blob: f823e13704de6e195084522628e1f06994da16cd [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrSoftwarePathRenderer.h"
#include "GrAuditTrail.h"
#include "GrClip.h"
#include "GrGpuResourcePriv.h"
#include "GrPipelineBuilder.h"
#include "GrResourceProvider.h"
#include "GrSWMaskHelper.h"
#include "ops/GrNonAAFillRectOp.h"
////////////////////////////////////////////////////////////////////////////////
bool GrSoftwarePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
// Pass on any style that applies. The caller will apply the style if a suitable renderer is
// not found and try again with the new GrShape.
return !args.fShape->style().applies() && SkToBool(fResourceProvider) &&
(args.fAAType == GrAAType::kCoverage || args.fAAType == GrAAType::kNone);
}
////////////////////////////////////////////////////////////////////////////////
static bool get_unclipped_shape_dev_bounds(const GrShape& shape, const SkMatrix& matrix,
SkIRect* devBounds) {
SkRect shapeBounds = shape.styledBounds();
if (shapeBounds.isEmpty()) {
return false;
}
SkRect shapeDevBounds;
matrix.mapRect(&shapeDevBounds, shapeBounds);
// Even though these are "unclipped" bounds we still clip to the int32_t range.
// This is the largest int32_t that is representable exactly as a float. The next 63 larger ints
// would round down to this value when cast to a float, but who really cares.
// INT32_MIN is exactly representable.
static constexpr int32_t kMaxInt = 2147483520;
if (!shapeDevBounds.intersect(SkRect::MakeLTRB(INT32_MIN, INT32_MIN, kMaxInt, kMaxInt))) {
return false;
}
shapeDevBounds.roundOut(devBounds);
return true;
}
// Gets the shape bounds, the clip bounds, and the intersection (if any). Returns false if there
// is no intersection.
static bool get_shape_and_clip_bounds(int width, int height,
const GrClip& clip,
const GrShape& shape,
const SkMatrix& matrix,
SkIRect* unclippedDevShapeBounds,
SkIRect* clippedDevShapeBounds,
SkIRect* devClipBounds) {
// compute bounds as intersection of rt size, clip, and path
clip.getConservativeBounds(width, height, devClipBounds);
if (!get_unclipped_shape_dev_bounds(shape, matrix, unclippedDevShapeBounds)) {
*unclippedDevShapeBounds = SkIRect::EmptyIRect();
*clippedDevShapeBounds = SkIRect::EmptyIRect();
return false;
}
if (!clippedDevShapeBounds->intersect(*devClipBounds, *unclippedDevShapeBounds)) {
*clippedDevShapeBounds = SkIRect::EmptyIRect();
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
void GrSoftwarePathRenderer::DrawNonAARect(GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrUserStencilSettings& userStencilSettings,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkRect& rect,
const SkMatrix& localMatrix) {
renderTargetContext->addDrawOp(
clip, GrNonAAFillRectOp::Make(std::move(paint), viewMatrix, rect, nullptr, &localMatrix,
GrAAType::kNone, &userStencilSettings));
}
void GrSoftwarePathRenderer::DrawAroundInvPath(GrRenderTargetContext* renderTargetContext,
GrPaint&& paint,
const GrUserStencilSettings& userStencilSettings,
const GrClip& clip,
const SkMatrix& viewMatrix,
const SkIRect& devClipBounds,
const SkIRect& devPathBounds) {
SkMatrix invert;
if (!viewMatrix.invert(&invert)) {
return;
}
SkRect rect;
if (devClipBounds.fTop < devPathBounds.fTop) {
rect.iset(devClipBounds.fLeft, devClipBounds.fTop,
devClipBounds.fRight, devPathBounds.fTop);
DrawNonAARect(renderTargetContext, GrPaint(paint), userStencilSettings, clip, SkMatrix::I(),
rect, invert);
}
if (devClipBounds.fLeft < devPathBounds.fLeft) {
rect.iset(devClipBounds.fLeft, devPathBounds.fTop,
devPathBounds.fLeft, devPathBounds.fBottom);
DrawNonAARect(renderTargetContext, GrPaint(paint), userStencilSettings, clip, SkMatrix::I(),
rect, invert);
}
if (devClipBounds.fRight > devPathBounds.fRight) {
rect.iset(devPathBounds.fRight, devPathBounds.fTop,
devClipBounds.fRight, devPathBounds.fBottom);
DrawNonAARect(renderTargetContext, GrPaint(paint), userStencilSettings, clip, SkMatrix::I(),
rect, invert);
}
if (devClipBounds.fBottom > devPathBounds.fBottom) {
rect.iset(devClipBounds.fLeft, devPathBounds.fBottom,
devClipBounds.fRight, devClipBounds.fBottom);
DrawNonAARect(renderTargetContext, std::move(paint), userStencilSettings, clip,
SkMatrix::I(), rect, invert);
}
}
////////////////////////////////////////////////////////////////////////////////
// return true on success; false on failure
bool GrSoftwarePathRenderer::onDrawPath(const DrawPathArgs& args) {
GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
"GrSoftwarePathRenderer::onDrawPath");
if (!fResourceProvider) {
return false;
}
// We really need to know if the shape will be inverse filled or not
bool inverseFilled = false;
SkTLazy<GrShape> tmpShape;
SkASSERT(!args.fShape->style().applies());
// If the path is hairline, ignore inverse fill.
inverseFilled = args.fShape->inverseFilled() &&
!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr);
SkIRect unclippedDevShapeBounds, clippedDevShapeBounds, devClipBounds;
// To prevent overloading the cache with entries during animations we limit the cache of masks
// to cases where the matrix preserves axis alignment.
bool useCache = fAllowCaching && !inverseFilled && args.fViewMatrix->preservesAxisAlignment() &&
args.fShape->hasUnstyledKey() && GrAAType::kCoverage == args.fAAType;
if (!get_shape_and_clip_bounds(args.fRenderTargetContext->width(),
args.fRenderTargetContext->height(),
*args.fClip, *args.fShape,
*args.fViewMatrix, &unclippedDevShapeBounds,
&clippedDevShapeBounds,
&devClipBounds)) {
if (inverseFilled) {
DrawAroundInvPath(args.fRenderTargetContext, std::move(args.fPaint),
*args.fUserStencilSettings, *args.fClip, *args.fViewMatrix,
devClipBounds, unclippedDevShapeBounds);
}
return true;
}
const SkIRect* boundsForMask = &clippedDevShapeBounds;
if (useCache) {
// Use the cache only if >50% of the path is visible.
int unclippedWidth = unclippedDevShapeBounds.width();
int unclippedHeight = unclippedDevShapeBounds.height();
int unclippedArea = unclippedWidth * unclippedHeight;
int clippedArea = clippedDevShapeBounds.width() * clippedDevShapeBounds.height();
int maxTextureSize = args.fRenderTargetContext->caps()->maxTextureSize();
if (unclippedArea > 2 * clippedArea || unclippedWidth > maxTextureSize ||
unclippedHeight > maxTextureSize) {
useCache = false;
} else {
boundsForMask = &unclippedDevShapeBounds;
}
}
GrUniqueKey maskKey;
struct KeyData {
SkScalar fFractionalTranslateX;
SkScalar fFractionalTranslateY;
};
if (useCache) {
// We require the upper left 2x2 of the matrix to match exactly for a cache hit.
SkScalar sx = args.fViewMatrix->get(SkMatrix::kMScaleX);
SkScalar sy = args.fViewMatrix->get(SkMatrix::kMScaleY);
SkScalar kx = args.fViewMatrix->get(SkMatrix::kMSkewX);
SkScalar ky = args.fViewMatrix->get(SkMatrix::kMSkewY);
SkScalar tx = args.fViewMatrix->get(SkMatrix::kMTransX);
SkScalar ty = args.fViewMatrix->get(SkMatrix::kMTransY);
// Allow 8 bits each in x and y of subpixel positioning.
SkFixed fracX = SkScalarToFixed(SkScalarFraction(tx)) & 0x0000FF00;
SkFixed fracY = SkScalarToFixed(SkScalarFraction(ty)) & 0x0000FF00;
static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(&maskKey, kDomain, 5 + args.fShape->unstyledKeySize());
builder[0] = SkFloat2Bits(sx);
builder[1] = SkFloat2Bits(sy);
builder[2] = SkFloat2Bits(kx);
builder[3] = SkFloat2Bits(ky);
builder[4] = fracX | (fracY >> 8);
args.fShape->writeUnstyledKey(&builder[5]);
// FIXME: Doesn't the key need to consider whether we're using AA or not? In practice that
// should always be true, though.
}
sk_sp<GrTextureProxy> proxy;
if (useCache) {
proxy = fResourceProvider->findProxyByUniqueKey(maskKey);
}
if (!proxy) {
SkBackingFit fit = useCache ? SkBackingFit::kExact : SkBackingFit::kApprox;
GrAA aa = GrAAType::kCoverage == args.fAAType ? GrAA::kYes : GrAA::kNo;
proxy = GrSWMaskHelper::DrawShapeMaskToTexture(args.fContext, *args.fShape,
*boundsForMask, aa,
fit, args.fViewMatrix);
if (!proxy) {
return false;
}
if (useCache) {
fResourceProvider->assignUniqueKeyToProxy(maskKey, proxy.get());
}
}
if (inverseFilled) {
DrawAroundInvPath(args.fRenderTargetContext, GrPaint(args.fPaint),
*args.fUserStencilSettings, *args.fClip, *args.fViewMatrix, devClipBounds,
unclippedDevShapeBounds);
}
GrSWMaskHelper::DrawToTargetWithShapeMask(
std::move(proxy), args.fRenderTargetContext, std::move(args.fPaint),
*args.fUserStencilSettings, *args.fClip, *args.fViewMatrix,
SkIPoint{boundsForMask->fLeft, boundsForMask->fTop}, *boundsForMask);
return true;
}