blob: 4e96bcf27bc1a1d3cf940e604cd8b12988dbe09c [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/gpu/GrContext.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrOpFlushState.h"
#include "src/gpu/GrRenderTargetOpList.h"
#include "src/gpu/ops/GrOp.h"
#include "tests/Test.h"
// We create Ops that write a value into a range of a buffer. We create ranges from
// kNumOpPositions starting positions x kRanges canonical ranges. We repeat each range kNumRepeats
// times (with a different value written by each of the repeats).
namespace {
struct Range {
unsigned fOffset;
unsigned fLength;
};
static constexpr int kNumOpPositions = 4;
static constexpr Range kRanges[] = {{0, 4,}, {1, 2}};
static constexpr int kNumRanges = (int)SK_ARRAY_COUNT(kRanges);
static constexpr int kNumRepeats = 2;
static constexpr int kNumOps = kNumRepeats * kNumOpPositions * kNumRanges;
static constexpr uint64_t fact(int n) {
assert(n > 0);
return n > 1 ? n * fact(n - 1) : 1;
}
// How wide should our result buffer be to hold values written by the ranges of the ops.
static constexpr unsigned result_width() {
unsigned maxLength = 0;
for (size_t i = 0; i < kNumRanges; ++i) {
maxLength = maxLength > kRanges[i].fLength ? maxLength : kRanges[i].fLength;
}
return kNumOpPositions + maxLength - 1;
}
// Number of possible allowable binary chainings among the kNumOps ops.
static constexpr int kNumCombinableValues = fact(kNumOps) / fact(kNumOps - 2);
using Combinable = std::array<GrOp::CombineResult, kNumCombinableValues>;
/**
* The index in Combinable for the result for combining op 'b' into op 'a', i.e. the result of
* op[a]->combineIfPossible(op[b]).
*/
int64_t combinable_index(int a, int b) {
SkASSERT(b != a);
// Each index gets kNumOps - 1 contiguous bools
int64_t aOffset = a * (kNumOps - 1);
// Within a's range we have one value each other op, but not one for a itself.
int64_t bIdxInA = b < a ? b : b - 1;
return aOffset + bIdxInA;
}
/**
* Creates a legal set of combinability results for the ops. The likelihood that any two ops
* in a group can merge is randomly chosen.
*/
static void init_combinable(int numGroups, Combinable* combinable, SkRandom* random) {
SkScalar mergeProbability = random->nextUScalar1();
std::fill_n(combinable->begin(), kNumCombinableValues, GrOp::CombineResult::kCannotCombine);
SkTDArray<int> groups[kNumOps];
for (int i = 0; i < kNumOps; ++i) {
auto& group = groups[random->nextULessThan(numGroups)];
for (int g = 0; g < group.count(); ++g) {
int j = group[g];
if (random->nextUScalar1() < mergeProbability) {
(*combinable)[combinable_index(i, j)] = GrOp::CombineResult::kMerged;
} else {
(*combinable)[combinable_index(i, j)] = GrOp::CombineResult::kMayChain;
}
if (random->nextUScalar1() < mergeProbability) {
(*combinable)[combinable_index(j, i)] = GrOp::CombineResult::kMerged;
} else {
(*combinable)[combinable_index(j, i)] = GrOp::CombineResult::kMayChain;
}
}
group.push_back(i);
}
}
/**
* A simple test op. It has an integer position, p. When it executes it writes p into an array
* of ints at index p and p+1. It takes a bitfield that indicates allowed pair-wise chainings.
*/
class TestOp : public GrOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<TestOp> Make(GrContext* context, int value, const Range& range,
int result[], const Combinable* combinable) {
GrOpMemoryPool* pool = context->priv().opMemoryPool();
return pool->allocate<TestOp>(value, range, result, combinable);
}
const char* name() const override { return "TestOp"; }
void writeResult(int result[]) const {
for (const auto& op : ChainRange<TestOp>(this)) {
for (const auto& vr : op.fValueRanges) {
for (unsigned i = 0; i < vr.fRange.fLength; ++i) {
result[vr.fRange.fOffset + i] = vr.fValue;
}
}
}
}
private:
friend class ::GrOpMemoryPool; // for ctor
TestOp(int value, const Range& range, int result[], const Combinable* combinable)
: INHERITED(ClassID()), fResult(result), fCombinable(combinable) {
fValueRanges.push_back({value, range});
this->setBounds(SkRect::MakeXYWH(range.fOffset, 0, range.fOffset + range.fLength, 1),
HasAABloat::kNo, IsZeroArea::kNo);
}
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*, const SkRect& chainBounds) override {
for (auto& op : ChainRange<TestOp>(this)) {
op.writeResult(fResult);
}
}
CombineResult onCombineIfPossible(GrOp* t, const GrCaps&) override {
auto that = t->cast<TestOp>();
int v0 = fValueRanges[0].fValue;
int v1 = that->fValueRanges[0].fValue;
auto result = (*fCombinable)[combinable_index(v0, v1)];
if (result == GrOp::CombineResult::kMerged) {
std::move(that->fValueRanges.begin(), that->fValueRanges.end(),
std::back_inserter(fValueRanges));
}
return result;
}
struct ValueRange {
int fValue;
Range fRange;
};
std::vector<ValueRange> fValueRanges;
int* fResult;
const Combinable* fCombinable;
typedef GrOp INHERITED;
};
} // namespace
/**
* Tests adding kNumOps to an op list with all possible allowed chaining configurations. Tests
* adding the ops in all possible orders and verifies that the chained executions don't violate
* painter's order.
*/
DEF_GPUTEST(OpChainTest, reporter, /*ctxInfo*/) {
auto context = GrContext::MakeMock(nullptr);
SkASSERT(context);
GrSurfaceDesc desc;
desc.fConfig = kRGBA_8888_GrPixelConfig;
desc.fWidth = kNumOps + 1;
desc.fHeight = 1;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
const GrBackendFormat format =
context->priv().caps()->getBackendFormatFromColorType(GrColorType::kRGBA_8888);
auto proxy = context->priv().proxyProvider()->createProxy(
format, desc, kTopLeft_GrSurfaceOrigin, GrMipMapped::kNo, SkBackingFit::kExact,
SkBudgeted::kNo, GrInternalSurfaceFlags::kNone);
SkASSERT(proxy);
proxy->instantiate(context->priv().resourceProvider());
int result[result_width()];
int validResult[result_width()];
int permutation[kNumOps];
for (int i = 0; i < kNumOps; ++i) {
permutation[i] = i;
}
// Op order permutations.
static constexpr int kNumPermutations = 100;
// For a given number of chainability groups, this is the number of random combinability reuslts
// we will test.
static constexpr int kNumCombinabilitiesPerGrouping = 20;
SkRandom random;
bool repeat = false;
Combinable combinable;
for (int p = 0; p < kNumPermutations; ++p) {
for (int i = 0; i < kNumOps - 2 && !repeat; ++i) {
// The current implementation of nextULessThan() is biased. :(
unsigned j = i + random.nextULessThan(kNumOps - i);
std::swap(permutation[i], permutation[j]);
}
// g is the number of chainable groups that we partition the ops into.
for (int g = 1; g < kNumOps; ++g) {
for (int c = 0; c < kNumCombinabilitiesPerGrouping; ++c) {
init_combinable(g, &combinable, &random);
GrTokenTracker tracker;
GrOpFlushState flushState(context->priv().getGpu(),
context->priv().resourceProvider(),
&tracker);
GrRenderTargetOpList opList(sk_ref_sp(context->priv().opMemoryPool()),
sk_ref_sp(proxy->asRenderTargetProxy()),
context->priv().auditTrail());
// This assumes the particular values of kRanges.
std::fill_n(result, result_width(), -1);
std::fill_n(validResult, result_width(), -1);
for (int i = 0; i < kNumOps; ++i) {
int value = permutation[i];
// factor out the repeats and then use the canonical starting position and range
// to determine an actual range.
int j = value % (kNumRanges * kNumOpPositions);
int pos = j % kNumOpPositions;
Range range = kRanges[j / kNumOpPositions];
range.fOffset += pos;
auto op = TestOp::Make(context.get(), value, range, result, &combinable);
op->writeResult(validResult);
opList.addOp(std::move(op), *context->priv().caps());
}
opList.makeClosed(*context->priv().caps());
opList.prepare(&flushState);
opList.execute(&flushState);
opList.endFlush();
#if 0 // Useful to repeat a random configuration that fails the test while debugger attached.
if (!std::equal(result, result + result_width(), validResult)) {
repeat = true;
}
#endif
(void)repeat;
REPORTER_ASSERT(reporter, std::equal(result, result + result_width(), validResult));
}
}
}
}