blob: acbec8b03b52ea6d397d158020d10f0d77700dde [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkJumper.h"
#include "SkJumper_misc.h" // SI, unaligned_load(), bit_cast(), C(), operator"" _i and _f.
#include "SkJumper_vectors.h" // F, I32, U32, U16, U8, cast(), expand()
// Our fundamental vector depth is our pixel stride.
static const size_t kStride = sizeof(F) / sizeof(float);
// A reminder:
// Code guarded by defined(JUMPER) can assume that it will be compiled by Clang
// and that F, I32, etc. are kStride-deep ext_vector_types of the appropriate type.
// Otherwise, F, I32, etc. just alias the basic scalar types (and so kStride == 1).
// Another reminder:
// You can't generally use constants in this file except via C() or operator"" _i/_f.
// Not all constants can be generated using C() or _i/_f. Stages read the rest from this struct.
using K = const SkJumper_constants;
// Let's start first with the mechanisms we use to build Stages.
// Our program is an array of void*, either
// - 1 void* per stage with no context pointer, the next stage;
// - 2 void* per stage with a context pointer, first the context pointer, then the next stage.
// load_and_inc() steps the program forward by 1 void*, returning that pointer.
SI void* load_and_inc(void**& program) {
#if defined(__GNUC__) && defined(__x86_64__)
// If program is in %rsi (we try to make this likely) then this is a single instruction.
void* rax;
asm("lodsq" : "=a"(rax), "+S"(program)); // Write-only %rax, read-write %rsi.
return rax;
#else
// On ARM *program++ compiles into pretty ideal code without any handholding.
return *program++;
#endif
}
// LazyCtx doesn't do anything unless you call operator T*() or load(), encapsulating the
// logic from above that stages without a context pointer are represented by just 1 void*.
struct LazyCtx {
void* ptr;
void**& program;
explicit LazyCtx(void**& p) : ptr(nullptr), program(p) {}
template <typename T>
operator T*() {
if (!ptr) { ptr = load_and_inc(program); }
return (T*)ptr;
}
template <typename T>
T load() {
if (!ptr) { ptr = load_and_inc(program); }
return unaligned_load<T>(ptr);
}
};
// A little wrapper macro to name Stages differently depending on the instruction set.
// That lets us link together several options.
#if !defined(JUMPER)
#define WRAP(name) sk_##name
#elif defined(__aarch64__)
#define WRAP(name) sk_##name##_aarch64
#elif defined(__arm__)
#define WRAP(name) sk_##name##_vfp4
#elif defined(__AVX2__)
#define WRAP(name) sk_##name##_hsw
#elif defined(__AVX__)
#define WRAP(name) sk_##name##_avx
#elif defined(__SSE4_1__)
#define WRAP(name) sk_##name##_sse41
#elif defined(__SSE2__)
#define WRAP(name) sk_##name##_sse2
#endif
// We're finally going to get to what a Stage function looks like!
// It's best to jump down to the #else case first, then to come back up here for AVX.
#if defined(JUMPER) && defined(__AVX__)
// There's a big cost to switch between SSE and AVX, so we do a little
// extra work to handle even the jagged <kStride tail in AVX mode.
// Compared to normal stages, we maintain an extra tail register:
// tail == 0 ~~> work on a full kStride pixels
// tail != 0 ~~> work on only the first tail pixels
// tail is always < kStride.
using Stage = void(size_t x, void** program, K* k, size_t tail, F,F,F,F, F,F,F,F);
#if defined(JUMPER) && defined(WIN)
__attribute__((ms_abi))
#endif
extern "C" size_t WRAP(start_pipeline)(size_t x, void** program, K* k, size_t limit) {
F v{};
auto start = (Stage*)load_and_inc(program);
while (x + kStride <= limit) {
start(x,program,k,0, v,v,v,v, v,v,v,v);
x += kStride;
}
if (size_t tail = limit - x) {
start(x,program,k,tail, v,v,v,v, v,v,v,v);
}
return limit;
}
#define STAGE(name) \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
extern "C" void WRAP(name)(size_t x, void** program, K* k, size_t tail, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
LazyCtx ctx(program); \
name##_k(x,ctx,k,tail, r,g,b,a, dr,dg,db,da); \
auto next = (Stage*)load_and_inc(program); \
next(x,program,k,tail, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
// Other instruction sets (SSE, NEON, portable) can fall back on narrower
// pipelines cheaply, which frees us to always assume tail==0.
// Stages tail call between each other by following program as described above.
// x is our induction variable, stepping forward kStride at a time.
using Stage = void(size_t x, void** program, K* k, F,F,F,F, F,F,F,F);
// On Windows, start_pipeline() has a normal Windows ABI, and then the rest is System V.
#if defined(JUMPER) && defined(WIN)
__attribute__((ms_abi))
#endif
extern "C" size_t WRAP(start_pipeline)(size_t x, void** program, K* k, size_t limit) {
F v{};
auto start = (Stage*)load_and_inc(program);
while (x + kStride <= limit) {
start(x,program,k, v,v,v,v, v,v,v,v);
x += kStride;
}
return x;
}
// This STAGE macro makes it easier to write stages, handling all the Stage chaining for you.
#define STAGE(name) \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
extern "C" void WRAP(name)(size_t x, void** program, K* k, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
LazyCtx ctx(program); \
name##_k(x,ctx,k,0, r,g,b,a, dr,dg,db,da); \
auto next = (Stage*)load_and_inc(program); \
next(x,program,k, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(size_t x, LazyCtx ctx, K* k, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
extern "C" void WRAP(just_return)(size_t, void**, K*, F,F,F,F, F,F,F,F) {}
// We could start defining normal Stages now. But first, some helper functions and types.
// Sometimes we want to work with 4 floats directly, regardless of the depth of the F vector.
#if defined(JUMPER)
using F4 = float __attribute__((ext_vector_type(4)));
#else
struct F4 {
float vals[4];
float operator[](int i) const { return vals[i]; }
};
#endif
// These load() and store() methods are tail-aware,
// but focus mainly on keeping the at-stride tail==0 case fast.
template <typename V, typename T>
SI V load(const T* src, size_t tail) {
#if defined(JUMPER)
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
V v{}; // Any inactive lanes are zeroed.
switch (tail-1) {
case 6: v[6] = src[6];
case 5: v[5] = src[5];
case 4: v[4] = src[4];
case 3: v[3] = src[3];
case 2: v[2] = src[2];
case 1: v[1] = src[1];
case 0: v[0] = src[0];
}
return v;
}
#endif
return unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v, size_t tail) {
#if defined(JUMPER)
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
switch (tail-1) {
case 6: dst[6] = v[6];
case 5: dst[5] = v[5];
case 4: dst[4] = v[4];
case 3: dst[3] = v[3];
case 2: dst[2] = v[2];
case 1: dst[1] = v[1];
case 0: dst[0] = v[0];
}
return;
}
#endif
memcpy(dst, &v, sizeof(v));
}
// This doesn't look strictly necessary, but without it Clang would generate load() using
// compiler-generated constants that we can't support. This version doesn't need constants.
#if defined(JUMPER) && defined(__AVX__)
template <>
inline U8 load(const uint8_t* src, size_t tail) {
if (__builtin_expect(tail, 0)) {
uint64_t v = 0;
size_t shift = 0;
#pragma nounroll
while (tail --> 0) {
v |= (uint64_t)*src++ << shift;
shift += 8;
}
return unaligned_load<U8>(&v);
}
return unaligned_load<U8>(src);
}
#endif
// AVX2 adds some mask loads and stores that make for shorter, faster code.
#if defined(JUMPER) && defined(__AVX2__)
SI U32 mask(size_t tail) {
// We go a little out of our way to avoid needing large constant values here.
// It's easiest to build the mask as 8 8-bit values, either 0x00 or 0xff.
// Start fully on, then shift away lanes from the top until we've got our mask.
uint64_t mask = 0xffffffffffffffff >> 8*(kStride-tail);
// Sign-extend each mask lane to its full width, 0x00000000 or 0xffffffff.
return _mm256_cvtepi8_epi32(_mm_cvtsi64_si128((int64_t)mask));
}
template <>
inline U32 load(const uint32_t* src, size_t tail) {
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
return _mm256_maskload_epi32((const int*)src, mask(tail));
}
return unaligned_load<U32>(src);
}
template <>
inline void store(uint32_t* dst, U32 v, size_t tail) {
__builtin_assume(tail < kStride);
if (__builtin_expect(tail, 0)) {
return _mm256_maskstore_epi32((int*)dst, mask(tail), v);
}
memcpy(dst, &v, sizeof(v));
}
#endif
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & C(31<<11)) * C(1.0f / (31<<11));
*g = cast(wide & C(63<< 5)) * C(1.0f / (63<< 5));
*b = cast(wide & C(31<< 0)) * C(1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & C(15<<12)) * C(1.0f / (15<<12));
*g = cast(wide & C(15<< 8)) * C(1.0f / (15<< 8));
*b = cast(wide & C(15<< 4)) * C(1.0f / (15<< 4));
*a = cast(wide & C(15<< 0)) * C(1.0f / (15<< 0));
}
// Now finally, normal Stages!
STAGE(seed_shader) {
auto y = *(const int*)ctx;
// It's important for speed to explicitly cast(x) and cast(y),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(x) + 0.5_f + unaligned_load<F>(k->iota);
g = cast(y) + 0.5_f;
b = 1.0_f;
a = 0;
dr = dg = db = da = 0;
}
STAGE(constant_color) {
auto rgba = ctx.load<F4>();
r = rgba[0];
g = rgba[1];
b = rgba[2];
a = rgba[3];
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0_f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_) { return s + d; }
BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, s + d*inv(sa),
sa*(da - min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, d + s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0_f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0_f) + 7.0_f*m, // Used in case 2.
liteDst = rcp(rsqrt(m)) - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
STAGE(clamp_0) {
r = max(r, 0);
g = max(g, 0);
b = max(b, 0);
a = max(a, 0);
}
STAGE(clamp_1) {
r = min(r, 1.0_f);
g = min(g, 1.0_f);
b = min(b, 1.0_f);
a = min(a, 1.0_f);
}
STAGE(clamp_a) {
a = min(a, 1.0_f);
r = min(r, a);
g = min(g, a);
b = min(b, a);
}
STAGE(set_rgb) {
auto rgb = (const float*)ctx;
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(swap_rb) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE(swap) {
auto swap = [](F& v, F& dv) {
auto tmp = v;
v = dv;
dv = tmp;
};
swap(r, dr);
swap(g, dg);
swap(b, db);
swap(a, da);
}
STAGE(move_src_dst) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(premul) {
r = r * a;
g = g * a;
b = b * a;
}
STAGE(unpremul) {
auto scale = if_then_else(a == 0, 0, 1.0_f / a);
r = r * scale;
g = g * scale;
b = b * scale;
}
STAGE(from_srgb) {
auto fn = [&](F s) {
auto lo = s * C(1/12.92f);
auto hi = mad(s*s, mad(s, 0.3000_f, 0.6975_f), 0.0025_f);
return if_then_else(s < 0.055_f, lo, hi);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(to_srgb) {
auto fn = [&](F l) {
F sqrt = rcp (rsqrt(l)),
ftrt = rsqrt(rsqrt(l));
auto lo = l * 12.46_f;
auto hi = min(1.0_f, mad(0.411192_f, ftrt,
mad(0.689206_f, sqrt, -0.0988_f)));
return if_then_else(l < 0.0043_f, lo, hi);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(scale_1_float) {
auto c = *(const float*)ctx;
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(scale_u8) {
auto ptr = *(const uint8_t**)ctx + x;
auto scales = load<U8>(ptr, tail);
auto c = cast(expand(scales)) * C(1/255.0f);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
SI F lerp(F from, F to, F t) {
return mad(to-from, t, from);
}
STAGE(lerp_1_float) {
auto c = *(const float*)ctx;
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_u8) {
auto ptr = *(const uint8_t**)ctx + x;
auto scales = load<U8>(ptr, tail);
auto c = cast(expand(scales)) * C(1/255.0f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_565) {
auto ptr = *(const uint16_t**)ctx + x;
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = 1.0_f;
}
STAGE(load_tables) {
struct Ctx {
const uint32_t* src;
const float *r, *g, *b;
};
auto c = (const Ctx*)ctx;
auto px = load<U32>(c->src + x, tail);
r = gather(c->r, (px ) & 0xff_i);
g = gather(c->g, (px >> 8) & 0xff_i);
b = gather(c->b, (px >> 16) & 0xff_i);
a = cast( (px >> 24)) * C(1/255.0f);
}
STAGE(load_a8) {
auto ptr = *(const uint8_t**)ctx + x;
r = g = b = 0.0f;
a = cast(expand(load<U8>(ptr, tail))) * C(1/255.0f);
}
STAGE(store_a8) {
auto ptr = *(uint8_t**)ctx + x;
U8 packed = pack(pack(round(a, 255.0_f)));
store(ptr, packed, tail);
}
STAGE(load_g8) {
auto ptr = *(const uint8_t**)ctx + x;
r = g = b = cast(expand(load<U8>(ptr, tail))) * C(1/255.0f);
a = 1.0_f;
}
STAGE(load_565) {
auto ptr = *(const uint16_t**)ctx + x;
from_565(load<U16>(ptr, tail), &r,&g,&b);
a = 1.0_f;
}
STAGE(store_565) {
auto ptr = *(uint16_t**)ctx + x;
U16 px = pack( round(r, 31.0_f) << 11
| round(g, 63.0_f) << 5
| round(b, 31.0_f) );
store(ptr, px, tail);
}
STAGE(load_4444) {
auto ptr = *(const uint16_t**)ctx + x;
from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
}
STAGE(store_4444) {
auto ptr = *(uint16_t**)ctx + x;
U16 px = pack( round(r, 15.0_f) << 12
| round(g, 15.0_f) << 8
| round(b, 15.0_f) << 4
| round(a, 15.0_f) );
store(ptr, px, tail);
}
STAGE(load_8888) {
auto ptr = *(const uint32_t**)ctx + x;
auto px = load<U32>(ptr, tail);
r = cast((px ) & 0xff_i) * C(1/255.0f);
g = cast((px >> 8) & 0xff_i) * C(1/255.0f);
b = cast((px >> 16) & 0xff_i) * C(1/255.0f);
a = cast((px >> 24) ) * C(1/255.0f);
}
STAGE(store_8888) {
auto ptr = *(uint32_t**)ctx + x;
U32 px = round(r, 255.0_f)
| round(g, 255.0_f) << 8
| round(b, 255.0_f) << 16
| round(a, 255.0_f) << 24;
store(ptr, px, tail);
}
STAGE(load_f16) {
auto ptr = *(const uint64_t**)ctx + x;
U16 R,G,B,A;
load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(store_f16) {
auto ptr = *(uint64_t**)ctx + x;
store4((uint16_t*)ptr,tail, to_half(r)
, to_half(g)
, to_half(b)
, to_half(a));
}
STAGE(store_f32) {
auto ptr = *(float**)ctx + 4*x;
store4(ptr,tail, r,g,b,a);
}
SI F ulp_before(F v) {
return bit_cast<F>(bit_cast<U32>(v) + U32(0xffffffff));
}
SI F clamp(F v, float limit) {
v = max(0, v);
return min(v, ulp_before(limit));
}
SI F repeat(F v, float limit) {
v = v - floor_(v/limit)*limit;
return min(v, ulp_before(limit));
}
SI F mirror(F v, float limit) {
v = abs_( (v-limit) - (limit+limit)*floor_((v-limit)/(limit+limit)) - limit );
return min(v, ulp_before(limit));
}
STAGE(clamp_x) { r = clamp (r, *(const float*)ctx); }
STAGE(clamp_y) { g = clamp (g, *(const float*)ctx); }
STAGE(repeat_x) { r = repeat(r, *(const float*)ctx); }
STAGE(repeat_y) { g = repeat(g, *(const float*)ctx); }
STAGE(mirror_x) { r = mirror(r, *(const float*)ctx); }
STAGE(mirror_y) { g = mirror(g, *(const float*)ctx); }
STAGE(luminance_to_alpha) {
a = r*0.2126_f + g*0.7152_f + b*0.0722_f;
r = g = b = 0;
}
STAGE(matrix_2x3) {
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[2], m[4])),
G = mad(r,m[1], mad(g,m[3], m[5]));
r = R;
g = G;
}
STAGE(matrix_3x4) {
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
r = R;
g = G;
b = B;
}
STAGE(matrix_4x5) {
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))),
G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))),
B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))),
A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19]))));
r = R;
g = G;
b = B;
a = A;
}
STAGE(matrix_perspective) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto m = (const float*)ctx;
auto R = mad(r,m[0], mad(g,m[1], m[2])),
G = mad(r,m[3], mad(g,m[4], m[5])),
Z = mad(r,m[6], mad(g,m[7], m[8]));
r = R * rcp(Z);
g = G * rcp(Z);
}
STAGE(linear_gradient_2stops) {
struct Ctx { F4 c0, dc; };
auto c = ctx.load<Ctx>();
auto t = r;
r = mad(t, c.dc[0], c.c0[0]);
g = mad(t, c.dc[1], c.c0[1]);
b = mad(t, c.dc[2], c.c0[2]);
a = mad(t, c.dc[3], c.c0[3]);
}