blob: b332c7d2cfe875d15a414627494551e0b7a546a7 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrDistanceFieldTextureEffect.h"
#include "gl/GrGLEffect.h"
#include "gl/GrGLSL.h"
#include "gl/GrGLTexture.h"
#include "gl/GrGLVertexEffect.h"
#include "GrTBackendEffectFactory.h"
#include "GrTexture.h"
#include "SkDistanceFieldGen.h"
class GrGLDistanceFieldTextureEffect : public GrGLVertexEffect {
public:
GrGLDistanceFieldTextureEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect& drawEffect)
: INHERITED (factory)
, fTextureSize(SkISize::Make(-1,-1)) {}
virtual void emitCode(GrGLFullShaderBuilder* builder,
const GrDrawEffect& drawEffect,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) SK_OVERRIDE {
SkASSERT(1 == drawEffect.castEffect<GrDistanceFieldTextureEffect>().numVertexAttribs());
SkAssertResult(builder->enableFeature(GrGLShaderBuilder::kStandardDerivatives_GLSLFeature));
const GrDistanceFieldTextureEffect& dfTexEffect =
drawEffect.castEffect<GrDistanceFieldTextureEffect>();
SkString fsCoordName;
const char* vsCoordName;
const char* fsCoordNamePtr;
builder->addVarying(kVec2f_GrSLType, "textureCoords", &vsCoordName, &fsCoordNamePtr);
fsCoordName = fsCoordNamePtr;
const char* attrName0 =
builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0])->c_str();
builder->vsCodeAppendf("\t%s = %s;\n", vsCoordName, attrName0);
const char* textureSizeUniName = NULL;
fTextureSizeUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec2f_GrSLType, "TextureSize",
&textureSizeUniName);
builder->fsCodeAppend("\tvec4 texColor = ");
builder->fsAppendTextureLookup(samplers[0],
fsCoordName.c_str(),
kVec2f_GrSLType);
builder->fsCodeAppend(";\n");
builder->fsCodeAppend("\tfloat distance = "
SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");\n");
// we adjust for the effect of the transformation on the distance by using
// the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
builder->fsCodeAppendf("\tvec2 uv = %s;\n", fsCoordName.c_str());
builder->fsCodeAppendf("\tvec2 st = uv*%s;\n", textureSizeUniName);
builder->fsCodeAppend("\tfloat afwidth;\n");
if (dfTexEffect.isSimilarity()) {
// this gives us a smooth step across approximately one fragment
// (assuming a radius of the diagonal of the fragment, hence a factor of sqrt(2)/2)
builder->fsCodeAppend("\tafwidth = 0.7071*dFdx(st.x);\n");
} else {
builder->fsCodeAppend("\tvec2 Jdx = dFdx(st);\n");
builder->fsCodeAppend("\tvec2 Jdy = dFdy(st);\n");
builder->fsCodeAppend("\tvec2 uv_grad;\n");
if (builder->ctxInfo().caps()->dropsTileOnZeroDivide()) {
// this is to compensate for the Adreno, which likes to drop tiles on division by 0
builder->fsCodeAppend("\tfloat uv_len2 = dot(uv, uv);\n");
builder->fsCodeAppend("\tif (uv_len2 < 0.0001) {\n");
builder->fsCodeAppend("\t\tuv_grad = vec2(0.7071, 0.7071);\n");
builder->fsCodeAppend("\t} else {\n");
builder->fsCodeAppend("\t\tuv_grad = uv*inversesqrt(uv_len2);\n");
builder->fsCodeAppend("\t}\n");
} else {
builder->fsCodeAppend("\tuv_grad = normalize(uv);\n");
}
builder->fsCodeAppend("\tvec2 grad = vec2(uv_grad.x*Jdx.x + uv_grad.y*Jdy.x,\n");
builder->fsCodeAppend("\t uv_grad.x*Jdx.y + uv_grad.y*Jdy.y);\n");
// this gives us a smooth step across approximately one fragment
// (assuming a radius of the diagonal of the fragment, hence a factor of sqrt(2)/2)
builder->fsCodeAppend("\tafwidth = 0.7071*length(grad);\n");
}
builder->fsCodeAppend("\tfloat val = smoothstep(-afwidth, afwidth, distance);\n");
builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr1("val")).c_str());
}
virtual void setData(const GrGLUniformManager& uman,
const GrDrawEffect& drawEffect) SK_OVERRIDE {
SkASSERT(fTextureSizeUni.isValid());
GrTexture* texture = drawEffect.effect()->get()->texture(0);
if (texture->width() != fTextureSize.width() ||
texture->height() != fTextureSize.height()) {
fTextureSize = SkISize::Make(texture->width(), texture->height());
uman.set2f(fTextureSizeUni,
SkIntToScalar(fTextureSize.width()),
SkIntToScalar(fTextureSize.height()));
}
}
static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
const GrDistanceFieldTextureEffect& dfTexEffect =
drawEffect.castEffect<GrDistanceFieldTextureEffect>();
return dfTexEffect.isSimilarity() ? 0x1 : 0x0;
}
private:
GrGLUniformManager::UniformHandle fTextureSizeUni;
SkISize fTextureSize;
typedef GrGLVertexEffect INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
GrDistanceFieldTextureEffect::GrDistanceFieldTextureEffect(GrTexture* texture,
const GrTextureParams& params,
bool similarity)
: fTextureAccess(texture, params)
, fIsSimilarity(similarity) {
this->addTextureAccess(&fTextureAccess);
this->addVertexAttrib(kVec2f_GrSLType);
}
bool GrDistanceFieldTextureEffect::onIsEqual(const GrEffect& other) const {
const GrDistanceFieldTextureEffect& cte = CastEffect<GrDistanceFieldTextureEffect>(other);
return fTextureAccess == cte.fTextureAccess;
}
void GrDistanceFieldTextureEffect::getConstantColorComponents(GrColor* color,
uint32_t* validFlags) const {
if ((*validFlags & kA_GrColorComponentFlag) && 0xFF == GrColorUnpackA(*color) &&
GrPixelConfigIsOpaque(this->texture(0)->config())) {
*validFlags = kA_GrColorComponentFlag;
} else {
*validFlags = 0;
}
}
const GrBackendEffectFactory& GrDistanceFieldTextureEffect::getFactory() const {
return GrTBackendEffectFactory<GrDistanceFieldTextureEffect>::getInstance();
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_EFFECT_TEST(GrDistanceFieldTextureEffect);
GrEffectRef* GrDistanceFieldTextureEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx :
GrEffectUnitTest::kAlphaTextureIdx;
static const SkShader::TileMode kTileModes[] = {
SkShader::kClamp_TileMode,
SkShader::kRepeat_TileMode,
SkShader::kMirror_TileMode,
};
SkShader::TileMode tileModes[] = {
kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))],
kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))],
};
GrTextureParams params(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode :
GrTextureParams::kNone_FilterMode);
return GrDistanceFieldTextureEffect::Create(textures[texIdx], params,
random->nextBool());
}
///////////////////////////////////////////////////////////////////////////////
class GrGLDistanceFieldLCDTextureEffect : public GrGLVertexEffect {
public:
GrGLDistanceFieldLCDTextureEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect& drawEffect)
: INHERITED (factory)
, fTextureSize(SkISize::Make(-1,-1)) {}
virtual void emitCode(GrGLFullShaderBuilder* builder,
const GrDrawEffect& drawEffect,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray& samplers) SK_OVERRIDE {
SkASSERT(1 == drawEffect.castEffect<GrDistanceFieldLCDTextureEffect>().numVertexAttribs());
SkAssertResult(builder->enableFeature(GrGLShaderBuilder::kStandardDerivatives_GLSLFeature));
const GrDistanceFieldLCDTextureEffect& dfTexEffect =
drawEffect.castEffect<GrDistanceFieldLCDTextureEffect>();
SkString fsCoordName;
const char* vsCoordName;
const char* fsCoordNamePtr;
builder->addVarying(kVec2f_GrSLType, "textureCoords", &vsCoordName, &fsCoordNamePtr);
fsCoordName = fsCoordNamePtr;
const char* attrName0 =
builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0])->c_str();
builder->vsCodeAppendf("\t%s = %s;\n", vsCoordName, attrName0);
const char* textureSizeUniName = NULL;
// width, height, 1/(3*width)
fTextureSizeUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec3f_GrSLType, "TextureSize",
&textureSizeUniName);
// create LCD offset adjusted by inverse of transform
builder->fsCodeAppendf("\tvec2 uv = %s;\n", fsCoordName.c_str());
builder->fsCodeAppendf("\tvec2 st = uv*%s.xy;\n", textureSizeUniName);
if (dfTexEffect.isUniformScale()) {
builder->fsCodeAppend("\tfloat dx = dFdx(st.x);\n");
builder->fsCodeAppendf("\tvec2 offset = vec2(dx*%s.z, 0.0);\n", textureSizeUniName);
} else {
builder->fsCodeAppend("\tvec2 Jdx = dFdx(st);\n");
builder->fsCodeAppend("\tvec2 Jdy = dFdy(st);\n");
builder->fsCodeAppendf("\tvec2 offset = %s.z*Jdx;\n", textureSizeUniName);
}
// green is distance to uv center
builder->fsCodeAppend("\tvec4 texColor = ");
builder->fsAppendTextureLookup(samplers[0], "uv", kVec2f_GrSLType);
builder->fsCodeAppend(";\n");
builder->fsCodeAppend("\tvec3 distance;\n");
builder->fsCodeAppend("\tdistance.y = "
SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");\n");
// red is distance to left offset
builder->fsCodeAppend("\tvec2 uv_adjusted = uv - offset;\n");
builder->fsCodeAppend("\ttexColor = ");
builder->fsAppendTextureLookup(samplers[0], "uv_adjusted", kVec2f_GrSLType);
builder->fsCodeAppend(";\n");
builder->fsCodeAppend("\tdistance.x = "
SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");\n");
// blue is distance to right offset
builder->fsCodeAppend("\tuv_adjusted = uv + offset;\n");
builder->fsCodeAppend("\ttexColor = ");
builder->fsAppendTextureLookup(samplers[0], "uv_adjusted", kVec2f_GrSLType);
builder->fsCodeAppend(";\n");
builder->fsCodeAppend("\tdistance.z = "
SK_DistanceFieldMultiplier "*(texColor.r - " SK_DistanceFieldThreshold ");\n");
// we adjust for the effect of the transformation on the distance by using
// the length of the gradient of the texture coordinates. We use st coordinates
// to ensure we're mapping 1:1 from texel space to pixel space.
// To be strictly correct, we should compute the anti-aliasing factor separately
// for each color component. However, this is only important when using perspective
// transformations, and even then using a single factor seems like a reasonable
// trade-off between quality and speed.
builder->fsCodeAppend("\tfloat afwidth;\n");
if (dfTexEffect.isUniformScale()) {
// this gives us a smooth step across approximately one fragment
// (assuming a radius of the diagonal of the fragment, hence a factor of sqrt(2)/2)
builder->fsCodeAppend("\tafwidth = 0.7071*dx;\n");
} else {
builder->fsCodeAppend("\tvec2 uv_grad;\n");
if (builder->ctxInfo().caps()->dropsTileOnZeroDivide()) {
// this is to compensate for the Adreno, which likes to drop tiles on division by 0
builder->fsCodeAppend("\tfloat uv_len2 = dot(uv, uv);\n");
builder->fsCodeAppend("\tif (uv_len2 < 0.0001) {\n");
builder->fsCodeAppend("\t\tuv_grad = vec2(0.7071, 0.7071);\n");
builder->fsCodeAppend("\t} else {\n");
builder->fsCodeAppend("\t\tuv_grad = uv*inversesqrt(uv_len2);\n");
builder->fsCodeAppend("\t}\n");
} else {
builder->fsCodeAppend("\tuv_grad = normalize(uv);\n");
}
builder->fsCodeAppend("\tvec2 grad = vec2(uv_grad.x*Jdx.x + uv_grad.y*Jdy.x,\n");
builder->fsCodeAppend("\t uv_grad.x*Jdx.y + uv_grad.y*Jdy.y);\n");
// this gives us a smooth step across approximately one fragment
// (assuming a radius of the diagonal of the fragment, hence a factor of sqrt(2)/2)
builder->fsCodeAppend("\tafwidth = 0.7071*length(grad);\n");
}
builder->fsCodeAppend("\tvec4 val = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);\n");
builder->fsCodeAppendf("\t%s = %s;\n", outputColor,
(GrGLSLExpr4(inputColor) * GrGLSLExpr4("val")).c_str());
}
virtual void setData(const GrGLUniformManager& uman,
const GrDrawEffect& drawEffect) SK_OVERRIDE {
SkASSERT(fTextureSizeUni.isValid());
GrTexture* texture = drawEffect.effect()->get()->texture(0);
if (texture->width() != fTextureSize.width() ||
texture->height() != fTextureSize.height()) {
const GrDistanceFieldLCDTextureEffect& dfTexEffect =
drawEffect.castEffect<GrDistanceFieldLCDTextureEffect>();
fTextureSize = SkISize::Make(texture->width(), texture->height());
float delta = 1.0f/(3.0f*texture->width());
if (dfTexEffect.useBGR()) {
delta = -delta;
}
uman.set3f(fTextureSizeUni,
SkIntToScalar(fTextureSize.width()),
SkIntToScalar(fTextureSize.height()),
delta);
}
}
static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
const GrDistanceFieldLCDTextureEffect& dfTexEffect =
drawEffect.castEffect<GrDistanceFieldLCDTextureEffect>();
int uniformScale = dfTexEffect.isUniformScale() ? 0x01 : 0x00;
int useBGR = dfTexEffect.useBGR() ? 0x10 : 0x00;
return uniformScale | useBGR;
}
private:
GrGLUniformManager::UniformHandle fTextureSizeUni;
SkISize fTextureSize;
typedef GrGLVertexEffect INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
GrDistanceFieldLCDTextureEffect::GrDistanceFieldLCDTextureEffect(GrTexture* texture,
const GrTextureParams& params,
bool uniformScale,
bool useBGR)
: fTextureAccess(texture, params)
, fUniformScale(uniformScale)
, fUseBGR(useBGR) {
this->addTextureAccess(&fTextureAccess);
this->addVertexAttrib(kVec2f_GrSLType);
}
bool GrDistanceFieldLCDTextureEffect::onIsEqual(const GrEffect& other) const {
const GrDistanceFieldLCDTextureEffect& cte = CastEffect<GrDistanceFieldLCDTextureEffect>(other);
return fTextureAccess == cte.fTextureAccess;
}
void GrDistanceFieldLCDTextureEffect::getConstantColorComponents(GrColor* color,
uint32_t* validFlags) const {
if ((*validFlags & kA_GrColorComponentFlag) && 0xFF == GrColorUnpackA(*color) &&
GrPixelConfigIsOpaque(this->texture(0)->config())) {
*validFlags = kA_GrColorComponentFlag;
} else {
*validFlags = 0;
}
}
const GrBackendEffectFactory& GrDistanceFieldLCDTextureEffect::getFactory() const {
return GrTBackendEffectFactory<GrDistanceFieldLCDTextureEffect>::getInstance();
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_EFFECT_TEST(GrDistanceFieldLCDTextureEffect);
GrEffectRef* GrDistanceFieldLCDTextureEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx :
GrEffectUnitTest::kAlphaTextureIdx;
static const SkShader::TileMode kTileModes[] = {
SkShader::kClamp_TileMode,
SkShader::kRepeat_TileMode,
SkShader::kMirror_TileMode,
};
SkShader::TileMode tileModes[] = {
kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))],
kTileModes[random->nextULessThan(SK_ARRAY_COUNT(kTileModes))],
};
GrTextureParams params(tileModes, random->nextBool() ? GrTextureParams::kBilerp_FilterMode :
GrTextureParams::kNone_FilterMode);
return GrDistanceFieldLCDTextureEffect::Create(textures[texIdx], params,
random->nextBool(), random->nextBool());
}