| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGpuDevice.h" |
| |
| #include "effects/GrTextureDomainEffect.h" |
| |
| #include "GrContext.h" |
| #include "GrTextContext.h" |
| |
| #include "SkGrTexturePixelRef.h" |
| |
| #include "SkColorFilter.h" |
| #include "SkDeviceImageFilterProxy.h" |
| #include "SkDrawProcs.h" |
| #include "SkGlyphCache.h" |
| #include "SkImageFilter.h" |
| #include "SkPathEffect.h" |
| #include "SkStroke.h" |
| #include "SkUtils.h" |
| |
| #define CACHE_COMPATIBLE_DEVICE_TEXTURES 1 |
| |
| #if 0 |
| extern bool (*gShouldDrawProc)(); |
| #define CHECK_SHOULD_DRAW(draw, forceI) \ |
| do { \ |
| if (gShouldDrawProc && !gShouldDrawProc()) return; \ |
| this->prepareDraw(draw, forceI); \ |
| } while (0) |
| #else |
| #define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI) |
| #endif |
| |
| // we use the same texture slot on GrPaint for bitmaps and shaders |
| // (since drawBitmap, drawSprite, and drawDevice ignore skia's shader) |
| enum { |
| kBitmapTextureIdx = 0, |
| kShaderTextureIdx = 0, |
| kColorFilterTextureIdx = 1 |
| }; |
| |
| #define MAX_BLUR_SIGMA 4.0f |
| // FIXME: This value comes from from SkBlurMaskFilter.cpp. |
| // Should probably be put in a common header someplace. |
| #define MAX_BLUR_RADIUS SkIntToScalar(128) |
| // This constant approximates the scaling done in the software path's |
| // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). |
| // IMHO, it actually should be 1: we blur "less" than we should do |
| // according to the CSS and canvas specs, simply because Safari does the same. |
| // Firefox used to do the same too, until 4.0 where they fixed it. So at some |
| // point we should probably get rid of these scaling constants and rebaseline |
| // all the blur tests. |
| #define BLUR_SIGMA_SCALE 0.6f |
| // This constant represents the screen alignment criterion in texels for |
| // requiring texture domain clamping to prevent color bleeding when drawing |
| // a sub region of a larger source image. |
| #define COLOR_BLEED_TOLERANCE SkFloatToScalar(0.001f) |
| |
| #define DO_DEFERRED_CLEAR() \ |
| do { \ |
| if (fNeedClear) { \ |
| this->clear(SK_ColorTRANSPARENT); \ |
| } \ |
| } while (false) \ |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define CHECK_FOR_NODRAW_ANNOTATION(paint) \ |
| do { if (paint.isNoDrawAnnotation()) { return; } } while (0) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| |
| class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable { |
| public: |
| SkAutoCachedTexture() |
| : fDevice(NULL) |
| , fTexture(NULL) { |
| } |
| |
| SkAutoCachedTexture(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrTextureParams* params, |
| GrTexture** texture) |
| : fDevice(NULL) |
| , fTexture(NULL) { |
| GrAssert(NULL != texture); |
| *texture = this->set(device, bitmap, params); |
| } |
| |
| ~SkAutoCachedTexture() { |
| if (NULL != fTexture) { |
| GrUnlockCachedBitmapTexture(fTexture); |
| } |
| } |
| |
| GrTexture* set(SkGpuDevice* device, |
| const SkBitmap& bitmap, |
| const GrTextureParams* params) { |
| if (NULL != fTexture) { |
| GrUnlockCachedBitmapTexture(fTexture); |
| fTexture = NULL; |
| } |
| fDevice = device; |
| GrTexture* result = (GrTexture*)bitmap.getTexture(); |
| if (NULL == result) { |
| // Cannot return the native texture so look it up in our cache |
| fTexture = GrLockCachedBitmapTexture(device->context(), bitmap, params); |
| result = fTexture; |
| } |
| return result; |
| } |
| |
| private: |
| SkGpuDevice* fDevice; |
| GrTexture* fTexture; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct GrSkDrawProcs : public SkDrawProcs { |
| public: |
| GrContext* fContext; |
| GrTextContext* fTextContext; |
| GrFontScaler* fFontScaler; // cached in the skia glyphcache |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) { |
| switch (config) { |
| case kAlpha_8_GrPixelConfig: |
| *isOpaque = false; |
| return SkBitmap::kA8_Config; |
| case kRGB_565_GrPixelConfig: |
| *isOpaque = true; |
| return SkBitmap::kRGB_565_Config; |
| case kRGBA_4444_GrPixelConfig: |
| *isOpaque = false; |
| return SkBitmap::kARGB_4444_Config; |
| case kSkia8888_PM_GrPixelConfig: |
| // we don't currently have a way of knowing whether |
| // a 8888 is opaque based on the config. |
| *isOpaque = false; |
| return SkBitmap::kARGB_8888_Config; |
| default: |
| *isOpaque = false; |
| return SkBitmap::kNo_Config; |
| } |
| } |
| |
| static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) { |
| GrPixelConfig config = renderTarget->config(); |
| |
| bool isOpaque; |
| SkBitmap bitmap; |
| bitmap.setConfig(grConfig2skConfig(config, &isOpaque), |
| renderTarget->width(), renderTarget->height()); |
| bitmap.setIsOpaque(isOpaque); |
| return bitmap; |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture) |
| : SkDevice(make_bitmap(context, texture->asRenderTarget())) { |
| this->initFromRenderTarget(context, texture->asRenderTarget(), false); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget) |
| : SkDevice(make_bitmap(context, renderTarget)) { |
| this->initFromRenderTarget(context, renderTarget, false); |
| } |
| |
| void SkGpuDevice::initFromRenderTarget(GrContext* context, |
| GrRenderTarget* renderTarget, |
| bool cached) { |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fRenderTarget = NULL; |
| fNeedClear = false; |
| |
| GrAssert(NULL != renderTarget); |
| fRenderTarget = renderTarget; |
| fRenderTarget->ref(); |
| |
| // Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref |
| // on the RT but not vice-versa. |
| // TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without |
| // busting chrome (for a currently unknown reason). |
| GrSurface* surface = fRenderTarget->asTexture(); |
| if (NULL == surface) { |
| surface = fRenderTarget; |
| } |
| SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (surface, cached)); |
| |
| this->setPixelRef(pr, 0)->unref(); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, |
| SkBitmap::Config config, |
| int width, |
| int height, |
| int sampleCount) |
| : SkDevice(config, width, height, false /*isOpaque*/) { |
| |
| fDrawProcs = NULL; |
| |
| fContext = context; |
| fContext->ref(); |
| |
| fRenderTarget = NULL; |
| fNeedClear = false; |
| |
| if (config != SkBitmap::kRGB_565_Config) { |
| config = SkBitmap::kARGB_8888_Config; |
| } |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = SkBitmapConfig2GrPixelConfig(config); |
| desc.fSampleCnt = sampleCount; |
| |
| SkAutoTUnref<GrTexture> texture(fContext->createUncachedTexture(desc, NULL, 0)); |
| |
| if (NULL != texture) { |
| fRenderTarget = texture->asRenderTarget(); |
| fRenderTarget->ref(); |
| |
| GrAssert(NULL != fRenderTarget); |
| |
| // wrap the bitmap with a pixelref to expose our texture |
| SkGrPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (texture)); |
| this->setPixelRef(pr, 0)->unref(); |
| } else { |
| GrPrintf("--- failed to create gpu-offscreen [%d %d]\n", |
| width, height); |
| GrAssert(false); |
| } |
| } |
| |
| SkGpuDevice::~SkGpuDevice() { |
| if (fDrawProcs) { |
| delete fDrawProcs; |
| } |
| |
| // The GrContext takes a ref on the target. We don't want to cause the render |
| // target to be unnecessarily kept alive. |
| if (fContext->getRenderTarget() == fRenderTarget) { |
| fContext->setRenderTarget(NULL); |
| } |
| |
| if (fContext->getClip() == &fClipData) { |
| fContext->setClip(NULL); |
| } |
| |
| SkSafeUnref(fRenderTarget); |
| fContext->unref(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::makeRenderTargetCurrent() { |
| DO_DEFERRED_CLEAR(); |
| fContext->setRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| GrPixelConfig config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888, uint32_t* flags) { |
| switch (config8888) { |
| case SkCanvas::kNative_Premul_Config8888: |
| *flags = 0; |
| return kSkia8888_GrPixelConfig; |
| case SkCanvas::kNative_Unpremul_Config8888: |
| *flags = GrContext::kUnpremul_PixelOpsFlag; |
| return kSkia8888_PM_GrPixelConfig; |
| case SkCanvas::kBGRA_Premul_Config8888: |
| *flags = 0; |
| return kBGRA_8888_GrPixelConfig; |
| case SkCanvas::kBGRA_Unpremul_Config8888: |
| *flags = GrContext::kUnpremul_PixelOpsFlag; |
| return kBGRA_8888_GrPixelConfig; |
| case SkCanvas::kRGBA_Premul_Config8888: |
| *flags = 0; |
| return kRGBA_8888_GrPixelConfig; |
| case SkCanvas::kRGBA_Unpremul_Config8888: |
| *flags = GrContext::kUnpremul_PixelOpsFlag; |
| return kRGBA_8888_GrPixelConfig; |
| default: |
| GrCrash("Unexpected Config8888."); |
| *flags = 0; // suppress warning |
| return kSkia8888_PM_GrPixelConfig; |
| } |
| } |
| } |
| |
| bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap, |
| int x, int y, |
| SkCanvas::Config8888 config8888) { |
| DO_DEFERRED_CLEAR(); |
| SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config()); |
| SkASSERT(!bitmap.isNull()); |
| SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height()))); |
| |
| SkAutoLockPixels alp(bitmap); |
| GrPixelConfig config; |
| uint32_t flags; |
| config = config8888_to_grconfig_and_flags(config8888, &flags); |
| return fContext->readRenderTargetPixels(fRenderTarget, |
| x, y, |
| bitmap.width(), |
| bitmap.height(), |
| config, |
| bitmap.getPixels(), |
| bitmap.rowBytes(), |
| flags); |
| } |
| |
| void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y, |
| SkCanvas::Config8888 config8888) { |
| SkAutoLockPixels alp(bitmap); |
| if (!bitmap.readyToDraw()) { |
| return; |
| } |
| |
| GrPixelConfig config; |
| uint32_t flags; |
| if (SkBitmap::kARGB_8888_Config == bitmap.config()) { |
| config = config8888_to_grconfig_and_flags(config8888, &flags); |
| } else { |
| flags = 0; |
| config= SkBitmapConfig2GrPixelConfig(bitmap.config()); |
| } |
| |
| fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(), |
| config, bitmap.getPixels(), bitmap.rowBytes(), flags); |
| } |
| |
| namespace { |
| void purgeClipCB(int genID, void* ) { |
| |
| if (SkClipStack::kInvalidGenID == genID || |
| SkClipStack::kEmptyGenID == genID || |
| SkClipStack::kWideOpenGenID == genID) { |
| // none of these cases will have a cached clip mask |
| return; |
| } |
| |
| } |
| }; |
| |
| void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { |
| INHERITED::onAttachToCanvas(canvas); |
| |
| // Canvas promises that this ptr is valid until onDetachFromCanvas is called |
| fClipData.fClipStack = canvas->getClipStack(); |
| |
| fClipData.fClipStack->addPurgeClipCallback(purgeClipCB, fContext); |
| } |
| |
| void SkGpuDevice::onDetachFromCanvas() { |
| INHERITED::onDetachFromCanvas(); |
| |
| // TODO: iterate through the clip stack and clean up any cached clip masks |
| fClipData.fClipStack->removePurgeClipCallback(purgeClipCB, fContext); |
| |
| fClipData.fClipStack = NULL; |
| } |
| |
| #ifdef SK_DEBUG |
| static void check_bounds(const GrClipData& clipData, |
| const SkRegion& clipRegion, |
| int renderTargetWidth, |
| int renderTargetHeight) { |
| |
| SkIRect devBound; |
| |
| devBound.setLTRB(0, 0, renderTargetWidth, renderTargetHeight); |
| |
| SkClipStack::BoundsType boundType; |
| SkRect canvTemp; |
| |
| clipData.fClipStack->getBounds(&canvTemp, &boundType); |
| if (SkClipStack::kNormal_BoundsType == boundType) { |
| SkIRect devTemp; |
| |
| canvTemp.roundOut(&devTemp); |
| |
| devTemp.offset(-clipData.fOrigin.fX, -clipData.fOrigin.fY); |
| |
| if (!devBound.intersect(devTemp)) { |
| devBound.setEmpty(); |
| } |
| } |
| |
| GrAssert(devBound.contains(clipRegion.getBounds())); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // call this every draw call, to ensure that the context reflects our state, |
| // and not the state from some other canvas/device |
| void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) { |
| GrAssert(NULL != fClipData.fClipStack); |
| |
| fContext->setRenderTarget(fRenderTarget); |
| |
| SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack); |
| |
| if (forceIdentity) { |
| fContext->setIdentityMatrix(); |
| } else { |
| fContext->setMatrix(*draw.fMatrix); |
| } |
| fClipData.fOrigin = this->getOrigin(); |
| |
| #ifdef SK_DEBUG |
| check_bounds(fClipData, *draw.fClip, fRenderTarget->width(), fRenderTarget->height()); |
| #endif |
| |
| fContext->setClip(&fClipData); |
| |
| DO_DEFERRED_CLEAR(); |
| } |
| |
| SkGpuRenderTarget* SkGpuDevice::accessRenderTarget() { |
| DO_DEFERRED_CLEAR(); |
| return (SkGpuRenderTarget*)fRenderTarget; |
| } |
| |
| bool SkGpuDevice::bindDeviceAsTexture(GrPaint* paint) { |
| GrTexture* texture = fRenderTarget->asTexture(); |
| if (NULL != texture) { |
| paint->colorStage(kBitmapTextureIdx)->setEffect( |
| SkNEW_ARGS(GrSingleTextureEffect, (texture)))->unref(); |
| return true; |
| } |
| return false; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5, |
| shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch); |
| SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch); |
| |
| namespace { |
| |
| // converts a SkPaint to a GrPaint, ignoring the skPaint's shader |
| // justAlpha indicates that skPaint's alpha should be used rather than the color |
| // Callers may subsequently modify the GrPaint. Setting constantColor indicates |
| // that the final paint will draw the same color at every pixel. This allows |
| // an optimization where the the color filter can be applied to the skPaint's |
| // color once while converting to GrPaint and then ignored. |
| inline bool skPaint2GrPaintNoShader(SkGpuDevice* dev, |
| const SkPaint& skPaint, |
| bool justAlpha, |
| bool constantColor, |
| SkGpuDevice::SkAutoCachedTexture* act, |
| GrPaint* grPaint) { |
| |
| grPaint->setDither(skPaint.isDither()); |
| grPaint->setAntiAlias(skPaint.isAntiAlias()); |
| |
| SkXfermode::Coeff sm = SkXfermode::kOne_Coeff; |
| SkXfermode::Coeff dm = SkXfermode::kISA_Coeff; |
| |
| SkXfermode* mode = skPaint.getXfermode(); |
| if (mode) { |
| if (!mode->asCoeff(&sm, &dm)) { |
| //SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");) |
| #if 0 |
| return false; |
| #endif |
| } |
| } |
| grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm)); |
| |
| if (justAlpha) { |
| uint8_t alpha = skPaint.getAlpha(); |
| grPaint->setColor(GrColorPackRGBA(alpha, alpha, alpha, alpha)); |
| // justAlpha is currently set to true only if there is a texture, |
| // so constantColor should not also be true. |
| GrAssert(!constantColor); |
| } else { |
| grPaint->setColor(SkColor2GrColor(skPaint.getColor())); |
| GrAssert(!grPaint->isColorStageEnabled(kShaderTextureIdx)); |
| } |
| |
| SkColorFilter* colorFilter = skPaint.getColorFilter(); |
| if (NULL != colorFilter) { |
| // if the source color is a constant then apply the filter here once rather than per pixel |
| // in a shader. |
| if (constantColor) { |
| SkColor filtered = colorFilter->filterColor(skPaint.getColor()); |
| grPaint->setColor(SkColor2GrColor(filtered)); |
| } else { |
| SkAutoTUnref<GrEffect> effect(colorFilter->asNewEffect(dev->context())); |
| if (NULL != effect.get()) { |
| grPaint->colorStage(kColorFilterTextureIdx)->setEffect(effect); |
| } else { |
| // TODO: rewrite this using asNewEffect() |
| SkColor color; |
| SkXfermode::Mode filterMode; |
| if (colorFilter->asColorMode(&color, &filterMode)) { |
| grPaint->setXfermodeColorFilter(filterMode, SkColor2GrColor(color)); |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // This function is similar to skPaint2GrPaintNoShader but also converts |
| // skPaint's shader to a GrTexture/GrEffectStage if possible. The texture to |
| // be used is set on grPaint and returned in param act. constantColor has the |
| // same meaning as in skPaint2GrPaintNoShader. |
| inline bool skPaint2GrPaintShader(SkGpuDevice* dev, |
| const SkPaint& skPaint, |
| bool constantColor, |
| SkGpuDevice::SkAutoCachedTexture textures[GrPaint::kMaxColorStages], |
| GrPaint* grPaint) { |
| SkShader* shader = skPaint.getShader(); |
| if (NULL == shader) { |
| return skPaint2GrPaintNoShader(dev, |
| skPaint, |
| false, |
| constantColor, |
| &textures[kColorFilterTextureIdx], |
| grPaint); |
| } else if (!skPaint2GrPaintNoShader(dev, skPaint, true, false, |
| &textures[kColorFilterTextureIdx], grPaint)) { |
| return false; |
| } |
| |
| GrEffectStage* stage = grPaint->colorStage(kShaderTextureIdx); |
| if (shader->asNewEffect(dev->context(), stage)) { |
| return true; |
| } |
| |
| SkBitmap bitmap; |
| SkMatrix matrix; |
| SkShader::TileMode tileModes[2]; |
| SkShader::BitmapType bmptype = shader->asABitmap(&bitmap, &matrix, tileModes); |
| |
| if (SkShader::kNone_BitmapType == bmptype) { |
| SkShader::GradientInfo info; |
| SkColor color; |
| |
| info.fColors = &color; |
| info.fColorOffsets = NULL; |
| info.fColorCount = 1; |
| if (SkShader::kColor_GradientType == shader->asAGradient(&info)) { |
| SkPaint copy(skPaint); |
| copy.setShader(NULL); |
| // modulate the paint alpha by the shader's solid color alpha |
| U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha()); |
| copy.setColor(SkColorSetA(color, newA)); |
| return skPaint2GrPaintNoShader(dev, |
| copy, |
| false, |
| constantColor, |
| &textures[kColorFilterTextureIdx], |
| grPaint); |
| } |
| return false; |
| } |
| |
| // since our texture coords will be in local space, we whack the texture |
| // matrix to map them back into 0...1 before we load it |
| if (shader->hasLocalMatrix()) { |
| SkMatrix inverse; |
| if (!shader->getLocalMatrix().invert(&inverse)) { |
| return false; |
| } |
| matrix.preConcat(inverse); |
| } |
| |
| // Must set wrap and filter on the sampler before requesting a texture. |
| GrTextureParams params(tileModes, skPaint.isFilterBitmap()); |
| GrTexture* texture = textures[kShaderTextureIdx].set(dev, bitmap, ¶ms); |
| |
| if (NULL == texture) { |
| SkDebugf("Couldn't convert bitmap to texture.\n"); |
| return false; |
| } |
| |
| if (SkShader::kDefault_BitmapType == bmptype) { |
| SkScalar sx = SkFloatToScalar(1.f / bitmap.width()); |
| SkScalar sy = SkFloatToScalar(1.f / bitmap.height()); |
| matrix.postScale(sx, sy); |
| } |
| stage->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (texture, matrix, params)))->unref(); |
| |
| return true; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| void SkGpuDevice::clear(SkColor color) { |
| fContext->clear(NULL, SkColor2GrColor(color), fRenderTarget); |
| fNeedClear = false; |
| } |
| |
| void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| |
| fContext->drawPaint(grPaint); |
| } |
| |
| // must be in SkCanvas::PointMode order |
| static const GrPrimitiveType gPointMode2PrimtiveType[] = { |
| kPoints_GrPrimitiveType, |
| kLines_GrPrimitiveType, |
| kLineStrip_GrPrimitiveType |
| }; |
| |
| void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkScalar width = paint.getStrokeWidth(); |
| if (width < 0) { |
| return; |
| } |
| |
| // we only handle hairlines and paints without path effects or mask filters, |
| // else we let the SkDraw call our drawPath() |
| if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) { |
| draw.drawPoints(mode, count, pts, paint, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| |
| fContext->drawVertices(grPaint, |
| gPointMode2PrimtiveType[mode], |
| count, |
| (GrPoint*)pts, |
| NULL, |
| NULL, |
| NULL, |
| 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, |
| const SkPaint& paint) { |
| CHECK_FOR_NODRAW_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| bool doStroke = paint.getStyle() != SkPaint::kFill_Style; |
| SkScalar width = paint.getStrokeWidth(); |
| |
| /* |
| We have special code for hairline strokes, miter-strokes, and fills. |
| Anything else we just call our path code. |
| */ |
| bool usePath = doStroke && width > 0 && |
| paint.getStrokeJoin() != SkPaint::kMiter_Join; |
| // another two reasons we might need to call drawPath... |
| if (paint.getMaskFilter() || paint.getPathEffect()) { |
| usePath = true; |
| } |
| // until we aa rotated rects... |
| if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) { |
| usePath = true; |
| } |
| // small miter limit means right angles show bevel... |
| if (SkPaint::kMiter_Join == paint.getStrokeJoin() && |
| paint.getStrokeMiter() < SK_ScalarSqrt2) |
| { |
| usePath = true; |
| } |
| // until we can both stroke and fill rectangles |
| if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.addRect(rect); |
| this->drawPath(draw, path, paint, NULL, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| fContext->drawRect(grPaint, rect, doStroke ? width : -1); |
| } |
| |
| #include "SkMaskFilter.h" |
| #include "SkBounder.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // helpers for applying mask filters |
| namespace { |
| |
| // We prefer to blur small rect with small radius via CPU. |
| #define MIN_GPU_BLUR_SIZE SkIntToScalar(64) |
| #define MIN_GPU_BLUR_RADIUS SkIntToScalar(32) |
| inline bool shouldDrawBlurWithCPU(const SkRect& rect, SkScalar radius) { |
| if (rect.width() <= MIN_GPU_BLUR_SIZE && |
| rect.height() <= MIN_GPU_BLUR_SIZE && |
| radius <= MIN_GPU_BLUR_RADIUS) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool drawWithGPUMaskFilter(GrContext* context, const SkPath& devPath, const SkStrokeRec& stroke, |
| SkMaskFilter* filter, const SkRegion& clip, |
| SkBounder* bounder, GrPaint* grp) { |
| SkMaskFilter::BlurInfo info; |
| SkMaskFilter::BlurType blurType = filter->asABlur(&info); |
| if (SkMaskFilter::kNone_BlurType == blurType) { |
| return false; |
| } |
| SkScalar radius = info.fIgnoreTransform ? info.fRadius |
| : context->getMatrix().mapRadius(info.fRadius); |
| radius = SkMinScalar(radius, MAX_BLUR_RADIUS); |
| if (radius <= 0) { |
| return false; |
| } |
| |
| SkRect srcRect = devPath.getBounds(); |
| if (shouldDrawBlurWithCPU(srcRect, radius)) { |
| return false; |
| } |
| |
| float sigma = SkScalarToFloat(radius) * BLUR_SIGMA_SCALE; |
| float sigma3 = sigma * 3.0f; |
| |
| SkRect clipRect; |
| clipRect.set(clip.getBounds()); |
| |
| // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area. |
| srcRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3)); |
| clipRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3)); |
| srcRect.intersect(clipRect); |
| SkRect finalRect = srcRect; |
| SkIRect finalIRect; |
| finalRect.roundOut(&finalIRect); |
| if (clip.quickReject(finalIRect)) { |
| return true; |
| } |
| if (bounder && !bounder->doIRect(finalIRect)) { |
| return true; |
| } |
| GrPoint offset = GrPoint::Make(-srcRect.fLeft, -srcRect.fTop); |
| srcRect.offset(offset); |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = SkScalarCeilToInt(srcRect.width()); |
| desc.fHeight = SkScalarCeilToInt(srcRect.height()); |
| // We actually only need A8, but it often isn't supported as a |
| // render target so default to RGBA_8888 |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| |
| if (context->isConfigRenderable(kAlpha_8_GrPixelConfig)) { |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| } |
| |
| GrAutoScratchTexture pathEntry(context, desc); |
| GrTexture* pathTexture = pathEntry.texture(); |
| if (NULL == pathTexture) { |
| return false; |
| } |
| |
| SkAutoTUnref<GrTexture> blurTexture; |
| |
| { |
| GrContext::AutoRenderTarget art(context, pathTexture->asRenderTarget()); |
| GrContext::AutoClip ac(context, srcRect); |
| |
| context->clear(NULL, 0); |
| |
| GrPaint tempPaint; |
| if (grp->isAntiAlias()) { |
| tempPaint.setAntiAlias(true); |
| // AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst |
| // blend coeff of zero requires dual source blending support in order |
| // to properly blend partially covered pixels. This means the AA |
| // code path may not be taken. So we use a dst blend coeff of ISA. We |
| // could special case AA draws to a dst surface with known alpha=0 to |
| // use a zero dst coeff when dual source blending isn't available.f |
| tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff); |
| } |
| |
| GrContext::AutoMatrix am; |
| |
| // Draw hard shadow to pathTexture with path top-left at origin using tempPaint. |
| SkMatrix translate; |
| translate.setTranslate(offset.fX, offset.fY); |
| am.set(context, translate); |
| context->drawPath(tempPaint, devPath, stroke); |
| |
| // If we're doing a normal blur, we can clobber the pathTexture in the |
| // gaussianBlur. Otherwise, we need to save it for later compositing. |
| bool isNormalBlur = blurType == SkMaskFilter::kNormal_BlurType; |
| blurTexture.reset(context->gaussianBlur(pathTexture, isNormalBlur, |
| srcRect, sigma, sigma)); |
| if (NULL == blurTexture) { |
| return false; |
| } |
| |
| if (!isNormalBlur) { |
| context->setIdentityMatrix(); |
| GrPaint paint; |
| SkMatrix matrix; |
| matrix.setIDiv(pathTexture->width(), pathTexture->height()); |
| // Blend pathTexture over blurTexture. |
| context->setRenderTarget(blurTexture->asRenderTarget()); |
| paint.colorStage(0)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (pathTexture, matrix)))->unref(); |
| if (SkMaskFilter::kInner_BlurType == blurType) { |
| // inner: dst = dst * src |
| paint.setBlendFunc(kDC_GrBlendCoeff, kZero_GrBlendCoeff); |
| } else if (SkMaskFilter::kSolid_BlurType == blurType) { |
| // solid: dst = src + dst - src * dst |
| // = (1 - dst) * src + 1 * dst |
| paint.setBlendFunc(kIDC_GrBlendCoeff, kOne_GrBlendCoeff); |
| } else if (SkMaskFilter::kOuter_BlurType == blurType) { |
| // outer: dst = dst * (1 - src) |
| // = 0 * src + (1 - src) * dst |
| paint.setBlendFunc(kZero_GrBlendCoeff, kISC_GrBlendCoeff); |
| } |
| context->drawRect(paint, srcRect); |
| } |
| } |
| |
| GrContext::AutoMatrix am; |
| if (!am.setIdentity(context, grp)) { |
| return false; |
| } |
| |
| static const int MASK_IDX = GrPaint::kMaxCoverageStages - 1; |
| // we assume the last mask index is available for use |
| GrAssert(!grp->isCoverageStageEnabled(MASK_IDX)); |
| |
| SkMatrix matrix; |
| matrix.setTranslate(-finalRect.fLeft, -finalRect.fTop); |
| matrix.postIDiv(blurTexture->width(), blurTexture->height()); |
| |
| grp->coverageStage(MASK_IDX)->reset(); |
| grp->coverageStage(MASK_IDX)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (blurTexture, matrix)))->unref(); |
| context->drawRect(*grp, finalRect); |
| return true; |
| } |
| |
| bool drawWithMaskFilter(GrContext* context, const SkPath& devPath, |
| SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder, |
| GrPaint* grp, SkPaint::Style style) { |
| SkMask srcM, dstM; |
| |
| if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM, |
| SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) { |
| return false; |
| } |
| SkAutoMaskFreeImage autoSrc(srcM.fImage); |
| |
| if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) { |
| return false; |
| } |
| // this will free-up dstM when we're done (allocated in filterMask()) |
| SkAutoMaskFreeImage autoDst(dstM.fImage); |
| |
| if (clip.quickReject(dstM.fBounds)) { |
| return false; |
| } |
| if (bounder && !bounder->doIRect(dstM.fBounds)) { |
| return false; |
| } |
| |
| // we now have a device-aligned 8bit mask in dstM, ready to be drawn using |
| // the current clip (and identity matrix) and GrPaint settings |
| GrContext::AutoMatrix am; |
| am.setIdentity(context, grp); |
| |
| GrTextureDesc desc; |
| desc.fWidth = dstM.fBounds.width(); |
| desc.fHeight = dstM.fBounds.height(); |
| desc.fConfig = kAlpha_8_GrPixelConfig; |
| |
| GrAutoScratchTexture ast(context, desc); |
| GrTexture* texture = ast.texture(); |
| |
| if (NULL == texture) { |
| return false; |
| } |
| texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig, |
| dstM.fImage, dstM.fRowBytes); |
| |
| static const int MASK_IDX = GrPaint::kMaxCoverageStages - 1; |
| // we assume the last mask index is available for use |
| GrAssert(!grp->isCoverageStageEnabled(MASK_IDX)); |
| |
| SkMatrix m; |
| m.setTranslate(-dstM.fBounds.fLeft*SK_Scalar1, -dstM.fBounds.fTop*SK_Scalar1); |
| m.postIDiv(texture->width(), texture->height()); |
| |
| grp->coverageStage(MASK_IDX)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (texture, m)))->unref(); |
| GrRect d; |
| d.setLTRB(SkIntToScalar(dstM.fBounds.fLeft), |
| SkIntToScalar(dstM.fBounds.fTop), |
| SkIntToScalar(dstM.fBounds.fRight), |
| SkIntToScalar(dstM.fBounds.fBottom)); |
| |
| context->drawRect(*grp, d); |
| return true; |
| } |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, |
| const SkPaint& paint, const SkMatrix* prePathMatrix, |
| bool pathIsMutable) { |
| CHECK_FOR_NODRAW_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| |
| // can we cheat, and threat a thin stroke as a hairline w/ coverage |
| // if we can, we draw lots faster (raster device does this same test) |
| SkScalar hairlineCoverage; |
| bool doHairLine = SkDrawTreatAsHairline(paint, fContext->getMatrix(), &hairlineCoverage); |
| if (doHairLine) { |
| grPaint.setCoverage(SkScalarRoundToInt(hairlineCoverage * grPaint.getCoverage())); |
| } |
| |
| // If we have a prematrix, apply it to the path, optimizing for the case |
| // where the original path can in fact be modified in place (even though |
| // its parameter type is const). |
| SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath); |
| SkPath tmpPath, effectPath; |
| |
| if (prePathMatrix) { |
| SkPath* result = pathPtr; |
| |
| if (!pathIsMutable) { |
| result = &tmpPath; |
| pathIsMutable = true; |
| } |
| // should I push prePathMatrix on our MV stack temporarily, instead |
| // of applying it here? See SkDraw.cpp |
| pathPtr->transform(*prePathMatrix, result); |
| pathPtr = result; |
| } |
| // at this point we're done with prePathMatrix |
| SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;) |
| |
| SkStrokeRec stroke(paint); |
| SkPathEffect* pathEffect = paint.getPathEffect(); |
| if (pathEffect && pathEffect->filterPath(&effectPath, *pathPtr, &stroke)) { |
| pathPtr = &effectPath; |
| } |
| |
| if (!pathEffect && doHairLine) { |
| stroke.setHairlineStyle(); |
| } |
| |
| if (paint.getMaskFilter()) { |
| if (!stroke.isHairlineStyle()) { |
| if (stroke.applyToPath(&tmpPath, *pathPtr)) { |
| pathPtr = &tmpPath; |
| stroke.setFillStyle(); |
| } |
| } |
| |
| // avoid possibly allocating a new path in transform if we can |
| SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath; |
| |
| // transform the path into device space |
| pathPtr->transform(fContext->getMatrix(), devPathPtr); |
| if (!drawWithGPUMaskFilter(fContext, *devPathPtr, stroke, paint.getMaskFilter(), |
| *draw.fClip, draw.fBounder, &grPaint)) { |
| SkPaint::Style style = stroke.isHairlineStyle() ? SkPaint::kStroke_Style : |
| SkPaint::kFill_Style; |
| drawWithMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(), |
| *draw.fClip, draw.fBounder, &grPaint, style); |
| } |
| return; |
| } |
| |
| fContext->drawPath(grPaint, *pathPtr, stroke); |
| } |
| |
| namespace { |
| |
| inline int get_tile_count(int l, int t, int r, int b, int tileSize) { |
| int tilesX = (r / tileSize) - (l / tileSize) + 1; |
| int tilesY = (b / tileSize) - (t / tileSize) + 1; |
| return tilesX * tilesY; |
| } |
| |
| inline int determine_tile_size(const SkBitmap& bitmap, |
| const SkRect& src, |
| int maxTextureSize) { |
| static const int kSmallTileSize = 1 << 10; |
| if (maxTextureSize <= kSmallTileSize) { |
| return maxTextureSize; |
| } |
| |
| size_t maxTexTotalTileSize; |
| size_t smallTotalTileSize; |
| |
| SkIRect iSrc; |
| src.roundOut(&iSrc); |
| |
| maxTexTotalTileSize = get_tile_count(iSrc.fLeft, |
| iSrc.fTop, |
| iSrc.fRight, |
| iSrc.fBottom, |
| maxTextureSize); |
| smallTotalTileSize = get_tile_count(iSrc.fLeft, |
| iSrc.fTop, |
| iSrc.fRight, |
| iSrc.fBottom, |
| kSmallTileSize); |
| |
| maxTexTotalTileSize *= maxTextureSize * maxTextureSize; |
| smallTotalTileSize *= kSmallTileSize * kSmallTileSize; |
| |
| if (maxTexTotalTileSize > 2 * smallTotalTileSize) { |
| return kSmallTileSize; |
| } else { |
| return maxTextureSize; |
| } |
| } |
| } |
| |
| bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, |
| const GrTextureParams& params, |
| const SkRect* srcRectPtr) const { |
| // if bitmap is explictly texture backed then just use the texture |
| if (NULL != bitmap.getTexture()) { |
| return false; |
| } |
| // if it's larger than the max texture size, then we have no choice but |
| // tiling |
| const int maxTextureSize = fContext->getMaxTextureSize(); |
| if (bitmap.width() > maxTextureSize || |
| bitmap.height() > maxTextureSize) { |
| return true; |
| } |
| // if we are going to have to draw the whole thing, then don't tile |
| if (NULL == srcRectPtr) { |
| return false; |
| } |
| // if the entire texture is already in our cache then no reason to tile it |
| if (GrIsBitmapInCache(fContext, bitmap, ¶ms)) { |
| return false; |
| } |
| |
| // At this point we know we could do the draw by uploading the entire bitmap |
| // as a texture. However, if the texture would be large compared to the |
| // cache size and we don't require most of it for this draw then tile to |
| // reduce the amount of upload and cache spill. |
| |
| // assumption here is that sw bitmap size is a good proxy for its size as |
| // a texture |
| size_t bmpSize = bitmap.getSize(); |
| size_t cacheSize; |
| fContext->getTextureCacheLimits(NULL, &cacheSize); |
| if (bmpSize < cacheSize / 2) { |
| return false; |
| } |
| |
| SkScalar fracUsed = SkScalarMul(srcRectPtr->width() / bitmap.width(), |
| srcRectPtr->height() / bitmap.height()); |
| if (fracUsed <= SK_ScalarHalf) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void SkGpuDevice::drawBitmap(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkIRect* srcRectPtr, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| |
| SkRect tmp; |
| SkRect* tmpPtr = NULL; |
| |
| // convert from SkIRect to SkRect |
| if (NULL != srcRectPtr) { |
| tmp.set(*srcRectPtr); |
| tmpPtr = &tmp; |
| } |
| |
| // We cannot call drawBitmapRect here since 'm' could be anything |
| this->drawBitmapCommon(draw, bitmap, tmpPtr, m, paint); |
| } |
| |
| void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkRect* srcRectPtr, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkRect srcRect; |
| if (NULL == srcRectPtr) { |
| srcRect.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); |
| } else { |
| srcRect = *srcRectPtr; |
| } |
| |
| if (paint.getMaskFilter()){ |
| // Convert the bitmap to a shader so that the rect can be drawn |
| // through drawRect, which supports mask filters. |
| SkMatrix newM(m); |
| SkBitmap tmp; // subset of bitmap, if necessary |
| const SkBitmap* bitmapPtr = &bitmap; |
| if (NULL != srcRectPtr) { |
| SkIRect iSrc; |
| srcRect.roundOut(&iSrc); |
| if (!bitmap.extractSubset(&tmp, iSrc)) { |
| return; // extraction failed |
| } |
| bitmapPtr = &tmp; |
| srcRect.offset(SkIntToScalar(-iSrc.fLeft), SkIntToScalar(-iSrc.fTop)); |
| // The source rect has changed so update the matrix |
| newM.preTranslate(SkIntToScalar(iSrc.fLeft), SkIntToScalar(iSrc.fTop)); |
| } |
| |
| SkPaint paintWithTexture(paint); |
| paintWithTexture.setShader(SkShader::CreateBitmapShader(*bitmapPtr, |
| SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); |
| |
| // Transform 'newM' needs to be concatenated to the current matrix, |
| // rather than transforming the primitive directly, so that 'newM' will |
| // also affect the behavior of the mask filter. |
| SkMatrix drawMatrix; |
| drawMatrix.setConcat(fContext->getMatrix(), newM); |
| SkDraw transformedDraw(draw); |
| transformedDraw.fMatrix = &drawMatrix; |
| |
| this->drawRect(transformedDraw, srcRect, paintWithTexture); |
| |
| return; |
| } |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture colorLutTexture; |
| |
| bool alphaOnly = !(SkBitmap::kA8_Config == bitmap.config()); |
| if (!skPaint2GrPaintNoShader(this, paint, alphaOnly, false, &colorLutTexture, &grPaint)) { |
| return; |
| } |
| GrTextureParams params; |
| params.setBilerp(paint.isFilterBitmap()); |
| |
| if (!this->shouldTileBitmap(bitmap, params, srcRectPtr)) { |
| // take the simple case |
| this->internalDrawBitmap(bitmap, srcRect, m, params, &grPaint); |
| } else { |
| this->drawTiledBitmap(bitmap, srcRect, m, params, &grPaint); |
| } |
| } |
| |
| // Break 'bitmap' into several tiles to draw it since it has already |
| // been determined to be too large to fit in VRAM |
| void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| const SkMatrix& m, |
| const GrTextureParams& params, |
| GrPaint* grPaint) { |
| const int maxTextureSize = fContext->getMaxTextureSize(); |
| |
| int tileSize = determine_tile_size(bitmap, srcRect, maxTextureSize); |
| |
| // compute clip bounds in local coordinates |
| SkRect clipRect; |
| { |
| const GrRenderTarget* rt = fContext->getRenderTarget(); |
| clipRect.setWH(SkIntToScalar(rt->width()), SkIntToScalar(rt->height())); |
| if (!fContext->getClip()->fClipStack->intersectRectWithClip(&clipRect)) { |
| return; |
| } |
| SkMatrix matrix, inverse; |
| matrix.setConcat(fContext->getMatrix(), m); |
| if (!matrix.invert(&inverse)) { |
| return; |
| } |
| inverse.mapRect(&clipRect); |
| } |
| |
| int nx = bitmap.width() / tileSize; |
| int ny = bitmap.height() / tileSize; |
| for (int x = 0; x <= nx; x++) { |
| for (int y = 0; y <= ny; y++) { |
| SkRect tileR; |
| tileR.set(SkIntToScalar(x * tileSize), |
| SkIntToScalar(y * tileSize), |
| SkIntToScalar((x + 1) * tileSize), |
| SkIntToScalar((y + 1) * tileSize)); |
| |
| if (!SkRect::Intersects(tileR, clipRect)) { |
| continue; |
| } |
| |
| if (!tileR.intersect(srcRect)) { |
| continue; |
| } |
| |
| SkBitmap tmpB; |
| SkIRect iTileR; |
| tileR.roundOut(&iTileR); |
| if (bitmap.extractSubset(&tmpB, iTileR)) { |
| // now offset it to make it "local" to our tmp bitmap |
| tileR.offset(SkIntToScalar(-iTileR.fLeft), SkIntToScalar(-iTileR.fTop)); |
| SkMatrix tmpM(m); |
| tmpM.preTranslate(SkIntToScalar(iTileR.fLeft), |
| SkIntToScalar(iTileR.fTop)); |
| |
| this->internalDrawBitmap(tmpB, tileR, tmpM, params, grPaint); |
| } |
| } |
| } |
| } |
| |
| namespace { |
| |
| bool hasAlignedSamples(const SkRect& srcRect, const SkRect& transformedRect) { |
| // detect pixel disalignment |
| if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - |
| transformedRect.left()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - |
| transformedRect.top()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.width() - srcRect.width()) < |
| COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.height() - srcRect.height()) < |
| COLOR_BLEED_TOLERANCE) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool mayColorBleed(const SkRect& srcRect, const SkRect& transformedRect, |
| const SkMatrix& m) { |
| // Only gets called if hasAlignedSamples returned false. |
| // So we can assume that sampling is axis aligned but not texel aligned. |
| GrAssert(!hasAlignedSamples(srcRect, transformedRect)); |
| SkRect innerSrcRect(srcRect), innerTransformedRect, |
| outerTransformedRect(transformedRect); |
| innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); |
| m.mapRect(&innerTransformedRect, innerSrcRect); |
| |
| // The gap between outerTransformedRect and innerTransformedRect |
| // represents the projection of the source border area, which is |
| // problematic for color bleeding. We must check whether any |
| // destination pixels sample the border area. |
| outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| SkIRect outer, inner; |
| outerTransformedRect.round(&outer); |
| innerTransformedRect.round(&inner); |
| // If the inner and outer rects round to the same result, it means the |
| // border does not overlap any pixel centers. Yay! |
| return inner != outer; |
| } |
| |
| } // unnamed namespace |
| |
| /* |
| * This is called by drawBitmap(), which has to handle images that may be too |
| * large to be represented by a single texture. |
| * |
| * internalDrawBitmap assumes that the specified bitmap will fit in a texture |
| * and that non-texture portion of the GrPaint has already been setup. |
| */ |
| void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| const SkMatrix& m, |
| const GrTextureParams& params, |
| GrPaint* grPaint) { |
| SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() && |
| bitmap.height() <= fContext->getMaxTextureSize()); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| SkDebugf("nothing to draw\n"); |
| return; |
| } |
| |
| GrTexture* texture; |
| SkAutoCachedTexture act(this, bitmap, ¶ms, &texture); |
| if (NULL == texture) { |
| return; |
| } |
| |
| GrRect dstRect(srcRect); |
| GrRect paintRect; |
| SkScalar wInv = SkScalarInvert(SkIntToScalar(bitmap.width())); |
| SkScalar hInv = SkScalarInvert(SkIntToScalar(bitmap.height())); |
| paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), |
| SkScalarMul(srcRect.fTop, hInv), |
| SkScalarMul(srcRect.fRight, wInv), |
| SkScalarMul(srcRect.fBottom, hInv)); |
| |
| bool needsTextureDomain = false; |
| if (params.isBilerp()) { |
| // Need texture domain if drawing a sub rect. |
| needsTextureDomain = srcRect.width() < bitmap.width() || |
| srcRect.height() < bitmap.height(); |
| if (m.rectStaysRect() && fContext->getMatrix().rectStaysRect()) { |
| // sampling is axis-aligned |
| GrRect transformedRect; |
| SkMatrix srcToDeviceMatrix(m); |
| srcToDeviceMatrix.postConcat(fContext->getMatrix()); |
| srcToDeviceMatrix.mapRect(&transformedRect, srcRect); |
| |
| if (hasAlignedSamples(srcRect, transformedRect)) { |
| // We could also turn off filtering here (but we already did a cache lookup with |
| // params). |
| needsTextureDomain = false; |
| } else { |
| needsTextureDomain = needsTextureDomain && |
| mayColorBleed(srcRect, transformedRect, m); |
| } |
| } |
| } |
| |
| GrRect textureDomain = GrRect::MakeEmpty(); |
| SkAutoTUnref<GrEffect> effect; |
| if (needsTextureDomain) { |
| // Use a constrained texture domain to avoid color bleeding |
| SkScalar left, top, right, bottom; |
| if (srcRect.width() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / bitmap.width(); |
| left = paintRect.left() + border; |
| right = paintRect.right() - border; |
| } else { |
| left = right = SkScalarHalf(paintRect.left() + paintRect.right()); |
| } |
| if (srcRect.height() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / bitmap.height(); |
| top = paintRect.top() + border; |
| bottom = paintRect.bottom() - border; |
| } else { |
| top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); |
| } |
| textureDomain.setLTRB(left, top, right, bottom); |
| effect.reset(GrTextureDomainEffect::Create(texture, |
| SkMatrix::I(), |
| textureDomain, |
| GrTextureDomainEffect::kClamp_WrapMode, |
| params.isBilerp())); |
| } else { |
| effect.reset(SkNEW_ARGS(GrSingleTextureEffect, (texture, params))); |
| } |
| grPaint->colorStage(kBitmapTextureIdx)->setEffect(effect); |
| fContext->drawRectToRect(*grPaint, dstRect, paintRect, &m); |
| } |
| |
| namespace { |
| |
| void apply_effect(GrContext* context, |
| GrTexture* srcTexture, |
| GrTexture* dstTexture, |
| const GrRect& rect, |
| GrEffect* effect) { |
| SkASSERT(srcTexture && srcTexture->getContext() == context); |
| GrContext::AutoMatrix am; |
| am.setIdentity(context); |
| GrContext::AutoRenderTarget art(context, dstTexture->asRenderTarget()); |
| GrContext::AutoClip acs(context, rect); |
| |
| GrPaint paint; |
| paint.colorStage(0)->setEffect(effect); |
| context->drawRect(paint, rect); |
| } |
| |
| }; |
| |
| static GrTexture* filter_texture(SkDevice* device, GrContext* context, |
| GrTexture* texture, SkImageFilter* filter, |
| const GrRect& rect) { |
| GrAssert(filter); |
| SkDeviceImageFilterProxy proxy(device); |
| |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit, |
| desc.fWidth = SkScalarCeilToInt(rect.width()); |
| desc.fHeight = SkScalarCeilToInt(rect.height()); |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| GrEffect* effect; |
| |
| if (filter->canFilterImageGPU()) { |
| // Save the render target and set it to NULL, so we don't accidentally draw to it in the |
| // filter. Also set the clip wide open and the matrix to identity. |
| GrContext::AutoWideOpenIdentityDraw awo(context, NULL); |
| texture = filter->onFilterImageGPU(&proxy, texture, rect); |
| } else if (filter->asNewEffect(&effect, texture)) { |
| GrAutoScratchTexture dst(context, desc); |
| apply_effect(context, texture, dst.texture(), rect, effect); |
| texture = dst.detach(); |
| effect->unref(); |
| } |
| return texture; |
| } |
| |
| void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, |
| int left, int top, const SkPaint& paint) { |
| // drawSprite is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw, true); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| return; |
| } |
| |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture colorLutTexture; |
| if(!skPaint2GrPaintNoShader(this, paint, true, false, &colorLutTexture, &grPaint)) { |
| return; |
| } |
| |
| GrEffectStage* stage = grPaint.colorStage(kBitmapTextureIdx); |
| |
| GrTexture* texture; |
| stage->reset(); |
| // draw sprite uses the default texture params |
| SkAutoCachedTexture act(this, bitmap, NULL, &texture); |
| grPaint.colorStage(kBitmapTextureIdx)->setEffect(SkNEW_ARGS |
| (GrSingleTextureEffect, (texture)))->unref(); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| if (NULL != filter) { |
| GrTexture* filteredTexture = filter_texture(this, fContext, texture, filter, |
| GrRect::MakeWH(SkIntToScalar(w), SkIntToScalar(h))); |
| if (filteredTexture) { |
| grPaint.colorStage(kBitmapTextureIdx)->setEffect(SkNEW_ARGS |
| (GrSingleTextureEffect, (filteredTexture)))->unref(); |
| texture = filteredTexture; |
| filteredTexture->unref(); |
| } |
| } |
| |
| fContext->drawRectToRect(grPaint, |
| GrRect::MakeXYWH(SkIntToScalar(left), |
| SkIntToScalar(top), |
| SkIntToScalar(w), |
| SkIntToScalar(h)), |
| GrRect::MakeWH(SK_Scalar1 * w / texture->width(), |
| SK_Scalar1 * h / texture->height())); |
| } |
| |
| void SkGpuDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap, |
| const SkRect* src, const SkRect& dst, |
| const SkPaint& paint) { |
| SkMatrix matrix; |
| SkRect bitmapBounds, tmpSrc; |
| |
| bitmapBounds.set(0, 0, |
| SkIntToScalar(bitmap.width()), |
| SkIntToScalar(bitmap.height())); |
| |
| // Compute matrix from the two rectangles |
| if (NULL != src) { |
| tmpSrc = *src; |
| } else { |
| tmpSrc = bitmapBounds; |
| } |
| matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); |
| |
| // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. |
| if (NULL != src) { |
| if (!bitmapBounds.contains(tmpSrc)) { |
| if (!tmpSrc.intersect(bitmapBounds)) { |
| return; // nothing to draw |
| } |
| } |
| } |
| |
| this->drawBitmapCommon(draw, bitmap, &tmpSrc, matrix, paint); |
| } |
| |
| void SkGpuDevice::drawDevice(const SkDraw& draw, SkDevice* device, |
| int x, int y, const SkPaint& paint) { |
| // clear of the source device must occur before CHECK_SHOULD_DRAW |
| SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); |
| if (dev->fNeedClear) { |
| // TODO: could check here whether we really need to draw at all |
| dev->clear(0x0); |
| } |
| |
| // drawDevice is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw, true); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture colorLutTexture; |
| grPaint.colorStage(kBitmapTextureIdx)->reset(); |
| if (!dev->bindDeviceAsTexture(&grPaint) || |
| !skPaint2GrPaintNoShader(this, paint, true, false, &colorLutTexture, &grPaint)) { |
| return; |
| } |
| |
| GrTexture* devTex = grPaint.getColorStage(kBitmapTextureIdx).getEffect()->texture(0); |
| SkASSERT(NULL != devTex); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| if (NULL != filter) { |
| GrRect rect = GrRect::MakeWH(SkIntToScalar(devTex->width()), |
| SkIntToScalar(devTex->height())); |
| GrTexture* filteredTexture = filter_texture(this, fContext, devTex, filter, rect); |
| if (filteredTexture) { |
| grPaint.colorStage(kBitmapTextureIdx)->setEffect(SkNEW_ARGS |
| (GrSingleTextureEffect, (filteredTexture)))->unref(); |
| devTex = filteredTexture; |
| filteredTexture->unref(); |
| } |
| } |
| |
| const SkBitmap& bm = dev->accessBitmap(false); |
| int w = bm.width(); |
| int h = bm.height(); |
| |
| GrRect dstRect = GrRect::MakeXYWH(SkIntToScalar(x), |
| SkIntToScalar(y), |
| SkIntToScalar(w), |
| SkIntToScalar(h)); |
| |
| // The device being drawn may not fill up its texture (saveLayer uses |
| // the approximate ). |
| GrRect srcRect = GrRect::MakeWH(SK_Scalar1 * w / devTex->width(), |
| SK_Scalar1 * h / devTex->height()); |
| |
| fContext->drawRectToRect(grPaint, dstRect, srcRect); |
| } |
| |
| bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) { |
| if (!filter->asNewEffect(NULL, NULL) && |
| !filter->canFilterImageGPU()) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src, |
| const SkMatrix& ctm, |
| SkBitmap* result, SkIPoint* offset) { |
| // want explicitly our impl, so guard against a subclass of us overriding it |
| if (!this->SkGpuDevice::canHandleImageFilter(filter)) { |
| return false; |
| } |
| |
| SkAutoLockPixels alp(src, !src.getTexture()); |
| if (!src.getTexture() && !src.readyToDraw()) { |
| return false; |
| } |
| |
| GrPaint paint; |
| |
| GrTexture* texture; |
| // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup |
| // must be pushed upstack. |
| SkAutoCachedTexture act(this, src, NULL, &texture); |
| |
| result->setConfig(src.config(), src.width(), src.height()); |
| GrRect rect = GrRect::MakeWH(SkIntToScalar(src.width()), |
| SkIntToScalar(src.height())); |
| GrTexture* resultTexture = filter_texture(this, fContext, texture, filter, rect); |
| if (resultTexture) { |
| result->setPixelRef(SkNEW_ARGS(SkGrTexturePixelRef, |
| (resultTexture)))->unref(); |
| resultTexture->unref(); |
| } |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // must be in SkCanvas::VertexMode order |
| static const GrPrimitiveType gVertexMode2PrimitiveType[] = { |
| kTriangles_GrPrimitiveType, |
| kTriangleStrip_GrPrimitiveType, |
| kTriangleFan_GrPrimitiveType, |
| }; |
| |
| void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, |
| int vertexCount, const SkPoint vertices[], |
| const SkPoint texs[], const SkColor colors[], |
| SkXfermode* xmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| // we ignore the shader if texs is null. |
| if (NULL == texs) { |
| if (!skPaint2GrPaintNoShader(this, |
| paint, |
| false, |
| NULL == colors, |
| &textures[kColorFilterTextureIdx], |
| &grPaint)) { |
| return; |
| } |
| } else { |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| NULL == colors, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| } |
| |
| if (NULL != xmode && NULL != texs && NULL != colors) { |
| if (!SkXfermode::IsMode(xmode, SkXfermode::kMultiply_Mode)) { |
| SkDebugf("Unsupported vertex-color/texture xfer mode.\n"); |
| #if 0 |
| return |
| #endif |
| } |
| } |
| |
| SkAutoSTMalloc<128, GrColor> convertedColors(0); |
| if (NULL != colors) { |
| // need to convert byte order and from non-PM to PM |
| convertedColors.reset(vertexCount); |
| for (int i = 0; i < vertexCount; ++i) { |
| convertedColors[i] = SkColor2GrColor(colors[i]); |
| } |
| colors = convertedColors.get(); |
| } |
| fContext->drawVertices(grPaint, |
| gVertexMode2PrimitiveType[vmode], |
| vertexCount, |
| (GrPoint*) vertices, |
| (GrPoint*) texs, |
| colors, |
| indices, |
| indexCount); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static void GlyphCacheAuxProc(void* data) { |
| GrFontScaler* scaler = (GrFontScaler*)data; |
| SkSafeUnref(scaler); |
| } |
| |
| static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) { |
| void* auxData; |
| GrFontScaler* scaler = NULL; |
| if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) { |
| scaler = (GrFontScaler*)auxData; |
| } |
| if (NULL == scaler) { |
| scaler = SkNEW_ARGS(SkGrFontScaler, (cache)); |
| cache->setAuxProc(GlyphCacheAuxProc, scaler); |
| } |
| return scaler; |
| } |
| |
| static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state, |
| SkFixed fx, SkFixed fy, |
| const SkGlyph& glyph) { |
| SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0); |
| |
| GrSkDrawProcs* procs = static_cast<GrSkDrawProcs*>(state.fDraw->fProcs); |
| |
| if (NULL == procs->fFontScaler) { |
| procs->fFontScaler = get_gr_font_scaler(state.fCache); |
| } |
| |
| procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(), |
| glyph.getSubXFixed(), |
| glyph.getSubYFixed()), |
| SkFixedFloorToFixed(fx), |
| SkFixedFloorToFixed(fy), |
| procs->fFontScaler); |
| } |
| |
| SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) { |
| |
| // deferred allocation |
| if (NULL == fDrawProcs) { |
| fDrawProcs = SkNEW(GrSkDrawProcs); |
| fDrawProcs->fD1GProc = SkGPU_Draw1Glyph; |
| fDrawProcs->fContext = fContext; |
| } |
| |
| // init our (and GL's) state |
| fDrawProcs->fTextContext = context; |
| fDrawProcs->fFontScaler = NULL; |
| return fDrawProcs; |
| } |
| |
| void SkGpuDevice::drawText(const SkDraw& draw, const void* text, |
| size_t byteLength, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| if (fContext->getMatrix().hasPerspective()) { |
| // this guy will just call our drawPath() |
| draw.drawText((const char*)text, byteLength, x, y, paint); |
| } else { |
| SkDraw myDraw(draw); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| GrTextContext context(fContext, grPaint); |
| myDraw.fProcs = this->initDrawForText(&context); |
| this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, |
| size_t byteLength, const SkScalar pos[], |
| SkScalar constY, int scalarsPerPos, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| if (fContext->getMatrix().hasPerspective()) { |
| // this guy will just call our drawPath() |
| draw.drawPosText((const char*)text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| } else { |
| SkDraw myDraw(draw); |
| |
| GrPaint grPaint; |
| SkAutoCachedTexture textures[GrPaint::kMaxColorStages]; |
| if (!skPaint2GrPaintShader(this, |
| paint, |
| true, |
| textures, |
| &grPaint)) { |
| return; |
| } |
| GrTextContext context(fContext, grPaint); |
| myDraw.fProcs = this->initDrawForText(&context); |
| this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY, |
| scalarsPerPos, paint); |
| } |
| } |
| |
| void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text, |
| size_t len, const SkPath& path, |
| const SkMatrix* m, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw, false); |
| |
| SkASSERT(draw.fDevice == this); |
| draw.drawTextOnPath((const char*)text, len, path, m, paint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) { |
| if (!paint.isLCDRenderText()) { |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| if (paint.getShader() || |
| paint.getXfermode() || // unless its srcover |
| paint.getMaskFilter() || |
| paint.getRasterizer() || |
| paint.getColorFilter() || |
| paint.getPathEffect() || |
| paint.isFakeBoldText() || |
| paint.getStyle() != SkPaint::kFill_Style) { |
| // turn off lcd |
| flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag; |
| flags->fHinting = paint.getHinting(); |
| return true; |
| } |
| // we're cool with the paint as is |
| return false; |
| } |
| |
| void SkGpuDevice::flush() { |
| DO_DEFERRED_CLEAR(); |
| fContext->resolveRenderTarget(fRenderTarget); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config, |
| int width, int height, |
| bool isOpaque, |
| Usage usage) { |
| GrTextureDesc desc; |
| desc.fConfig = fRenderTarget->config(); |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fSampleCnt = fRenderTarget->numSamples(); |
| |
| GrTexture* texture; |
| SkAutoTUnref<GrTexture> tunref; |
| // Skia's convention is to only clear a device if it is non-opaque. |
| bool needClear = !isOpaque; |
| |
| #if CACHE_COMPATIBLE_DEVICE_TEXTURES |
| // layers are never draw in repeat modes, so we can request an approx |
| // match and ignore any padding. |
| const GrContext::ScratchTexMatch match = (kSaveLayer_Usage == usage) ? |
| GrContext::kApprox_ScratchTexMatch : |
| GrContext::kExact_ScratchTexMatch; |
| texture = fContext->lockScratchTexture(desc, match); |
| #else |
| tunref.reset(fContext->createUncachedTexture(desc, NULL, 0)); |
| texture = tunref.get(); |
| #endif |
| if (texture) { |
| return SkNEW_ARGS(SkGpuDevice,(fContext, |
| texture, |
| needClear)); |
| } else { |
| GrPrintf("---- failed to create compatible device texture [%d %d]\n", |
| width, height); |
| return NULL; |
| } |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrContext* context, |
| GrTexture* texture, |
| bool needClear) |
| : SkDevice(make_bitmap(context, texture->asRenderTarget())) { |
| |
| GrAssert(texture && texture->asRenderTarget()); |
| // This constructor is called from onCreateCompatibleDevice. It has locked the RT in the texture |
| // cache. We pass true for the third argument so that it will get unlocked. |
| this->initFromRenderTarget(context, texture->asRenderTarget(), true); |
| fNeedClear = needClear; |
| } |