| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkIntersections.h" |
| #include "SkPathOpsCubic.h" |
| #include "SkPathOpsLine.h" |
| |
| /* |
| Find the interection of a line and cubic by solving for valid t values. |
| |
| Analogous to line-quadratic intersection, solve line-cubic intersection by |
| representing the cubic as: |
| x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 |
| y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 |
| and the line as: |
| y = i*x + j (if the line is more horizontal) |
| or: |
| x = i*y + j (if the line is more vertical) |
| |
| Then using Mathematica, solve for the values of t where the cubic intersects the |
| line: |
| |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] |
| (out) -e + j + |
| 3 e t - 3 f t - |
| 3 e t^2 + 6 f t^2 - 3 g t^2 + |
| e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + |
| i ( a - |
| 3 a t + 3 b t + |
| 3 a t^2 - 6 b t^2 + 3 c t^2 - |
| a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) |
| |
| if i goes to infinity, we can rewrite the line in terms of x. Mathematica: |
| |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
| (out) a - j - |
| 3 a t + 3 b t + |
| 3 a t^2 - 6 b t^2 + 3 c t^2 - |
| a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - |
| i ( e - |
| 3 e t + 3 f t + |
| 3 e t^2 - 6 f t^2 + 3 g t^2 - |
| e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) |
| |
| Solving this with Mathematica produces an expression with hundreds of terms; |
| instead, use Numeric Solutions recipe to solve the cubic. |
| |
| The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
| A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) |
| B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) |
| C = 3*(-(-e + f ) + i*(-a + b ) ) |
| D = (-( e ) + i*( a ) + j ) |
| |
| The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 |
| A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) |
| B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) |
| C = 3*( (-a + b ) - i*(-e + f ) ) |
| D = ( ( a ) - i*( e ) - j ) |
| |
| For horizontal lines: |
| (in) Resultant[ |
| a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, |
| e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] |
| (out) e - j - |
| 3 e t + 3 f t + |
| 3 e t^2 - 6 f t^2 + 3 g t^2 - |
| e t^3 + 3 f t^3 - 3 g t^3 + h t^3 |
| */ |
| |
| class LineCubicIntersections { |
| public: |
| enum PinTPoint { |
| kPointUninitialized, |
| kPointInitialized |
| }; |
| |
| LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i) |
| : fCubic(c) |
| , fLine(l) |
| , fIntersections(i) |
| , fAllowNear(true) { |
| i->setMax(3); |
| } |
| |
| void allowNear(bool allow) { |
| fAllowNear = allow; |
| } |
| |
| void checkCoincident() { |
| int last = fIntersections->used() - 1; |
| for (int index = 0; index < last; ) { |
| double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2; |
| SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); |
| double t = fLine.nearPoint(cubicMidPt, nullptr); |
| if (t < 0) { |
| ++index; |
| continue; |
| } |
| if (fIntersections->isCoincident(index)) { |
| fIntersections->removeOne(index); |
| --last; |
| } else if (fIntersections->isCoincident(index + 1)) { |
| fIntersections->removeOne(index + 1); |
| --last; |
| } else { |
| fIntersections->setCoincident(index++); |
| } |
| fIntersections->setCoincident(index); |
| } |
| } |
| |
| // see parallel routine in line quadratic intersections |
| int intersectRay(double roots[3]) { |
| double adj = fLine[1].fX - fLine[0].fX; |
| double opp = fLine[1].fY - fLine[0].fY; |
| SkDCubic c; |
| for (int n = 0; n < 4; ++n) { |
| c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp; |
| } |
| double A, B, C, D; |
| SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); |
| int count = SkDCubic::RootsValidT(A, B, C, D, roots); |
| for (int index = 0; index < count; ++index) { |
| SkDPoint calcPt = c.ptAtT(roots[index]); |
| if (!approximately_zero(calcPt.fX)) { |
| for (int n = 0; n < 4; ++n) { |
| c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp |
| + (fCubic[n].fX - fLine[0].fX) * adj; |
| } |
| double extremeTs[6]; |
| int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); |
| count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots); |
| break; |
| } |
| } |
| return count; |
| } |
| |
| int intersect() { |
| addExactEndPoints(); |
| if (fAllowNear) { |
| addNearEndPoints(); |
| } |
| double rootVals[3]; |
| int roots = intersectRay(rootVals); |
| for (int index = 0; index < roots; ++index) { |
| double cubicT = rootVals[index]; |
| double lineT = findLineT(cubicT); |
| SkDPoint pt; |
| if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) { |
| fIntersections->insert(cubicT, lineT, pt); |
| } |
| } |
| checkCoincident(); |
| return fIntersections->used(); |
| } |
| |
| static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { |
| double A, B, C, D; |
| SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D); |
| D -= axisIntercept; |
| int count = SkDCubic::RootsValidT(A, B, C, D, roots); |
| for (int index = 0; index < count; ++index) { |
| SkDPoint calcPt = c.ptAtT(roots[index]); |
| if (!approximately_equal(calcPt.fY, axisIntercept)) { |
| double extremeTs[6]; |
| int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs); |
| count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots); |
| break; |
| } |
| } |
| return count; |
| } |
| |
| int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
| addExactHorizontalEndPoints(left, right, axisIntercept); |
| if (fAllowNear) { |
| addNearHorizontalEndPoints(left, right, axisIntercept); |
| } |
| double roots[3]; |
| int count = HorizontalIntersect(fCubic, axisIntercept, roots); |
| for (int index = 0; index < count; ++index) { |
| double cubicT = roots[index]; |
| SkDPoint pt = { fCubic.ptAtT(cubicT).fX, axisIntercept }; |
| double lineT = (pt.fX - left) / (right - left); |
| if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { |
| fIntersections->insert(cubicT, lineT, pt); |
| } |
| } |
| if (flipped) { |
| fIntersections->flip(); |
| } |
| checkCoincident(); |
| return fIntersections->used(); |
| } |
| |
| bool uniqueAnswer(double cubicT, const SkDPoint& pt) { |
| for (int inner = 0; inner < fIntersections->used(); ++inner) { |
| if (fIntersections->pt(inner) != pt) { |
| continue; |
| } |
| double existingCubicT = (*fIntersections)[0][inner]; |
| if (cubicT == existingCubicT) { |
| return false; |
| } |
| // check if midway on cubic is also same point. If so, discard this |
| double cubicMidT = (existingCubicT + cubicT) / 2; |
| SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT); |
| if (cubicMidPt.approximatelyEqual(pt)) { |
| return false; |
| } |
| } |
| #if ONE_OFF_DEBUG |
| SkDPoint cPt = fCubic.ptAtT(cubicT); |
| SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY, |
| cPt.fX, cPt.fY); |
| #endif |
| return true; |
| } |
| |
| static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) { |
| double A, B, C, D; |
| SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D); |
| D -= axisIntercept; |
| int count = SkDCubic::RootsValidT(A, B, C, D, roots); |
| for (int index = 0; index < count; ++index) { |
| SkDPoint calcPt = c.ptAtT(roots[index]); |
| if (!approximately_equal(calcPt.fX, axisIntercept)) { |
| double extremeTs[6]; |
| int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs); |
| count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots); |
| break; |
| } |
| } |
| return count; |
| } |
| |
| int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
| addExactVerticalEndPoints(top, bottom, axisIntercept); |
| if (fAllowNear) { |
| addNearVerticalEndPoints(top, bottom, axisIntercept); |
| } |
| double roots[3]; |
| int count = VerticalIntersect(fCubic, axisIntercept, roots); |
| for (int index = 0; index < count; ++index) { |
| double cubicT = roots[index]; |
| SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY }; |
| double lineT = (pt.fY - top) / (bottom - top); |
| if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) { |
| fIntersections->insert(cubicT, lineT, pt); |
| } |
| } |
| if (flipped) { |
| fIntersections->flip(); |
| } |
| checkCoincident(); |
| return fIntersections->used(); |
| } |
| |
| protected: |
| |
| void addExactEndPoints() { |
| for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
| double lineT = fLine.exactPoint(fCubic[cIndex]); |
| if (lineT < 0) { |
| continue; |
| } |
| double cubicT = (double) (cIndex >> 1); |
| fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
| } |
| } |
| |
| /* Note that this does not look for endpoints of the line that are near the cubic. |
| These points are found later when check ends looks for missing points */ |
| void addNearEndPoints() { |
| for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
| double cubicT = (double) (cIndex >> 1); |
| if (fIntersections->hasT(cubicT)) { |
| continue; |
| } |
| double lineT = fLine.nearPoint(fCubic[cIndex], nullptr); |
| if (lineT < 0) { |
| continue; |
| } |
| fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
| } |
| } |
| |
| void addExactHorizontalEndPoints(double left, double right, double y) { |
| for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
| double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y); |
| if (lineT < 0) { |
| continue; |
| } |
| double cubicT = (double) (cIndex >> 1); |
| fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
| } |
| } |
| |
| void addNearHorizontalEndPoints(double left, double right, double y) { |
| for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
| double cubicT = (double) (cIndex >> 1); |
| if (fIntersections->hasT(cubicT)) { |
| continue; |
| } |
| double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y); |
| if (lineT < 0) { |
| continue; |
| } |
| fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
| } |
| // FIXME: see if line end is nearly on cubic |
| } |
| |
| void addExactVerticalEndPoints(double top, double bottom, double x) { |
| for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
| double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x); |
| if (lineT < 0) { |
| continue; |
| } |
| double cubicT = (double) (cIndex >> 1); |
| fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
| } |
| } |
| |
| void addNearVerticalEndPoints(double top, double bottom, double x) { |
| for (int cIndex = 0; cIndex < 4; cIndex += 3) { |
| double cubicT = (double) (cIndex >> 1); |
| if (fIntersections->hasT(cubicT)) { |
| continue; |
| } |
| double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x); |
| if (lineT < 0) { |
| continue; |
| } |
| fIntersections->insert(cubicT, lineT, fCubic[cIndex]); |
| } |
| // FIXME: see if line end is nearly on cubic |
| } |
| |
| double findLineT(double t) { |
| SkDPoint xy = fCubic.ptAtT(t); |
| double dx = fLine[1].fX - fLine[0].fX; |
| double dy = fLine[1].fY - fLine[0].fY; |
| if (fabs(dx) > fabs(dy)) { |
| return (xy.fX - fLine[0].fX) / dx; |
| } |
| return (xy.fY - fLine[0].fY) / dy; |
| } |
| |
| bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) { |
| if (!approximately_one_or_less(*lineT)) { |
| return false; |
| } |
| if (!approximately_zero_or_more(*lineT)) { |
| return false; |
| } |
| double cT = *cubicT = SkPinT(*cubicT); |
| double lT = *lineT = SkPinT(*lineT); |
| SkDPoint lPt = fLine.ptAtT(lT); |
| SkDPoint cPt = fCubic.ptAtT(cT); |
| if (!lPt.roughlyEqual(cPt)) { |
| return false; |
| } |
| // FIXME: if points are roughly equal but not approximately equal, need to do |
| // a binary search like quad/quad intersection to find more precise t values |
| if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) { |
| *pt = lPt; |
| } else if (ptSet == kPointUninitialized) { |
| *pt = cPt; |
| } |
| SkPoint gridPt = pt->asSkPoint(); |
| if (gridPt == fLine[0].asSkPoint()) { |
| *lineT = 0; |
| } else if (gridPt == fLine[1].asSkPoint()) { |
| *lineT = 1; |
| } |
| if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) { |
| *cubicT = 0; |
| } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) { |
| *cubicT = 1; |
| } |
| return true; |
| } |
| |
| private: |
| const SkDCubic& fCubic; |
| const SkDLine& fLine; |
| SkIntersections* fIntersections; |
| bool fAllowNear; |
| }; |
| |
| int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y, |
| bool flipped) { |
| SkDLine line = {{{ left, y }, { right, y }}}; |
| LineCubicIntersections c(cubic, line, this); |
| return c.horizontalIntersect(y, left, right, flipped); |
| } |
| |
| int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x, |
| bool flipped) { |
| SkDLine line = {{{ x, top }, { x, bottom }}}; |
| LineCubicIntersections c(cubic, line, this); |
| return c.verticalIntersect(x, top, bottom, flipped); |
| } |
| |
| int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) { |
| LineCubicIntersections c(cubic, line, this); |
| c.allowNear(fAllowNear); |
| return c.intersect(); |
| } |
| |
| int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) { |
| LineCubicIntersections c(cubic, line, this); |
| fUsed = c.intersectRay(fT[0]); |
| for (int index = 0; index < fUsed; ++index) { |
| fPt[index] = cubic.ptAtT(fT[0][index]); |
| } |
| return fUsed; |
| } |
| |
| // SkDCubic accessors to Intersection utilities |
| |
| int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const { |
| return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots); |
| } |
| |
| int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const { |
| return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots); |
| } |