backend API calls should be made. */ |
| virtual void onAbandon() { } |
| |
| bool shouldFreeResources() const { return fLifeCycle != kBorrowed_LifeCycle; } |
| |
| bool isExternal() const { |
| return GrGpuResource::kAdopted_LifeCycle == fLifeCycle || |
| GrGpuResource::kBorrowed_LifeCycle == fLifeCycle; |
| } |
| |
| /** |
| * This entry point should be called whenever gpuMemorySize() should report a different size. |
| * The cache will call gpuMemorySize() to update the current size of the resource. |
| */ |
| void didChangeGpuMemorySize() const; |
| |
| /** |
| * Optionally called by the GrGpuResource subclass if the resource can be used as scratch. |
| * By default resources are not usable as scratch. This should only be called once. |
| **/ |
| void setScratchKey(const GrScratchKey& scratchKey); |
| |
| private: |
| /** |
| * Frees the object in the underlying 3D API. Called by CacheAccess. |
| */ |
| void release(); |
| |
| virtual size_t onGpuMemorySize() const = 0; |
| |
| // See comments in CacheAccess and ResourcePriv. |
| void setUniqueKey(const GrUniqueKey&); |
| void removeUniqueKey(); |
| void notifyAllCntsAreZero(CntType) const; |
| bool notifyRefCountIsZero() const; |
| void removeScratchKey(); |
| void makeBudgeted(); |
| void makeUnbudgeted(); |
| |
| #ifdef SK_DEBUG |
| friend class GrGpu; // for assert in GrGpu to access getGpu |
| #endif |
| |
| static uint32_t CreateUniqueID(); |
| |
| // An index into a heap when this resource is purgeable or an array when not. This is maintained |
| // by the cache. |
| int fCacheArrayIndex; |
| // This value reflects how recently this resource was accessed in the cache. This is maintained |
| // by the cache. |
| uint32_t fTimestamp; |
| |
| static const size_t kInvalidGpuMemorySize = ~static_cast<size_t>(0); |
| GrScratchKey fScratchKey; |
| GrUniqueKey fUniqueKey; |
| |
| // This is not ref'ed but abandon() or release() will be called before the GrGpu object |
| // is destroyed. Those calls set will this to NULL. |
| GrGpu* fGpu; |
| mutable size_t fGpuMemorySize; |
| |
| LifeCycle fLifeCycle; |
| const uint32_t fUniqueID; |
| |
| SkAutoTUnref<const SkData> fData; |
| |
| typedef GrIORef<GrGpuResource> INHERITED; |
| friend class GrIORef<GrGpuResource>; // to access notifyAllCntsAreZero and notifyRefCntIsZero. |
| }; |
| |
| #endif |