| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "glsl/GrGLSLProgramBuilder.h" |
| |
| #include "GrPipeline.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLVarying.h" |
| #include "glsl/GrGLSLXferProcessor.h" |
| |
| const int GrGLSLProgramBuilder::kVarsPerBlock = 8; |
| |
| GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrPipeline& pipeline, |
| const GrPrimitiveProcessor& primProc, |
| const GrProgramDesc& desc) |
| : fVS(this) |
| , fGS(this) |
| , fFS(this) |
| , fStageIndex(-1) |
| , fPipeline(pipeline) |
| , fPrimProc(primProc) |
| , fDesc(desc) |
| , fGeometryProcessor(nullptr) |
| , fXferProcessor(nullptr) |
| , fNumVertexSamplers(0) |
| , fNumGeometrySamplers(0) |
| , fNumFragmentSamplers(0) { |
| } |
| |
| void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders, |
| uint32_t featureBit, |
| const char* extensionName) { |
| if (shaders & kVertex_GrShaderFlag) { |
| fVS.addFeature(featureBit, extensionName); |
| } |
| if (shaders & kGeometry_GrShaderFlag) { |
| SkASSERT(this->glslCaps()->geometryShaderSupport()); |
| fGS.addFeature(featureBit, extensionName); |
| } |
| if (shaders & kFragment_GrShaderFlag) { |
| fFS.addFeature(featureBit, extensionName); |
| } |
| } |
| |
| bool GrGLSLProgramBuilder::emitAndInstallProcs(GrGLSLExpr4* inputColor, |
| GrGLSLExpr4* inputCoverage) { |
| // First we loop over all of the installed processors and collect coord transforms. These will |
| // be sent to the GrGLSLPrimitiveProcessor in its emitCode function |
| const GrPrimitiveProcessor& primProc = this->primitiveProcessor(); |
| |
| for (int i = 0; i < this->pipeline().numFragmentProcessors(); i++) { |
| const GrFragmentProcessor& processor = this->pipeline().getFragmentProcessor(i); |
| |
| if (!primProc.hasTransformedLocalCoords()) { |
| SkTArray<const GrCoordTransform*, true>& procCoords = fCoordTransforms.push_back(); |
| processor.gatherCoordTransforms(&procCoords); |
| } |
| } |
| |
| this->emitAndInstallPrimProc(primProc, inputColor, inputCoverage); |
| |
| int numProcs = this->pipeline().numFragmentProcessors(); |
| this->emitAndInstallFragProcs(0, this->pipeline().numColorFragmentProcessors(), inputColor); |
| this->emitAndInstallFragProcs(this->pipeline().numColorFragmentProcessors(), numProcs, |
| inputCoverage); |
| if (primProc.getPixelLocalStorageState() != |
| GrPixelLocalStorageState::kDraw_GrPixelLocalStorageState) { |
| this->emitAndInstallXferProc(this->pipeline().getXferProcessor(), *inputColor, |
| *inputCoverage, this->pipeline().ignoresCoverage(), |
| primProc.getPixelLocalStorageState()); |
| this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput()); |
| } |
| |
| return this->checkSamplerCounts(); |
| } |
| |
| void GrGLSLProgramBuilder::emitAndInstallPrimProc(const GrPrimitiveProcessor& proc, |
| GrGLSLExpr4* outputColor, |
| GrGLSLExpr4* outputCoverage) { |
| // Program builders have a bit of state we need to clear with each effect |
| AutoStageAdvance adv(this); |
| this->nameExpression(outputColor, "outputColor"); |
| this->nameExpression(outputCoverage, "outputCoverage"); |
| |
| const char* distanceVectorName = nullptr; |
| if (this->fPipeline.usesDistanceVectorField() && proc.implementsDistanceVector()) { |
| distanceVectorName = fFS.distanceVectorName(); |
| fFS.codeAppend( "// Un-normalized vector to the closed geometric edge (in source space)\n"); |
| fFS.codeAppendf("vec2 %s;", distanceVectorName); |
| } |
| |
| // Enclose custom code in a block to avoid namespace conflicts |
| SkString openBrace; |
| openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| fVS.codeAppendf("// Primitive Processor %s\n", proc.name()); |
| |
| SkASSERT(!fGeometryProcessor); |
| fGeometryProcessor = proc.createGLSLInstance(*this->glslCaps()); |
| |
| SkSTArray<4, SamplerHandle> texSamplers(proc.numTextures()); |
| SkSTArray<2, SamplerHandle> bufferSamplers(proc.numBuffers()); |
| this->emitSamplers(proc, &texSamplers, &bufferSamplers); |
| |
| GrGLSLGeometryProcessor::EmitArgs args(&fVS, |
| &fFS, |
| this->varyingHandler(), |
| this->uniformHandler(), |
| this->glslCaps(), |
| proc, |
| outputColor->c_str(), |
| outputCoverage->c_str(), |
| distanceVectorName, |
| texSamplers.begin(), |
| bufferSamplers.begin(), |
| fCoordTransforms, |
| &fOutCoords); |
| fGeometryProcessor->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(proc);) |
| |
| fFS.codeAppend("}"); |
| } |
| |
| void GrGLSLProgramBuilder::emitAndInstallFragProcs(int procOffset, |
| int numProcs, |
| GrGLSLExpr4* inOut) { |
| for (int i = procOffset; i < numProcs; ++i) { |
| GrGLSLExpr4 output; |
| const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i); |
| this->emitAndInstallFragProc(fp, i, *inOut, &output); |
| *inOut = output; |
| } |
| } |
| |
| // TODO Processors cannot output zeros because an empty string is all 1s |
| // the fix is to allow effects to take the GrGLSLExpr4 directly |
| void GrGLSLProgramBuilder::emitAndInstallFragProc(const GrFragmentProcessor& fp, |
| int index, |
| const GrGLSLExpr4& input, |
| GrGLSLExpr4* output) { |
| // Program builders have a bit of state we need to clear with each effect |
| AutoStageAdvance adv(this); |
| this->nameExpression(output, "output"); |
| |
| // Enclose custom code in a block to avoid namespace conflicts |
| SkString openBrace; |
| openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| |
| GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance(); |
| |
| SkSTArray<4, SamplerHandle> texSamplers(fp.numTextures()); |
| SkSTArray<2, SamplerHandle> bufferSamplers(fp.numBuffers()); |
| this->emitSamplers(fp, &texSamplers, &bufferSamplers); |
| |
| GrGLSLFragmentProcessor::EmitArgs args(&fFS, |
| this->uniformHandler(), |
| this->glslCaps(), |
| fp, |
| output->c_str(), |
| input.isOnes() ? nullptr : input.c_str(), |
| fOutCoords[index], |
| texSamplers.begin(), |
| bufferSamplers.begin(), |
| this->primitiveProcessor().implementsDistanceVector()); |
| |
| fragProc->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(fp);) |
| fFragmentProcessors.push_back(fragProc); |
| |
| fFS.codeAppend("}"); |
| } |
| |
| void GrGLSLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp, |
| const GrGLSLExpr4& colorIn, |
| const GrGLSLExpr4& coverageIn, |
| bool ignoresCoverage, |
| GrPixelLocalStorageState plsState) { |
| // Program builders have a bit of state we need to clear with each effect |
| AutoStageAdvance adv(this); |
| |
| SkASSERT(!fXferProcessor); |
| fXferProcessor = xp.createGLSLInstance(); |
| |
| // Enable dual source secondary output if we have one |
| if (xp.hasSecondaryOutput()) { |
| fFS.enableSecondaryOutput(); |
| } |
| |
| if (this->glslCaps()->mustDeclareFragmentShaderOutput()) { |
| fFS.enableCustomOutput(); |
| } |
| |
| SkString openBrace; |
| openBrace.printf("{ // Xfer Processor: %s\n", xp.name()); |
| fFS.codeAppend(openBrace.c_str()); |
| |
| SkSTArray<4, SamplerHandle> texSamplers(xp.numTextures()); |
| SkSTArray<2, SamplerHandle> bufferSamplers(xp.numBuffers()); |
| this->emitSamplers(xp, &texSamplers, &bufferSamplers); |
| |
| bool usePLSDstRead = (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState); |
| GrGLSLXferProcessor::EmitArgs args(&fFS, |
| this->uniformHandler(), |
| this->glslCaps(), |
| xp, colorIn.c_str(), |
| ignoresCoverage ? nullptr : coverageIn.c_str(), |
| fFS.getPrimaryColorOutputName(), |
| fFS.getSecondaryColorOutputName(), |
| texSamplers.begin(), |
| bufferSamplers.begin(), |
| usePLSDstRead); |
| fXferProcessor->emitCode(args); |
| |
| // We have to check that effects and the code they emit are consistent, ie if an effect |
| // asks for dst color, then the emit code needs to follow suit |
| SkDEBUGCODE(verify(xp);) |
| fFS.codeAppend("}"); |
| } |
| |
| void GrGLSLProgramBuilder::emitSamplers(const GrProcessor& processor, |
| SkTArray<SamplerHandle>* outTexSamplers, |
| SkTArray<SamplerHandle>* outBufferSamplers) { |
| SkString name; |
| int numTextures = processor.numTextures(); |
| for (int t = 0; t < numTextures; ++t) { |
| const GrTextureAccess& access = processor.textureAccess(t); |
| GrSLType samplerType = access.getTexture()->samplerType(); |
| if (kTextureExternalSampler_GrSLType == samplerType) { |
| const char* externalFeatureString = this->glslCaps()->externalTextureExtensionString(); |
| // We shouldn't ever create a GrGLTexture that requires external sampler type |
| SkASSERT(externalFeatureString); |
| this->addFeature(access.getVisibility(), |
| 1 << GrGLSLShaderBuilder::kExternalTexture_GLSLPrivateFeature, |
| externalFeatureString); |
| } |
| name.printf("TextureSampler%d", t); |
| this->emitSampler(samplerType, access.getTexture()->config(), |
| name.c_str(), access.getVisibility(), outTexSamplers); |
| } |
| |
| if (int numBuffers = processor.numBuffers()) { |
| SkASSERT(this->glslCaps()->texelBufferSupport()); |
| GrShaderFlags texelBufferVisibility = kNone_GrShaderFlags; |
| |
| for (int b = 0; b < numBuffers; ++b) { |
| const GrBufferAccess& access = processor.bufferAccess(b); |
| name.printf("BufferSampler%d", b); |
| this->emitSampler(kTextureBufferSampler_GrSLType, access.texelConfig(), name.c_str(), |
| access.visibility(), outBufferSamplers); |
| texelBufferVisibility |= access.visibility(); |
| } |
| |
| if (const char* extension = this->glslCaps()->texelBufferExtensionString()) { |
| this->addFeature(texelBufferVisibility, |
| 1 << GrGLSLShaderBuilder::kTexelBuffer_GLSLPrivateFeature, |
| extension); |
| } |
| } |
| } |
| |
| void GrGLSLProgramBuilder::emitSampler(GrSLType samplerType, |
| GrPixelConfig config, |
| const char* name, |
| GrShaderFlags visibility, |
| SkTArray<SamplerHandle>* outSamplers) { |
| if (visibility & kVertex_GrShaderFlag) { |
| ++fNumVertexSamplers; |
| } |
| if (visibility & kGeometry_GrShaderFlag) { |
| SkASSERT(this->primitiveProcessor().willUseGeoShader()); |
| ++fNumGeometrySamplers; |
| } |
| if (visibility & kFragment_GrShaderFlag) { |
| ++fNumFragmentSamplers; |
| } |
| GrSLPrecision precision = this->glslCaps()->samplerPrecision(config, visibility); |
| SamplerHandle handle = this->uniformHandler()->addSampler(visibility, |
| config, |
| samplerType, |
| precision, |
| name); |
| outSamplers->emplace_back(handle); |
| } |
| |
| void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) { |
| // Swizzle the fragment shader outputs if necessary. |
| GrSwizzle swizzle; |
| swizzle.setFromKey(this->desc().header().fOutputSwizzle); |
| if (swizzle != GrSwizzle::RGBA()) { |
| fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(), |
| fFS.getPrimaryColorOutputName(), |
| swizzle.c_str()); |
| if (hasSecondaryOutput) { |
| fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(), |
| fFS.getSecondaryColorOutputName(), |
| swizzle.c_str()); |
| } |
| } |
| } |
| |
| bool GrGLSLProgramBuilder::checkSamplerCounts() { |
| const GrGLSLCaps& glslCaps = *this->glslCaps(); |
| if (fNumVertexSamplers > glslCaps.maxVertexSamplers()) { |
| GrCapsDebugf(this->caps(), "Program would use too many vertex samplers\n"); |
| return false; |
| } |
| if (fNumGeometrySamplers > glslCaps.maxGeometrySamplers()) { |
| GrCapsDebugf(this->caps(), "Program would use too many geometry samplers\n"); |
| return false; |
| } |
| if (fNumFragmentSamplers > glslCaps.maxFragmentSamplers()) { |
| GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n"); |
| return false; |
| } |
| // If the same sampler is used in two different shaders, it counts as two combined samplers. |
| int numCombinedSamplers = fNumVertexSamplers + fNumGeometrySamplers + fNumFragmentSamplers; |
| if (numCombinedSamplers > glslCaps.maxCombinedSamplers()) { |
| GrCapsDebugf(this->caps(), "Program would use too many combined samplers\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| #ifdef SK_DEBUG |
| void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) { |
| SkASSERT(fFS.usedProcessorFeatures() == gp.requiredFeatures()); |
| } |
| |
| void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) { |
| SkASSERT(fFS.usedProcessorFeatures() == xp.requiredFeatures()); |
| SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor()); |
| } |
| |
| void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) { |
| SkASSERT(fFS.usedProcessorFeatures() == fp.requiredFeatures()); |
| } |
| #endif |
| |
| void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) { |
| if ('\0' == prefix) { |
| *out = name; |
| } else { |
| out->printf("%c%s", prefix, name); |
| } |
| if (mangle) { |
| if (out->endsWith('_')) { |
| // Names containing "__" are reserved. |
| out->append("x"); |
| } |
| out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str()); |
| } |
| } |
| |
| void GrGLSLProgramBuilder::nameExpression(GrGLSLExpr4* output, const char* baseName) { |
| // create var to hold stage result. If we already have a valid output name, just use that |
| // otherwise create a new mangled one. This name is only valid if we are reordering stages |
| // and have to tell stage exactly where to put its output. |
| SkString outName; |
| if (output->isValid()) { |
| outName = output->c_str(); |
| } else { |
| this->nameVariable(&outName, '\0', baseName); |
| } |
| fFS.codeAppendf("vec4 %s;", outName.c_str()); |
| *output = outName; |
| } |
| |
| void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const { |
| this->uniformHandler()->appendUniformDecls(visibility, out); |
| } |
| |
| const GrGLSLSampler& GrGLSLProgramBuilder::getSampler(SamplerHandle handle) const { |
| return this->uniformHandler()->getSampler(handle); |
| } |
| |
| void GrGLSLProgramBuilder::addRTAdjustmentUniform(GrSLPrecision precision, |
| const char* name, |
| const char** outName) { |
| SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid()); |
| fUniformHandles.fRTAdjustmentUni = |
| this->uniformHandler()->addUniform(kVertex_GrShaderFlag, |
| kVec4f_GrSLType, |
| precision, |
| name, |
| outName); |
| } |
| |
| void GrGLSLProgramBuilder::addRTHeightUniform(const char* name, const char** outName) { |
| SkASSERT(!fUniformHandles.fRTHeightUni.isValid()); |
| GrGLSLUniformHandler* uniformHandler = this->uniformHandler(); |
| fUniformHandles.fRTHeightUni = |
| uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, |
| kFloat_GrSLType, kDefault_GrSLPrecision, |
| name, false, 0, outName); |
| } |
| |
| void GrGLSLProgramBuilder::cleanupFragmentProcessors() { |
| for (int i = 0; i < fFragmentProcessors.count(); ++i) { |
| delete fFragmentProcessors[i]; |
| } |
| } |
| |
| void GrGLSLProgramBuilder::finalizeShaders() { |
| this->varyingHandler()->finalize(); |
| fVS.finalize(kVertex_GrShaderFlag); |
| fFS.finalize(kFragment_GrShaderFlag); |
| |
| } |