blob: 638af13b7b5c00f03e34a283b04aa5a3ef1d82c2 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "DMSrcSink.h"
#include "Resources.h"
#include "SkAndroidCodec.h"
#include "SkCodec.h"
#include "SkCodecImageGenerator.h"
#include "SkColorSpace.h"
#include "SkColorSpace_Base.h"
#include "SkColorSpaceXform.h"
#include "SkCommonFlags.h"
#include "SkData.h"
#include "SkDeferredCanvas.h"
#include "SkDocument.h"
#include "SkError.h"
#include "SkImageGenerator.h"
#include "SkImageGeneratorCG.h"
#include "SkImageGeneratorWIC.h"
#include "SkLiteDL.h"
#include "SkLiteRecorder.h"
#include "SkMallocPixelRef.h"
#include "SkMultiPictureDraw.h"
#include "SkNullCanvas.h"
#include "SkOSFile.h"
#include "SkOpts.h"
#include "SkPictureData.h"
#include "SkPictureRecorder.h"
#include "SkRandom.h"
#include "SkRecordDraw.h"
#include "SkRecorder.h"
#include "SkSVGCanvas.h"
#include "SkStream.h"
#include "SkTLogic.h"
#include "SkSwizzler.h"
#include <functional>
#if defined(SK_BUILD_FOR_WIN)
#include "SkAutoCoInitialize.h"
#endif
#if defined(SK_TEST_QCMS)
#include "qcms.h"
#endif
#if defined(SK_XML)
#include "SkSVGDOM.h"
#include "SkXMLWriter.h"
#endif
DEFINE_bool(multiPage, false, "For document-type backends, render the source"
" into multiple pages");
DEFINE_bool(RAW_threading, true, "Allow RAW decodes to run on multiple threads?");
using sk_gpu_test::GrContextFactory;
namespace DM {
GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {}
Error GMSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
canvas->concat(gm->getInitialTransform());
gm->draw(canvas);
return "";
}
SkISize GMSrc::size() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
return gm->getISize();
}
Name GMSrc::name() const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
return gm->getName();
}
void GMSrc::modifyGrContextOptions(GrContextOptions* options) const {
SkAutoTDelete<skiagm::GM> gm(fFactory(nullptr));
gm->modifyGrContextOptions(options);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
BRDSrc::BRDSrc(Path path, Mode mode, CodecSrc::DstColorType dstColorType, uint32_t sampleSize)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fSampleSize(sampleSize)
{}
bool BRDSrc::veto(SinkFlags flags) const {
// No need to test to non-raster or indirect backends.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
static SkBitmapRegionDecoder* create_brd(Path path) {
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
if (!encoded) {
return NULL;
}
return SkBitmapRegionDecoder::Create(encoded.get(),
SkBitmapRegionDecoder::kAndroidCodec_Strategy);
}
Error BRDSrc::draw(SkCanvas* canvas) const {
SkColorType colorType = canvas->imageInfo().colorType();
if (kRGB_565_SkColorType == colorType &&
CodecSrc::kGetFromCanvas_DstColorType != fDstColorType) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
switch (fDstColorType) {
case CodecSrc::kGetFromCanvas_DstColorType:
break;
case CodecSrc::kIndex8_Always_DstColorType:
colorType = kIndex_8_SkColorType;
break;
case CodecSrc::kGrayscale_Always_DstColorType:
colorType = kGray_8_SkColorType;
break;
default:
SkASSERT(false);
break;
}
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath));
if (nullptr == brd.get()) {
return Error::Nonfatal(SkStringPrintf("Could not create brd for %s.", fPath.c_str()));
}
if (!brd->conversionSupported(colorType)) {
return Error::Nonfatal("Cannot convert to color type.");
}
const uint32_t width = brd->width();
const uint32_t height = brd->height();
// Visually inspecting very small output images is not necessary.
if ((width / fSampleSize <= 10 || height / fSampleSize <= 10) && 1 != fSampleSize) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
switch (fMode) {
case kFullImage_Mode: {
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, width, height),
fSampleSize, colorType, false)) {
return "Cannot decode (full) region.";
}
if (colorType != bitmap.colorType()) {
return Error::Nonfatal("Cannot convert to color type.");
}
canvas->drawBitmap(bitmap, 0, 0);
return "";
}
case kDivisor_Mode: {
const uint32_t divisor = 2;
if (width < divisor || height < divisor) {
return Error::Nonfatal("Divisor is larger than image dimension.");
}
// Use a border to test subsets that extend outside the image.
// We will not allow the border to be larger than the image dimensions. Allowing
// these large borders causes off by one errors that indicate a problem with the
// test suite, not a problem with the implementation.
const uint32_t maxBorder = SkTMin(width, height) / (fSampleSize * divisor);
const uint32_t scaledBorder = SkTMin(5u, maxBorder);
const uint32_t unscaledBorder = scaledBorder * fSampleSize;
// We may need to clear the canvas to avoid uninitialized memory.
// Assume we are scaling a 780x780 image with sampleSize = 8.
// The output image should be 97x97.
// Each subset will be 390x390.
// Each scaled subset be 48x48.
// Four scaled subsets will only fill a 96x96 image.
// The bottom row and last column will not be touched.
// This is an unfortunate result of our rounding rules when scaling.
// Maybe we need to consider testing scaled subsets without trying to
// combine them to match the full scaled image? Or maybe this is the
// best we can do?
canvas->clear(0);
for (uint32_t x = 0; x < divisor; x++) {
for (uint32_t y = 0; y < divisor; y++) {
// Calculate the subset dimensions
uint32_t subsetWidth = width / divisor;
uint32_t subsetHeight = height / divisor;
const int left = x * subsetWidth;
const int top = y * subsetHeight;
// Increase the size of the last subset in each row or column, when the
// divisor does not divide evenly into the image dimensions
subsetWidth += (x + 1 == divisor) ? (width % divisor) : 0;
subsetHeight += (y + 1 == divisor) ? (height % divisor) : 0;
// Increase the size of the subset in order to have a border on each side
const int decodeLeft = left - unscaledBorder;
const int decodeTop = top - unscaledBorder;
const uint32_t decodeWidth = subsetWidth + unscaledBorder * 2;
const uint32_t decodeHeight = subsetHeight + unscaledBorder * 2;
SkBitmap bitmap;
if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(decodeLeft,
decodeTop, decodeWidth, decodeHeight), fSampleSize, colorType, false)) {
return "Cannot decode region.";
}
if (colorType != bitmap.colorType()) {
return Error::Nonfatal("Cannot convert to color type.");
}
canvas->drawBitmapRect(bitmap,
SkRect::MakeXYWH((SkScalar) scaledBorder, (SkScalar) scaledBorder,
(SkScalar) (subsetWidth / fSampleSize),
(SkScalar) (subsetHeight / fSampleSize)),
SkRect::MakeXYWH((SkScalar) (left / fSampleSize),
(SkScalar) (top / fSampleSize),
(SkScalar) (subsetWidth / fSampleSize),
(SkScalar) (subsetHeight / fSampleSize)),
nullptr);
}
}
return "";
}
default:
SkASSERT(false);
return "Error: Should not be reached.";
}
}
SkISize BRDSrc::size() const {
SkAutoTDelete<SkBitmapRegionDecoder> brd(create_brd(fPath));
if (brd) {
return SkISize::Make(SkTMax(1, brd->width() / (int) fSampleSize),
SkTMax(1, brd->height() / (int) fSampleSize));
}
return SkISize::Make(0, 0);
}
static SkString get_scaled_name(const Path& path, float scale) {
return SkStringPrintf("%s_%.3f", SkOSPath::Basename(path.c_str()).c_str(), scale);
}
Name BRDSrc::name() const {
// We will replicate the names used by CodecSrc so that images can
// be compared in Gold.
if (1 == fSampleSize) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static bool serial_from_path_name(const SkString& path) {
if (!FLAGS_RAW_threading) {
static const char* const exts[] = {
"arw", "cr2", "dng", "nef", "nrw", "orf", "raf", "rw2", "pef", "srw",
"ARW", "CR2", "DNG", "NEF", "NRW", "ORF", "RAF", "RW2", "PEF", "SRW",
};
const char* actualExt = strrchr(path.c_str(), '.');
if (actualExt) {
actualExt++;
for (auto* ext : exts) {
if (0 == strcmp(ext, actualExt)) {
return true;
}
}
}
}
return false;
}
CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, SkAlphaType dstAlphaType,
float scale)
: fPath(path)
, fMode(mode)
, fDstColorType(dstColorType)
, fDstAlphaType(dstAlphaType)
, fScale(scale)
, fRunSerially(serial_from_path_name(path))
{}
bool CodecSrc::veto(SinkFlags flags) const {
// Test to direct raster backends (8888 and 565).
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}
// Allows us to test decodes to non-native 8888.
static void swap_rb_if_necessary(SkBitmap& bitmap, CodecSrc::DstColorType dstColorType) {
if (CodecSrc::kNonNative8888_Always_DstColorType != dstColorType) {
return;
}
for (int y = 0; y < bitmap.height(); y++) {
uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
SkOpts::RGBA_to_BGRA(row, row, bitmap.width());
}
}
// FIXME: Currently we cannot draw unpremultiplied sources. skbug.com/3338 and skbug.com/3339.
// This allows us to still test unpremultiplied decodes.
static void premultiply_if_necessary(SkBitmap& bitmap) {
if (kUnpremul_SkAlphaType != bitmap.alphaType()) {
return;
}
switch (bitmap.colorType()) {
case kN32_SkColorType:
for (int y = 0; y < bitmap.height(); y++) {
uint32_t* row = (uint32_t*) bitmap.getAddr(0, y);
SkOpts::RGBA_to_rgbA(row, row, bitmap.width());
}
break;
case kIndex_8_SkColorType: {
SkColorTable* colorTable = bitmap.getColorTable();
SkPMColor* colorPtr = const_cast<SkPMColor*>(colorTable->readColors());
SkOpts::RGBA_to_rgbA(colorPtr, colorPtr, colorTable->count());
break;
}
default:
// No need to premultiply kGray or k565 outputs.
break;
}
// In the kIndex_8 case, the canvas won't even try to draw unless we mark the
// bitmap as kPremul.
bitmap.setAlphaType(kPremul_SkAlphaType);
}
static bool get_decode_info(SkImageInfo* decodeInfo, SkColorType canvasColorType,
CodecSrc::DstColorType dstColorType, SkAlphaType dstAlphaType) {
switch (dstColorType) {
case CodecSrc::kIndex8_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
*decodeInfo = decodeInfo->makeColorType(kIndex_8_SkColorType);
break;
case CodecSrc::kGrayscale_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
*decodeInfo = decodeInfo->makeColorType(kGray_8_SkColorType);
break;
case CodecSrc::kNonNative8888_Always_DstColorType:
if (kRGB_565_SkColorType == canvasColorType) {
return false;
}
#ifdef SK_PMCOLOR_IS_RGBA
*decodeInfo = decodeInfo->makeColorType(kBGRA_8888_SkColorType);
#else
*decodeInfo = decodeInfo->makeColorType(kRGBA_8888_SkColorType);
#endif
break;
default:
if (kRGB_565_SkColorType == canvasColorType &&
kOpaque_SkAlphaType != decodeInfo->alphaType()) {
return false;
}
*decodeInfo = decodeInfo->makeColorType(canvasColorType);
break;
}
*decodeInfo = decodeInfo->makeAlphaType(dstAlphaType);
return true;
}
static void draw_to_canvas(SkCanvas* canvas, const SkImageInfo& info, void* pixels, size_t rowBytes,
SkPMColor* colorPtr, int colorCount, CodecSrc::DstColorType dstColorType,
SkScalar left = 0, SkScalar top = 0) {
SkAutoTUnref<SkColorTable> colorTable(new SkColorTable(colorPtr, colorCount));
SkBitmap bitmap;
bitmap.installPixels(info, pixels, rowBytes, colorTable.get(), nullptr, nullptr);
premultiply_if_necessary(bitmap);
swap_rb_if_necessary(bitmap, dstColorType);
canvas->drawBitmap(bitmap, left, top);
}
Error CodecSrc::draw(SkCanvas* canvas) const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded.get()));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
SkImageInfo decodeInfo = codec->getInfo();
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
fDstAlphaType)) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
// Try to scale the image if it is desired
SkISize size = codec->getScaledDimensions(fScale);
if (size == decodeInfo.dimensions() && 1.0f != fScale) {
return Error::Nonfatal("Test without scaling is uninteresting.");
}
// Visually inspecting very small output images is not necessary. We will
// cover these cases in unit testing.
if ((size.width() <= 10 || size.height() <= 10) && 1.0f != fScale) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
const int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
const size_t rowBytes = size.width() * bpp;
SkAutoMalloc pixels(decodeInfo.getSafeSize(rowBytes));
SkPMColor colorPtr[256];
int colorCount = 256;
SkCodec::Options options;
if (kCodecZeroInit_Mode == fMode) {
memset(pixels.get(), 0, size.height() * rowBytes);
options.fZeroInitialized = SkCodec::kYes_ZeroInitialized;
}
SkImageInfo bitmapInfo = decodeInfo;
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
kBGRA_8888_SkColorType == decodeInfo.colorType()) {
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
}
switch (fMode) {
case kCodecZeroInit_Mode:
case kCodec_Mode: {
switch (codec->getPixels(decodeInfo, pixels.get(), rowBytes, &options,
colorPtr, &colorCount)) {
case SkCodec::kSuccess:
// We consider incomplete to be valid, since we should still decode what is
// available.
case SkCodec::kIncompleteInput:
break;
default:
// Everything else is considered a failure.
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, colorPtr, colorCount,
fDstColorType);
break;
}
case kScanline_Mode: {
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, NULL, colorPtr,
&colorCount)) {
return "Could not start scanline decoder";
}
void* dst = pixels.get();
uint32_t height = decodeInfo.height();
switch (codec->getScanlineOrder()) {
case SkCodec::kTopDown_SkScanlineOrder:
case SkCodec::kBottomUp_SkScanlineOrder:
case SkCodec::kNone_SkScanlineOrder:
// We do not need to check the return value. On an incomplete
// image, memory will be filled with a default value.
codec->getScanlines(dst, height, rowBytes);
break;
case SkCodec::kOutOfOrder_SkScanlineOrder: {
for (int y = 0; y < decodeInfo.height(); y++) {
int dstY = codec->outputScanline(y);
void* dstPtr = SkTAddOffset<void>(dst, rowBytes * dstY);
// We complete the loop, even if this call begins to fail
// due to an incomplete image. This ensures any uninitialized
// memory will be filled with the proper value.
codec->getScanlines(dstPtr, 1, rowBytes);
}
break;
}
}
draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, colorPtr, colorCount, fDstColorType);
break;
}
case kStripe_Mode: {
const int height = decodeInfo.height();
// This value is chosen arbitrarily. We exercise more cases by choosing a value that
// does not align with image blocks.
const int stripeHeight = 37;
const int numStripes = (height + stripeHeight - 1) / stripeHeight;
void* dst = pixels.get();
// Decode odd stripes
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, nullptr, colorPtr,
&colorCount)) {
return "Could not start scanline decoder";
}
// This mode was designed to test the new skip scanlines API in libjpeg-turbo.
// Jpegs have kTopDown_SkScanlineOrder, and at this time, it is not interesting
// to run this test for image types that do not have this scanline ordering.
// We only run this on Jpeg, which is always kTopDown.
SkASSERT(SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder());
for (int i = 0; i < numStripes; i += 2) {
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight);
codec->skipScanlines(linesToSkip);
// Read a stripe
const int startY = (i + 1) * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
if (linesToRead > 0) {
codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
rowBytes);
}
}
// Decode even stripes
const SkCodec::Result startResult = codec->startScanlineDecode(decodeInfo, nullptr,
colorPtr, &colorCount);
if (SkCodec::kSuccess != startResult) {
return "Failed to restart scanline decoder with same parameters.";
}
for (int i = 0; i < numStripes; i += 2) {
// Read a stripe
const int startY = i * stripeHeight;
const int linesToRead = SkTMin(stripeHeight, height - startY);
codec->getScanlines(SkTAddOffset<void>(dst, rowBytes * startY), linesToRead,
rowBytes);
// Skip a stripe
const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight);
if (linesToSkip > 0) {
codec->skipScanlines(linesToSkip);
}
}
draw_to_canvas(canvas, bitmapInfo, dst, rowBytes, colorPtr, colorCount, fDstColorType);
break;
}
case kCroppedScanline_Mode: {
const int width = decodeInfo.width();
const int height = decodeInfo.height();
// This value is chosen because, as we move across the image, it will sometimes
// align with the jpeg block sizes and it will sometimes not. This allows us
// to test interestingly different code paths in the implementation.
const int tileSize = 36;
SkCodec::Options opts;
SkIRect subset;
for (int x = 0; x < width; x += tileSize) {
subset = SkIRect::MakeXYWH(x, 0, SkTMin(tileSize, width - x), height);
opts.fSubset = &subset;
if (SkCodec::kSuccess != codec->startScanlineDecode(decodeInfo, &opts,
colorPtr, &colorCount)) {
return "Could not start scanline decoder.";
}
codec->getScanlines(SkTAddOffset<void>(pixels.get(), x * bpp), height, rowBytes);
}
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, colorPtr, colorCount,
fDstColorType);
break;
}
case kSubset_Mode: {
// Arbitrarily choose a divisor.
int divisor = 2;
// Total width/height of the image.
const int W = codec->getInfo().width();
const int H = codec->getInfo().height();
if (divisor > W || divisor > H) {
return Error::Nonfatal(SkStringPrintf("Cannot codec subset: divisor %d is too big "
"for %s with dimensions (%d x %d)", divisor,
fPath.c_str(), W, H));
}
// subset dimensions
// SkWebpCodec, the only one that supports subsets, requires even top/left boundaries.
const int w = SkAlign2(W / divisor);
const int h = SkAlign2(H / divisor);
SkIRect subset;
SkCodec::Options opts;
opts.fSubset = &subset;
SkBitmap subsetBm;
// We will reuse pixel memory from bitmap.
void* dst = pixels.get();
// Keep track of left and top (for drawing subsetBm into canvas). We could use
// fScale * x and fScale * y, but we want integers such that the next subset will start
// where the last one ended. So we'll add decodeInfo.width() and height().
int left = 0;
for (int x = 0; x < W; x += w) {
int top = 0;
for (int y = 0; y < H; y+= h) {
// Do not make the subset go off the edge of the image.
const int preScaleW = SkTMin(w, W - x);
const int preScaleH = SkTMin(h, H - y);
subset.setXYWH(x, y, preScaleW, preScaleH);
// And scale
// FIXME: Should we have a version of getScaledDimensions that takes a subset
// into account?
const int scaledW = SkTMax(1, SkScalarRoundToInt(preScaleW * fScale));
const int scaledH = SkTMax(1, SkScalarRoundToInt(preScaleH * fScale));
decodeInfo = decodeInfo.makeWH(scaledW, scaledH);
SkImageInfo subsetBitmapInfo = bitmapInfo.makeWH(scaledW, scaledH);
size_t subsetRowBytes = subsetBitmapInfo.minRowBytes();
const SkCodec::Result result = codec->getPixels(decodeInfo, dst, subsetRowBytes,
&opts, colorPtr, &colorCount);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("subset codec failed to decode (%d, %d, %d, %d) "
"from %s with dimensions (%d x %d)\t error %d",
x, y, decodeInfo.width(), decodeInfo.height(),
fPath.c_str(), W, H, result);
}
draw_to_canvas(canvas, subsetBitmapInfo, dst, subsetRowBytes, colorPtr,
colorCount, fDstColorType, SkIntToScalar(left),
SkIntToScalar(top));
// translate by the scaled height.
top += decodeInfo.height();
}
// translate by the scaled width.
left += decodeInfo.width();
}
return "";
}
default:
SkASSERT(false);
return "Invalid fMode";
}
return "";
}
SkISize CodecSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded.get()));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getScaledDimensions(fScale);
}
Name CodecSrc::name() const {
if (1.0f == fScale) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, fScale);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
AndroidCodecSrc::AndroidCodecSrc(Path path, CodecSrc::DstColorType dstColorType,
SkAlphaType dstAlphaType, int sampleSize)
: fPath(path)
, fDstColorType(dstColorType)
, fDstAlphaType(dstAlphaType)
, fSampleSize(sampleSize)
, fRunSerially(serial_from_path_name(path))
{}
bool AndroidCodecSrc::veto(SinkFlags flags) const {
// No need to test decoding to non-raster or indirect backend.
return flags.type != SinkFlags::kRaster
|| flags.approach != SinkFlags::kDirect;
}
Error AndroidCodecSrc::draw(SkCanvas* canvas) const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded.get()));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create android codec for %s.", fPath.c_str());
}
SkImageInfo decodeInfo = codec->getInfo();
if (!get_decode_info(&decodeInfo, canvas->imageInfo().colorType(), fDstColorType,
fDstAlphaType)) {
return Error::Nonfatal("Testing non-565 to 565 is uninteresting.");
}
// Scale the image if it is desired.
SkISize size = codec->getSampledDimensions(fSampleSize);
// Visually inspecting very small output images is not necessary. We will
// cover these cases in unit testing.
if ((size.width() <= 10 || size.height() <= 10) && 1 != fSampleSize) {
return Error::Nonfatal("Scaling very small images is uninteresting.");
}
decodeInfo = decodeInfo.makeWH(size.width(), size.height());
int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
size_t rowBytes = size.width() * bpp;
SkAutoMalloc pixels(size.height() * rowBytes);
SkPMColor colorPtr[256];
int colorCount = 256;
SkBitmap bitmap;
SkImageInfo bitmapInfo = decodeInfo;
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
kBGRA_8888_SkColorType == decodeInfo.colorType()) {
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
}
// Create options for the codec.
SkAndroidCodec::AndroidOptions options;
options.fColorPtr = colorPtr;
options.fColorCount = &colorCount;
options.fSampleSize = fSampleSize;
switch (codec->getAndroidPixels(decodeInfo, pixels.get(), rowBytes, &options)) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
break;
default:
return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str());
}
draw_to_canvas(canvas, bitmapInfo, pixels.get(), rowBytes, colorPtr, colorCount, fDstColorType);
return "";
}
SkISize AndroidCodecSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkAndroidCodec> codec(SkAndroidCodec::NewFromData(encoded.get()));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getSampledDimensions(fSampleSize);
}
Name AndroidCodecSrc::name() const {
// We will replicate the names used by CodecSrc so that images can
// be compared in Gold.
if (1 == fSampleSize) {
return SkOSPath::Basename(fPath.c_str());
}
return get_scaled_name(fPath, 1.0f / (float) fSampleSize);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ImageGenSrc::ImageGenSrc(Path path, Mode mode, SkAlphaType alphaType, bool isGpu)
: fPath(path)
, fMode(mode)
, fDstAlphaType(alphaType)
, fIsGpu(isGpu)
, fRunSerially(serial_from_path_name(path))
{}
bool ImageGenSrc::veto(SinkFlags flags) const {
if (fIsGpu) {
return flags.type != SinkFlags::kGPU || flags.approach != SinkFlags::kDirect;
}
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}
Error ImageGenSrc::draw(SkCanvas* canvas) const {
if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
return Error::Nonfatal("Uninteresting to test image generator to 565.");
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
#if defined(SK_BUILD_FOR_WIN)
// Initialize COM in order to test with WIC.
SkAutoCoInitialize com;
if (!com.succeeded()) {
return "Could not initialize COM.";
}
#endif
SkAutoTDelete<SkImageGenerator> gen(nullptr);
switch (fMode) {
case kCodec_Mode:
gen.reset(SkCodecImageGenerator::NewFromEncodedCodec(encoded.get()));
if (!gen) {
return "Could not create codec image generator.";
}
break;
case kPlatform_Mode: {
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
gen.reset(SkImageGeneratorCG::NewFromEncodedCG(encoded.get()));
#elif defined(SK_BUILD_FOR_WIN)
gen.reset(SkImageGeneratorWIC::NewFromEncodedWIC(encoded.get()));
#endif
if (!gen) {
return "Could not create platform image generator.";
}
break;
}
default:
SkASSERT(false);
return "Invalid image generator mode";
}
// Test deferred decoding path on GPU
if (fIsGpu) {
sk_sp<SkImage> image(SkImage::MakeFromGenerator(gen.release(), nullptr));
if (!image) {
return "Could not create image from codec image generator.";
}
canvas->drawImage(image, 0, 0);
return "";
}
// Test various color and alpha types on CPU
SkImageInfo decodeInfo = gen->getInfo().makeAlphaType(fDstAlphaType);
int bpp = SkColorTypeBytesPerPixel(decodeInfo.colorType());
size_t rowBytes = decodeInfo.width() * bpp;
SkAutoMalloc pixels(decodeInfo.height() * rowBytes);
SkPMColor colorPtr[256];
int colorCount = 256;
if (!gen->getPixels(decodeInfo, pixels.get(), rowBytes, colorPtr, &colorCount)) {
return SkStringPrintf("Image generator could not getPixels() for %s\n", fPath.c_str());
}
draw_to_canvas(canvas, decodeInfo, pixels.get(), rowBytes, colorPtr, colorCount,
CodecSrc::kGetFromCanvas_DstColorType);
return "";
}
SkISize ImageGenSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded.get()));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return codec->getInfo().dimensions();
}
Name ImageGenSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ColorCodecSrc::ColorCodecSrc(Path path, Mode mode, SkColorType colorType)
: fPath(path)
, fMode(mode)
, fColorType(colorType)
{}
bool ColorCodecSrc::veto(SinkFlags flags) const {
// Test to direct raster backends (8888 and 565).
return flags.type != SinkFlags::kRaster || flags.approach != SinkFlags::kDirect;
}
Error ColorCodecSrc::draw(SkCanvas* canvas) const {
if (kRGB_565_SkColorType == canvas->imageInfo().colorType()) {
return Error::Nonfatal("No need to test color correction to 565 backend.");
}
bool runInLegacyMode = kBaseline_Mode == fMode;
#if defined(SK_TEST_QCMS)
runInLegacyMode = runInLegacyMode || kQCMS_HPZR30w_Mode == fMode;
#endif
if (runInLegacyMode && canvas->imageInfo().colorSpace()) {
return Error::Nonfatal("Skipping tests that are only interesting in legacy mode.");
} else if (!runInLegacyMode && !canvas->imageInfo().colorSpace()) {
return Error::Nonfatal("Skipping tests that are only interesting in srgb mode.");
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
if (!encoded) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded.get()));
if (nullptr == codec.get()) {
return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str());
}
// Load the dst ICC profile. This particular dst is fairly similar to Adobe RGB.
sk_sp<SkData> dstData = SkData::MakeFromFileName(
GetResourcePath("icc_profiles/HP_ZR30w.icc").c_str());
if (!dstData) {
return "Cannot read monitor profile. Is the resource path set correctly?";
}
sk_sp<SkColorSpace> dstSpace = nullptr;
if (kDst_sRGB_Mode == fMode) {
dstSpace = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named);
} else if (kDst_HPZR30w_Mode == fMode) {
dstSpace = SkColorSpace::NewICC(dstData->data(), dstData->size());
}
SkImageInfo decodeInfo = codec->getInfo().makeColorType(fColorType).makeColorSpace(dstSpace);
if (kUnpremul_SkAlphaType == decodeInfo.alphaType()) {
decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType);
}
SkImageInfo bitmapInfo = decodeInfo;
if (kRGBA_8888_SkColorType == decodeInfo.colorType() ||
kBGRA_8888_SkColorType == decodeInfo.colorType())
{
bitmapInfo = bitmapInfo.makeColorType(kN32_SkColorType);
}
SkBitmap bitmap;
if (!bitmap.tryAllocPixels(bitmapInfo)) {
return SkStringPrintf("Image(%s) is too large (%d x %d)", fPath.c_str(),
bitmapInfo.width(), bitmapInfo.height());
}
size_t rowBytes = bitmap.rowBytes();
SkCodec::Result r = codec->getPixels(decodeInfo, bitmap.getPixels(), rowBytes);
if (SkCodec::kSuccess != r) {
return SkStringPrintf("Couldn't getPixels %s. Error code %d", fPath.c_str(), r);
}
switch (fMode) {
case kBaseline_Mode:
case kDst_sRGB_Mode:
case kDst_HPZR30w_Mode:
canvas->drawBitmap(bitmap, 0, 0);
break;
#if defined(SK_TEST_QCMS)
case kQCMS_HPZR30w_Mode: {
sk_sp<SkData> srcData = codec->getICCData();
if (!srcData) {
return Error::Nonfatal("No ICC profile data. Cannot test with QCMS.\n");
}
SkAutoTCallVProc<qcms_profile, qcms_profile_release>
srcSpace(qcms_profile_from_memory(srcData->data(), srcData->size()));
if (!srcSpace) {
return Error::Nonfatal(SkStringPrintf("QCMS cannot create profile for %s.\n",
fPath.c_str()));
}
SkAutoTCallVProc<qcms_profile, qcms_profile_release>
dstSpace(qcms_profile_from_memory(dstData->data(), dstData->size()));
SkASSERT(dstSpace);
// Optimizes conversion by precomputing the inverse transformation to dst. Also
// causes QCMS to use a completely different codepath. This is how Chrome uses QCMS.
qcms_profile_precache_output_transform(dstSpace);
SkAutoTCallVProc<qcms_transform, qcms_transform_release>
transform (qcms_transform_create(srcSpace, QCMS_DATA_RGBA_8, dstSpace,
QCMS_DATA_RGBA_8, QCMS_INTENT_PERCEPTUAL));
if (!transform) {
return SkStringPrintf("QCMS cannot create transform for %s.\n", fPath.c_str());
}
#ifdef SK_PMCOLOR_IS_RGBA
qcms_output_type outType = QCMS_OUTPUT_RGBX;
#else
qcms_output_type outType = QCMS_OUTPUT_BGRX;
#endif
// Perform color correction.
uint32_t* row = (uint32_t*) bitmap.getPixels();
for (int y = 0; y < decodeInfo.height(); y++) {
qcms_transform_data_type(transform, row, row, decodeInfo.width(), outType);
row = SkTAddOffset<uint32_t>(row, rowBytes);
}
canvas->drawBitmap(bitmap, 0, 0);
break;
}
#endif
default:
SkASSERT(false);
return "Invalid fMode";
}
return "";
}
SkISize ColorCodecSrc::size() const {
sk_sp<SkData> encoded(SkData::MakeFromFileName(fPath.c_str()));
SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded.get()));
if (nullptr == codec) {
return SkISize::Make(0, 0);
}
return SkISize::Make(codec->getInfo().width(), codec->getInfo().height());
}
Name ColorCodecSrc::name() const {
return SkOSPath::Basename(fPath.c_str());
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static const SkRect kSKPViewport = {0,0, 1000,1000};
SKPSrc::SKPSrc(Path path) : fPath(path) {}
Error SKPSrc::draw(SkCanvas* canvas) const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkStringPrintf("Couldn't read %s.", fPath.c_str());
}
sk_sp<SkPicture> pic(SkPicture::MakeFromStream(stream));
if (!pic) {
return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str());
}
stream.reset((SkStream*)nullptr); // Might as well drop this when we're done with it.
canvas->clipRect(kSKPViewport);
canvas->drawPicture(pic);
return "";
}
SkISize SKPSrc::size() const {
SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkISize::Make(0,0);
}
SkPictInfo info;
if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) {
return SkISize::Make(0,0);
}
SkRect viewport = kSKPViewport;
if (!viewport.intersect(info.fCullRect)) {
return SkISize::Make(0,0);
}
return viewport.roundOut().size();
}
Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
#if defined(SK_XML)
// Should we try to use the SVG intrinsic size instead?
static const SkSize kSVGSize = SkSize::Make(1000, 1000);
SVGSrc::SVGSrc(Path path) : fPath(path) {}
Error SVGSrc::draw(SkCanvas* canvas) const {
SkFILEStream stream(fPath.c_str());
if (!stream.isValid()) {
return SkStringPrintf("Unable to open file: %s", fPath.c_str());
}
sk_sp<SkSVGDOM> dom = SkSVGDOM::MakeFromStream(stream, kSVGSize);
if (!dom) {
return SkStringPrintf("Unable to parse file: %s", fPath.c_str());
}
dom->render(canvas);
return "";
}
SkISize SVGSrc::size() const {
return kSVGSize.toRound();
}
Name SVGSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
#endif // defined(SK_XML)
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
MSKPSrc::MSKPSrc(Path path) : fPath(path) {
std::unique_ptr<SkStreamAsset> stream(SkStream::NewFromFile(fPath.c_str()));
(void)fReader.init(stream.get());
}
int MSKPSrc::pageCount() const { return fReader.pageCount(); }
SkISize MSKPSrc::size() const { return this->size(0); }
SkISize MSKPSrc::size(int i) const { return fReader.pageSize(i).toCeil(); }
Error MSKPSrc::draw(SkCanvas* c) const { return this->draw(0, c); }
Error MSKPSrc::draw(int i, SkCanvas* canvas) const {
std::unique_ptr<SkStreamAsset> stream(SkStream::NewFromFile(fPath.c_str()));
if (!stream) {
return SkStringPrintf("Unable to open file: %s", fPath.c_str());
}
if (fReader.pageCount() == 0) {
return SkStringPrintf("Unable to parse MultiPictureDocument file: %s", fPath.c_str());
}
if (i >= fReader.pageCount()) {
return SkStringPrintf("MultiPictureDocument page number out of range: %d", i);
}
sk_sp<SkPicture> page = fReader.readPage(stream.get(), i);
if (!page) {
return SkStringPrintf("SkMultiPictureDocumentReader failed on page %d: %s",
i, fPath.c_str());
}
canvas->drawPicture(page);
return "";
}
Name MSKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); }
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const {
SkAutoTDelete<SkCanvas> canvas(SkCreateNullCanvas());
return src.draw(canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?");
GPUSink::GPUSink(GrContextFactory::ContextType ct,
GrContextFactory::ContextOptions options,
int samples,
bool diText,
SkColorType colorType,
sk_sp<SkColorSpace> colorSpace,
bool threaded)
: fContextType(ct)
, fContextOptions(options)
, fSampleCount(samples)
, fUseDIText(diText)
, fColorType(colorType)
, fColorSpace(std::move(colorSpace))
, fThreaded(threaded) {}
void PreAbandonGpuContextErrorHandler(SkError, void*) {}
DEFINE_bool(imm, false, "Run gpu configs in immediate mode.");
DEFINE_bool(batchClip, false, "Clip each GrBatch to its device bounds for testing.");
DEFINE_bool(batchBounds, false, "Draw a wireframe bounds of each GrBatch.");
DEFINE_int32(batchLookback, -1, "Maximum GrBatch lookback for combining, negative means default.");
DEFINE_int32(batchLookahead, -1, "Maximum GrBatch lookahead for combining, negative means "
"default.");
Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const {
GrContextOptions grOptions;
grOptions.fImmediateMode = FLAGS_imm;
grOptions.fClipBatchToBounds = FLAGS_batchClip;
grOptions.fDrawBatchBounds = FLAGS_batchBounds;
grOptions.fMaxBatchLookback = FLAGS_batchLookback;
grOptions.fMaxBatchLookahead = FLAGS_batchLookahead;
src.modifyGrContextOptions(&grOptions);
GrContextFactory factory(grOptions);
const SkISize size = src.size();
const SkImageInfo info =
SkImageInfo::Make(size.width(), size.height(), fColorType,
kPremul_SkAlphaType, fColorSpace);
#if SK_SUPPORT_GPU
GrContext* context = factory.getContextInfo(fContextType, fContextOptions).grContext();
const int maxDimension = context->caps()->maxTextureSize();
if (maxDimension < SkTMax(size.width(), size.height())) {
return Error::Nonfatal("Src too large to create a texture.\n");
}
#endif
auto surface(
NewGpuSurface(&factory, fContextType, fContextOptions, info, fSampleCount, fUseDIText));
if (!surface) {
return "Could not create a surface.";
}
if (FLAGS_preAbandonGpuContext) {
SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, nullptr);
factory.abandonContexts();
}
SkCanvas* canvas = surface->getCanvas();
Error err = src.draw(canvas);
if (!err.isEmpty()) {
return err;
}
canvas->flush();
if (FLAGS_gpuStats) {
canvas->getGrContext()->dumpCacheStats(log);
canvas->getGrContext()->dumpGpuStats(log);
}
dst->allocPixels(info);
canvas->readPixels(dst, 0, 0);
if (FLAGS_abandonGpuContext) {
factory.abandonContexts();
} else if (FLAGS_releaseAndAbandonGpuContext) {
factory.releaseResourcesAndAbandonContexts();
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) {
if (src.size().isEmpty()) {
return "Source has empty dimensions";
}
SkASSERT(doc);
int pageCount = src.pageCount();
for (int i = 0; i < pageCount; ++i) {
int width = src.size(i).width(), height = src.size(i).height();
SkCanvas* canvas =
doc->beginPage(SkIntToScalar(width), SkIntToScalar(height));
if (!canvas) {
return "SkDocument::beginPage(w,h) returned nullptr";
}
Error err = src.draw(i, canvas);
if (!err.isEmpty()) {
return err;
}
doc->endPage();
}
if (!doc->close()) {
return "SkDocument::close() returned false";
}
dst->flush();
return "";
}
Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkDocument::PDFMetadata metadata;
metadata.fTitle = src.name();
metadata.fSubject = "rendering correctness test";
metadata.fCreator = "Skia/DM";
sk_sp<SkDocument> doc = SkDocument::MakePDF(dst, SK_ScalarDefaultRasterDPI,
metadata, nullptr, fPDFA);
if (!doc) {
return "SkDocument::MakePDF() returned nullptr";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
XPSSink::XPSSink() {}
Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
sk_sp<SkDocument> doc(SkDocument::MakeXPS(dst));
if (!doc) {
return "SkDocument::MakeXPS() returned nullptr";
}
return draw_skdocument(src, doc.get(), dst);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SKPSink::SKPSink() {}
Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
SkSize size;
size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(size.width(), size.height()));
if (!err.isEmpty()) {
return err;
}
recorder.finishRecordingAsPicture()->serialize(dst);
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
SVGSink::SVGSink() {}
Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const {
#if defined(SK_XML)
SkAutoTDelete<SkXMLWriter> xmlWriter(new SkXMLStreamWriter(dst));
SkAutoTUnref<SkCanvas> canvas(SkSVGCanvas::Create(
SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())),
xmlWriter));
return src.draw(canvas);
#else
return Error("SVG sink is disabled.");
#endif // SK_XML
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
RasterSink::RasterSink(SkColorType colorType, sk_sp<SkColorSpace> colorSpace)
: fColorType(colorType)
, fColorSpace(std::move(colorSpace)) {}
Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const {
const SkISize size = src.size();
// If there's an appropriate alpha type for this color type, use it, otherwise use premul.
SkAlphaType alphaType = kPremul_SkAlphaType;
(void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType);
SkMallocPixelRef::ZeroedPRFactory factory;
dst->allocPixels(SkImageInfo::Make(size.width(), size.height(),
fColorType, alphaType, fColorSpace),
&factory,
nullptr/*colortable*/);
SkCanvas canvas(*dst);
return src.draw(&canvas);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(),
// passing the Sink draw() arguments, a size, and a function draws into an SkCanvas.
// Several examples below.
template <typename Fn>
static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log,
SkISize size, const Fn& draw) {
class ProxySrc : public Src {
public:
ProxySrc(SkISize size, const Fn& draw) : fSize(size), fDraw(draw) {}
Error draw(SkCanvas* canvas) const override { return fDraw(canvas); }
Name name() const override { return "ProxySrc"; }
SkISize size() const override { return fSize; }
private:
SkISize fSize;
const Fn& fDraw;
};
return sink->draw(ProxySrc(size, draw), bitmap, stream, log);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
DEFINE_bool(check, true, "If true, have most Via- modes fail if they affect the output.");
// Is *bitmap identical to what you get drawing src into sink?
static Error check_against_reference(const SkBitmap* bitmap, const Src& src, Sink* sink) {
// We can only check raster outputs.
// (Non-raster outputs like .pdf, .skp, .svg may differ but still draw identically.)
if (FLAGS_check && bitmap) {
SkBitmap reference;
SkString log;
SkDynamicMemoryWStream wStream;
Error err = sink->draw(src, &reference, &wStream, &log);
// If we can draw into this Sink via some pipeline, we should be able to draw directly.
SkASSERT(err.isEmpty());
if (!err.isEmpty()) {
return err;
}
// The dimensions are a property of the Src only, and so should be identical.
SkASSERT(reference.getSize() == bitmap->getSize());
if (reference.getSize() != bitmap->getSize()) {
return "Dimensions don't match reference";
}
// All SkBitmaps in DM are pre-locked and tight, so this comparison is easy.
if (0 != memcmp(reference.getPixels(), bitmap->getPixels(), reference.getSize())) {
return "Pixels don't match reference";
}
}
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) {
SkRect bounds = SkRect::MakeIWH(srcW, srcH);
matrix->mapRect(&bounds);
matrix->postTranslate(-bounds.x(), -bounds.y());
return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height()));
}
ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
SkMatrix matrix = fMatrix;
SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height());
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->concat(matrix);
return src.draw(canvas);
});
}
// Undoes any flip or 90 degree rotate without changing the scale of the bitmap.
// This should be pixel-preserving.
ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {}
Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
Error err = fSink->draw(src, bitmap, stream, log);
if (!err.isEmpty()) {
return err;
}
SkMatrix inverse;
if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) {
return "Cannot upright --matrix.";
}
SkMatrix upright = SkMatrix::I();
upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX()));
upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY()));
upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX()));
upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY()));
SkBitmap uprighted;
SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height());
uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height()));
SkCanvas canvas(uprighted);
canvas.concat(upright);
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
canvas.drawBitmap(*bitmap, 0, 0, &paint);
*bitmap = uprighted;
bitmap->lockPixels();
return "";
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaSerialization::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
// Record our Src into a picture.
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());
// Serialize it and then deserialize it.
SkDynamicMemoryWStream wStream;
pic->serialize(&wStream);
SkAutoTDelete<SkStream> rStream(wStream.detachAsStream());
sk_sp<SkPicture> deserialized(SkPicture::MakeFromStream(rStream));
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) {
canvas->drawPicture(deserialized);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink)
: Via(sink)
, fW(w)
, fH(h)
, fFactory(factory) {}
Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
SkPictureRecorder recorder;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()),
fFactory.get()));
if (!err.isEmpty()) {
return err;
}
sk_sp<SkPicture> pic(recorder.finishRecordingAsPicture());
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) {
const int xTiles = (size.width() + fW - 1) / fW,
yTiles = (size.height() + fH - 1) / fH;
SkMultiPictureDraw mpd(xTiles*yTiles);
SkTArray<sk_sp<SkSurface>> surfaces;
// surfaces.setReserve(xTiles*yTiles);
SkImageInfo info = canvas->imageInfo().makeWH(fW, fH);
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
// This lets our ultimate Sink determine the best kind of surface.
// E.g., if it's a GpuSink, the surfaces and images are textures.
auto s = canvas->makeSurface(info);
if (!s) {
s = SkSurface::MakeRaster(info); // Some canvases can't create surfaces.
}
surfaces.push_back(s);
SkCanvas* c = s->getCanvas();
c->translate(SkIntToScalar(-i * fW),
SkIntToScalar(-j * fH)); // Line up the canvas with this tile.
mpd.add(c, pic.get());
}
}
mpd.draw();
for (int j = 0; j < yTiles; j++) {
for (int i = 0; i < xTiles; i++) {
sk_sp<SkImage> image(surfaces[i+xTiles*j]->makeImageSnapshot());
canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH));
}
}
return "";
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaPicture::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkPictureRecorder recorder;
sk_sp<SkPicture> pic;
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
pic = recorder.finishRecordingAsPicture();
canvas->drawPicture(pic);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaDefer::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkDeferredCanvas deferred(canvas);
return src.draw(&deferred);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src into two pictures, then draw the second picture into the wrapped Sink.
// This tests that any shortcuts we may take while recording that second picture are legal.
Error ViaSecondPicture::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
SkPictureRecorder recorder;
sk_sp<SkPicture> pic;
for (int i = 0; i < 2; i++) {
Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height())));
if (!err.isEmpty()) {
return err;
}
pic = recorder.finishRecordingAsPicture();
}
canvas->drawPicture(pic);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// Draw the Src twice. This can help exercise caching.
Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error {
for (int i = 0; i < 2; i++) {
SkAutoCanvasRestore acr(canvas, true/*save now*/);
canvas->clear(SK_ColorTRANSPARENT);
Error err = src.draw(canvas);
if (err.isEmpty()) {
return err;
}
}
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
// This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas.
// Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op.
// This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures.
struct DrawsAsSingletonPictures {
SkCanvas* fCanvas;
const SkDrawableList& fDrawables;
SkRect fBounds;
template <typename T>
void draw(const T& op, SkCanvas* canvas) {
// We must pass SkMatrix::I() as our initial matrix.
// By default SkRecords::Draw() uses the canvas' matrix as its initial matrix,
// which would have the funky effect of applying transforms over and over.
SkRecords::Draw d(canvas, nullptr, fDrawables.begin(), fDrawables.count(), &SkMatrix::I());
d(op);
}
// Draws get their own picture.
template <typename T>
SK_WHEN(T::kTags & SkRecords::kDraw_Tag, void) operator()(const T& op) {
SkPictureRecorder rec;
this->draw(op, rec.beginRecording(fBounds));
sk_sp<SkPicture> pic(rec.finishRecordingAsPicture());
fCanvas->drawPicture(pic);
}
// We'll just issue non-draws directly.
template <typename T>
skstd::enable_if_t<!(T::kTags & SkRecords::kDraw_Tag), void> operator()(const T& op) {
this->draw(op, fCanvas);
}
};
// Record Src into a picture, then record it into a macro picture with a sub-picture for each draw.
// Then play back that macro picture into our wrapped sink.
Error ViaSingletonPictures::draw(
const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
// Use low-level (Skia-private) recording APIs so we can read the SkRecord.
SkRecord skr;
SkRecorder recorder(&skr, size.width(), size.height());
Error err = src.draw(&recorder);
if (!err.isEmpty()) {
return err;
}
// Record our macro-picture, with each draw op as its own sub-picture.
SkPictureRecorder macroRec;
SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()),
SkIntToScalar(size.height()));
SkAutoTDelete<SkDrawableList> drawables(recorder.detachDrawableList());
const SkDrawableList empty;
DrawsAsSingletonPictures drawsAsSingletonPictures = {
macroCanvas,
drawables ? *drawables : empty,
SkRect::MakeWH((SkScalar)size.width(), (SkScalar)size.height()),
};
for (int i = 0; i < skr.count(); i++) {
skr.visit(i, drawsAsSingletonPictures);
}
sk_sp<SkPicture> macroPic(macroRec.finishRecordingAsPicture());
canvas->drawPicture(macroPic);
return check_against_reference(bitmap, src, fSink);
});
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
Error ViaLite::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const {
auto size = src.size();
SkRect bounds = {0,0, (SkScalar)size.width(), (SkScalar)size.height()};
return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error {
sk_sp<SkLiteDL> dl = SkLiteDL::New(bounds);
SkLiteRecorder rec;
rec.reset(dl.get());
Error err = src.draw(&rec);
if (!err.isEmpty()) {
return err;
}
dl->draw(canvas);
return check_against_reference(bitmap, src, fSink);
});
}
} // namespace DM