| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/SkSLIRGenerator.h" |
| |
| #include "limits.h" |
| #include <iterator> |
| #include <memory> |
| #include <unordered_set> |
| |
| #include "include/private/SkTArray.h" |
| #include "src/core/SkScopeExit.h" |
| #include "src/sksl/SkSLAnalysis.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLConstantFolder.h" |
| #include "src/sksl/SkSLOperators.h" |
| #include "src/sksl/SkSLParser.h" |
| #include "src/sksl/SkSLUtil.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBoolLiteral.h" |
| #include "src/sksl/ir/SkSLBreakStatement.h" |
| #include "src/sksl/ir/SkSLConstructor.h" |
| #include "src/sksl/ir/SkSLContinueStatement.h" |
| #include "src/sksl/ir/SkSLDiscardStatement.h" |
| #include "src/sksl/ir/SkSLDoStatement.h" |
| #include "src/sksl/ir/SkSLEnum.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExternalFunctionCall.h" |
| #include "src/sksl/ir/SkSLExternalFunctionReference.h" |
| #include "src/sksl/ir/SkSLField.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLFloatLiteral.h" |
| #include "src/sksl/ir/SkSLForStatement.h" |
| #include "src/sksl/ir/SkSLFunctionCall.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLFunctionDefinition.h" |
| #include "src/sksl/ir/SkSLFunctionPrototype.h" |
| #include "src/sksl/ir/SkSLFunctionReference.h" |
| #include "src/sksl/ir/SkSLIfStatement.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLIntLiteral.h" |
| #include "src/sksl/ir/SkSLInterfaceBlock.h" |
| #include "src/sksl/ir/SkSLLayout.h" |
| #include "src/sksl/ir/SkSLNop.h" |
| #include "src/sksl/ir/SkSLPostfixExpression.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLReturnStatement.h" |
| #include "src/sksl/ir/SkSLSetting.h" |
| #include "src/sksl/ir/SkSLStructDefinition.h" |
| #include "src/sksl/ir/SkSLSwitchCase.h" |
| #include "src/sksl/ir/SkSLSwitchStatement.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLUnresolvedFunction.h" |
| #include "src/sksl/ir/SkSLVarDeclarations.h" |
| #include "src/sksl/ir/SkSLVariable.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| namespace SkSL { |
| |
| class AutoSymbolTable { |
| public: |
| AutoSymbolTable(IRGenerator* ir) |
| : fIR(ir) |
| , fPrevious(fIR->fSymbolTable) { |
| fIR->pushSymbolTable(); |
| } |
| |
| ~AutoSymbolTable() { |
| fIR->popSymbolTable(); |
| SkASSERT(fPrevious == fIR->fSymbolTable); |
| } |
| |
| IRGenerator* fIR; |
| std::shared_ptr<SymbolTable> fPrevious; |
| }; |
| |
| IRGenerator::IRGenerator(const Context* context) |
| : fContext(*context) |
| , fModifiers(new ModifiersPool()) {} |
| |
| void IRGenerator::pushSymbolTable() { |
| auto childSymTable = std::make_shared<SymbolTable>(std::move(fSymbolTable), fIsBuiltinCode); |
| fSymbolTable = std::move(childSymTable); |
| } |
| |
| void IRGenerator::popSymbolTable() { |
| fSymbolTable = fSymbolTable->fParent; |
| } |
| |
| bool IRGenerator::detectVarDeclarationWithoutScope(const Statement& stmt) { |
| // Parsing an AST node containing a single variable declaration creates a lone VarDeclaration |
| // statement. An AST with multiple variable declarations creates an unscoped Block containing |
| // multiple VarDeclaration statements. We need to detect either case. |
| const Variable* var; |
| if (stmt.is<VarDeclaration>()) { |
| // The single-variable case. No blocks at all. |
| var = &stmt.as<VarDeclaration>().var(); |
| } else if (stmt.is<Block>()) { |
| // The multiple-variable case: an unscoped, non-empty block... |
| const Block& block = stmt.as<Block>(); |
| if (block.isScope() || block.children().empty()) { |
| return false; |
| } |
| // ... holding a variable declaration. |
| const Statement& innerStmt = *block.children().front(); |
| if (!innerStmt.is<VarDeclaration>()) { |
| return false; |
| } |
| var = &innerStmt.as<VarDeclaration>().var(); |
| } else { |
| // This statement wasn't a variable declaration. No problem. |
| return false; |
| } |
| |
| // Report an error. |
| SkASSERT(var); |
| this->errorReporter().error(stmt.fOffset, |
| "variable '" + var->name() + "' must be created in a scope"); |
| return true; |
| } |
| |
| std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) { |
| if (this->programKind() != ProgramKind::kFragment && |
| this->programKind() != ProgramKind::kVertex && |
| this->programKind() != ProgramKind::kGeometry) { |
| this->errorReporter().error(offset, "extensions are not allowed here"); |
| return nullptr; |
| } |
| |
| return std::make_unique<Extension>(offset, name); |
| } |
| |
| std::unique_ptr<ModifiersPool> IRGenerator::releaseModifiers() { |
| std::unique_ptr<ModifiersPool> result = std::move(fModifiers); |
| fModifiers = std::make_unique<ModifiersPool>(); |
| return result; |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertSingleStatement(const ASTNode& statement) { |
| switch (statement.fKind) { |
| case ASTNode::Kind::kBlock: |
| return this->convertBlock(statement); |
| case ASTNode::Kind::kVarDeclarations: |
| return this->convertVarDeclarationStatement(statement); |
| case ASTNode::Kind::kIf: |
| return this->convertIf(statement); |
| case ASTNode::Kind::kFor: |
| return this->convertFor(statement); |
| case ASTNode::Kind::kWhile: |
| return this->convertWhile(statement); |
| case ASTNode::Kind::kDo: |
| return this->convertDo(statement); |
| case ASTNode::Kind::kSwitch: |
| return this->convertSwitch(statement); |
| case ASTNode::Kind::kReturn: |
| return this->convertReturn(statement); |
| case ASTNode::Kind::kBreak: |
| return this->convertBreak(statement); |
| case ASTNode::Kind::kContinue: |
| return this->convertContinue(statement); |
| case ASTNode::Kind::kDiscard: |
| return this->convertDiscard(statement); |
| case ASTNode::Kind::kType: |
| // TODO: add IRNode for struct definition inside a function |
| return nullptr; |
| default: |
| // it's an expression |
| std::unique_ptr<Statement> result = this->convertExpressionStatement(statement); |
| if (fRTAdjust && this->programKind() == ProgramKind::kGeometry) { |
| SkASSERT(result->kind() == Statement::Kind::kExpression); |
| Expression& expr = *result->as<ExpressionStatement>().expression(); |
| if (expr.kind() == Expression::Kind::kFunctionCall) { |
| FunctionCall& fc = expr.as<FunctionCall>(); |
| if (fc.function().isBuiltin() && fc.function().name() == "EmitVertex") { |
| StatementArray statements; |
| statements.reserve_back(2); |
| statements.push_back(getNormalizeSkPositionCode()); |
| statements.push_back(std::move(result)); |
| return std::make_unique<Block>(statement.fOffset, std::move(statements), |
| fSymbolTable); |
| } |
| } |
| } |
| return result; |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) { |
| StatementArray oldExtraStatements = std::move(fExtraStatements); |
| std::unique_ptr<Statement> result = this->convertSingleStatement(statement); |
| if (!result) { |
| fExtraStatements = std::move(oldExtraStatements); |
| return nullptr; |
| } |
| if (fExtraStatements.size()) { |
| fExtraStatements.push_back(std::move(result)); |
| auto block = std::make_unique<Block>(/*offset=*/-1, std::move(fExtraStatements), |
| /*symbols=*/nullptr, /*isScope=*/false); |
| fExtraStatements = std::move(oldExtraStatements); |
| return std::move(block); |
| } |
| fExtraStatements = std::move(oldExtraStatements); |
| return result; |
| } |
| |
| std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) { |
| SkASSERT(block.fKind == ASTNode::Kind::kBlock); |
| AutoSymbolTable table(this); |
| StatementArray statements; |
| for (const auto& child : block) { |
| std::unique_ptr<Statement> statement = this->convertStatement(child); |
| if (!statement) { |
| return nullptr; |
| } |
| statements.push_back(std::move(statement)); |
| } |
| return std::make_unique<Block>(block.fOffset, std::move(statements), fSymbolTable); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) { |
| SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations); |
| auto decls = this->convertVarDeclarations(s, Variable::Storage::kLocal); |
| if (decls.empty()) { |
| return nullptr; |
| } |
| if (decls.size() == 1) { |
| return std::move(decls.front()); |
| } else { |
| return std::make_unique<Block>(s.fOffset, std::move(decls), /*symbols=*/nullptr, |
| /*isScope=*/false); |
| } |
| } |
| |
| int IRGenerator::convertArraySize(const Type& type, int offset, const ASTNode& s) { |
| if (!s) { |
| this->errorReporter().error(offset, "array must have a size"); |
| return 0; |
| } |
| auto size = this->convertExpression(s); |
| if (!size) { |
| return 0; |
| } |
| return this->convertArraySize(type, std::move(size)); |
| } |
| |
| int IRGenerator::convertArraySize(const Type& type, std::unique_ptr<Expression> size) { |
| size = this->coerce(std::move(size), *fContext.fTypes.fInt); |
| if (!size) { |
| return 0; |
| } |
| if (type == *fContext.fTypes.fVoid) { |
| this->errorReporter().error(size->fOffset, "type 'void' may not be used in an array"); |
| return 0; |
| } |
| if (type.isOpaque()) { |
| this->errorReporter().error( |
| size->fOffset, "opaque type '" + type.name() + "' may not be used in an array"); |
| return 0; |
| } |
| if (!size->is<IntLiteral>()) { |
| this->errorReporter().error(size->fOffset, "array size must be an integer"); |
| return 0; |
| } |
| SKSL_INT count = size->as<IntLiteral>().value(); |
| if (count <= 0) { |
| this->errorReporter().error(size->fOffset, "array size must be positive"); |
| return 0; |
| } |
| if (!SkTFitsIn<int>(count)) { |
| this->errorReporter().error(size->fOffset, "array size is too large"); |
| return 0; |
| } |
| return static_cast<int>(count); |
| } |
| |
| void IRGenerator::checkVarDeclaration(int offset, const Modifiers& modifiers, const Type* baseType, |
| Variable::Storage storage) { |
| if (this->strictES2Mode() && baseType->isArray()) { |
| this->errorReporter().error(offset, "array size must appear after variable name"); |
| } |
| |
| if (baseType->componentType().isOpaque() && storage != Variable::Storage::kGlobal) { |
| this->errorReporter().error( |
| offset, |
| "variables of type '" + baseType->displayName() + "' must be global"); |
| } |
| if (this->programKind() != ProgramKind::kFragmentProcessor) { |
| if ((modifiers.fFlags & Modifiers::kIn_Flag) && baseType->isMatrix()) { |
| this->errorReporter().error(offset, "'in' variables may not have matrix type"); |
| } |
| if ((modifiers.fFlags & Modifiers::kIn_Flag) && |
| (modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| this->errorReporter().error( |
| offset, |
| "'in uniform' variables only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fWhen.fLength) { |
| this->errorReporter().error(offset, |
| "'when' is only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) { |
| this->errorReporter().error(offset, |
| "'tracked' is only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fCType != Layout::CType::kDefault) { |
| this->errorReporter().error(offset, |
| "'ctype' is only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fFlags & Layout::kKey_Flag) { |
| this->errorReporter().error(offset, |
| "'key' is only permitted within fragment processors"); |
| } |
| } |
| if (this->programKind() == ProgramKind::kRuntimeEffect) { |
| if ((modifiers.fFlags & Modifiers::kIn_Flag) && |
| *baseType != *fContext.fTypes.fFragmentProcessor) { |
| this->errorReporter().error(offset, |
| "'in' variables not permitted in runtime effects"); |
| } |
| } |
| if ((modifiers.fLayout.fFlags & Layout::kKey_Flag) && |
| (modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| this->errorReporter().error(offset, "'key' is not permitted on 'uniform' variables"); |
| } |
| if (modifiers.fLayout.fMarker.fLength) { |
| if (this->programKind() != ProgramKind::kRuntimeEffect) { |
| this->errorReporter().error(offset, |
| "'marker' is only permitted in runtime effects"); |
| } |
| if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| this->errorReporter().error(offset, |
| "'marker' is only permitted on 'uniform' variables"); |
| } |
| if (*baseType != *fContext.fTypes.fFloat4x4) { |
| this->errorReporter().error(offset, |
| "'marker' is only permitted on float4x4 variables"); |
| } |
| } |
| if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) { |
| if (this->programKind() != ProgramKind::kRuntimeEffect) { |
| this->errorReporter().error(offset, |
| "'srgb_unpremul' is only permitted in runtime effects"); |
| } |
| if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| this->errorReporter().error(offset, |
| "'srgb_unpremul' is only permitted on 'uniform' variables"); |
| } |
| auto validColorXformType = [](const Type& t) { |
| return t.isVector() && t.componentType().isFloat() && |
| (t.columns() == 3 || t.columns() == 4); |
| }; |
| if (!validColorXformType(*baseType) && !(baseType->isArray() && |
| validColorXformType(baseType->componentType()))) { |
| this->errorReporter().error(offset, |
| "'srgb_unpremul' is only permitted on half3, half4, " |
| "float3, or float4 variables"); |
| } |
| } |
| if (modifiers.fFlags & Modifiers::kVarying_Flag) { |
| if (this->programKind() != ProgramKind::kRuntimeEffect) { |
| this->errorReporter().error(offset, "'varying' is only permitted in runtime effects"); |
| } |
| if (!baseType->isFloat() && |
| !(baseType->isVector() && baseType->componentType().isFloat())) { |
| this->errorReporter().error(offset, "'varying' must be float scalar or vector"); |
| } |
| } |
| int permitted = Modifiers::kConst_Flag; |
| if (storage == Variable::Storage::kGlobal) { |
| permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag | |
| Modifiers::kFlat_Flag | Modifiers::kVarying_Flag | |
| Modifiers::kNoPerspective_Flag; |
| } |
| // TODO(skbug.com/11301): Migrate above checks into building a mask of permitted layout flags |
| this->checkModifiers(offset, modifiers, permitted, /*permittedLayoutFlags=*/~0); |
| } |
| |
| std::unique_ptr<Variable> IRGenerator::convertVar(int offset, const Modifiers& modifiers, |
| const Type* baseType, StringFragment name, |
| bool isArray, |
| std::unique_ptr<Expression> arraySize, |
| Variable::Storage storage) { |
| if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 && |
| (modifiers.fFlags & Modifiers::kOut_Flag) && |
| this->programKind() == ProgramKind::kFragment && name != "sk_FragColor") { |
| this->errorReporter().error(offset, |
| "out location=0, index=0 is reserved for sk_FragColor"); |
| } |
| const Type* type = baseType; |
| int arraySizeValue = 0; |
| if (isArray) { |
| SkASSERT(arraySize); |
| arraySizeValue = this->convertArraySize(*type, std::move(arraySize)); |
| if (!arraySizeValue) { |
| return {}; |
| } |
| type = fSymbolTable->addArrayDimension(type, arraySizeValue); |
| } |
| return std::make_unique<Variable>(offset, fModifiers->addToPool(modifiers), name, type, |
| fIsBuiltinCode, storage); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(std::unique_ptr<Variable> var, |
| std::unique_ptr<Expression> value) { |
| if (var->modifiers().fFlags & Modifiers::kConst_Flag) { |
| if (!value) { |
| this->errorReporter().error(var->fOffset, "'const' variables must be initialized"); |
| return nullptr; |
| } |
| if (!Analysis::IsConstantExpression(*value)) { |
| this->errorReporter().error( |
| value->fOffset, "'const' variable initializer must be a constant expression"); |
| return nullptr; |
| } |
| } |
| if (value) { |
| if (var->type().isOpaque()) { |
| this->errorReporter().error( |
| value->fOffset, |
| "opaque type '" + var->type().name() + |
| "' cannot use initializer expressions"); |
| } |
| if (var->modifiers().fFlags & Modifiers::kIn_Flag) { |
| this->errorReporter().error(value->fOffset, |
| "'in' variables cannot use initializer expressions"); |
| } |
| if (var->modifiers().fFlags & Modifiers::kUniform_Flag) { |
| this->errorReporter().error(value->fOffset, |
| "'uniform' variables cannot use initializer expressions"); |
| } |
| value = this->coerce(std::move(value), var->type()); |
| if (!value) { |
| return nullptr; |
| } |
| } |
| const Type* baseType = &var->type(); |
| int arraySize = 0; |
| if (baseType->isArray()) { |
| arraySize = baseType->columns(); |
| baseType = &baseType->componentType(); |
| } |
| auto result = std::make_unique<VarDeclaration>(var.get(), baseType, arraySize, |
| std::move(value)); |
| var->setDeclaration(result.get()); |
| if (var->name() == Compiler::RTADJUST_NAME) { |
| SkASSERT(!fRTAdjust); |
| SkASSERT(var->type() == *fContext.fTypes.fFloat4); |
| fRTAdjust = var.get(); |
| } |
| const Symbol* symbol = (*fSymbolTable)[var->name()]; |
| if (symbol && var->storage() == Variable::Storage::kGlobal && var->name() == "sk_FragColor") { |
| // Already defined, ignore. |
| return nullptr; |
| } else { |
| fSymbolTable->add(std::move(var)); |
| } |
| return std::move(result); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(int offset, |
| const Modifiers& modifiers, |
| const Type* baseType, |
| StringFragment name, |
| bool isArray, |
| std::unique_ptr<Expression> arraySize, |
| std::unique_ptr<Expression> value, |
| Variable::Storage storage) { |
| std::unique_ptr<Variable> var = this->convertVar(offset, modifiers, baseType, name, isArray, |
| std::move(arraySize), storage); |
| if (!var) { |
| return nullptr; |
| } |
| return this->convertVarDeclaration(std::move(var), std::move(value)); |
| } |
| |
| StatementArray IRGenerator::convertVarDeclarations(const ASTNode& decls, |
| Variable::Storage storage) { |
| SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations); |
| auto declarationsIter = decls.begin(); |
| const Modifiers& modifiers = declarationsIter++->getModifiers(); |
| const ASTNode& rawType = *(declarationsIter++); |
| const Type* baseType = this->convertType(rawType); |
| if (!baseType) { |
| return {}; |
| } |
| |
| this->checkVarDeclaration(decls.fOffset, modifiers, baseType, storage); |
| |
| StatementArray varDecls; |
| for (; declarationsIter != decls.end(); ++declarationsIter) { |
| const ASTNode& varDecl = *declarationsIter; |
| const ASTNode::VarData& varData = varDecl.getVarData(); |
| std::unique_ptr<Expression> arraySize; |
| std::unique_ptr<Expression> value; |
| auto iter = varDecl.begin(); |
| if (iter != varDecl.end() && varData.fIsArray) { |
| if (*iter) { |
| arraySize = this->convertExpression(*iter++); |
| } else { |
| this->errorReporter().error(decls.fOffset, "array must have a size"); |
| return {}; |
| } |
| } |
| if (iter != varDecl.end()) { |
| value = this->convertExpression(*iter); |
| if (!value) { |
| return {}; |
| } |
| } |
| std::unique_ptr<Statement> varDeclStmt = this->convertVarDeclaration(varDecl.fOffset, |
| modifiers, |
| baseType, |
| varData.fName, |
| varData.fIsArray, |
| std::move(arraySize), |
| std::move(value), |
| storage); |
| if (varDeclStmt) { |
| varDecls.push_back(std::move(varDeclStmt)); |
| } |
| } |
| return varDecls; |
| } |
| |
| std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) { |
| if (this->programKind() != ProgramKind::kFragment && |
| this->programKind() != ProgramKind::kVertex && |
| this->programKind() != ProgramKind::kGeometry) { |
| this->errorReporter().error(m.fOffset, "layout qualifiers are not allowed here"); |
| return nullptr; |
| } |
| |
| SkASSERT(m.fKind == ASTNode::Kind::kModifiers); |
| Modifiers modifiers = m.getModifiers(); |
| if (modifiers.fLayout.fInvocations != -1) { |
| if (this->programKind() != ProgramKind::kGeometry) { |
| this->errorReporter().error(m.fOffset, |
| "'invocations' is only legal in geometry shaders"); |
| return nullptr; |
| } |
| fInvocations = modifiers.fLayout.fInvocations; |
| if (!this->caps().gsInvocationsSupport()) { |
| modifiers.fLayout.fInvocations = -1; |
| if (modifiers.fLayout.description() == "") { |
| return nullptr; |
| } |
| } |
| } |
| if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && |
| !this->caps().gsInvocationsSupport()) { |
| modifiers.fLayout.fMaxVertices *= fInvocations; |
| } |
| return std::make_unique<ModifiersDeclaration>(fModifiers->addToPool(modifiers)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) { |
| SkASSERT(n.fKind == ASTNode::Kind::kIf); |
| auto iter = n.begin(); |
| std::unique_ptr<Expression> test = this->convertExpression(*(iter++)); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++)); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| if (this->detectVarDeclarationWithoutScope(*ifTrue)) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> ifFalse; |
| if (iter != n.end()) { |
| ifFalse = this->convertStatement(*(iter++)); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| if (this->detectVarDeclarationWithoutScope(*ifFalse)) { |
| return nullptr; |
| } |
| } |
| bool isStatic = n.getBool(); |
| return IfStatement::Make(fContext, n.fOffset, isStatic, std::move(test), |
| std::move(ifTrue), std::move(ifFalse)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) { |
| SkASSERT(f.fKind == ASTNode::Kind::kFor); |
| AutoSymbolTable table(this); |
| std::unique_ptr<Statement> initializer; |
| auto iter = f.begin(); |
| if (*iter) { |
| initializer = this->convertStatement(*iter); |
| if (!initializer) { |
| return nullptr; |
| } |
| } |
| ++iter; |
| std::unique_ptr<Expression> test; |
| if (*iter) { |
| test = this->convertExpression(*iter); |
| if (!test) { |
| return nullptr; |
| } |
| } |
| ++iter; |
| std::unique_ptr<Expression> next; |
| if (*iter) { |
| next = this->convertExpression(*iter); |
| if (!next) { |
| return nullptr; |
| } |
| } |
| ++iter; |
| std::unique_ptr<Statement> statement = this->convertStatement(*iter); |
| if (!statement) { |
| return nullptr; |
| } |
| |
| return ForStatement::Make(fContext, f.fOffset, std::move(initializer), std::move(test), |
| std::move(next), std::move(statement), fSymbolTable); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) { |
| SkASSERT(w.fKind == ASTNode::Kind::kWhile); |
| auto iter = w.begin(); |
| std::unique_ptr<Expression> test = this->convertExpression(*(iter++)); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> statement = this->convertStatement(*(iter++)); |
| if (!statement) { |
| return nullptr; |
| } |
| if (this->detectVarDeclarationWithoutScope(*statement)) { |
| return nullptr; |
| } |
| return ForStatement::MakeWhile(fContext, w.fOffset, std::move(test), std::move(statement), |
| fSymbolTable); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) { |
| SkASSERT(d.fKind == ASTNode::Kind::kDo); |
| auto iter = d.begin(); |
| std::unique_ptr<Statement> statement = this->convertStatement(*(iter++)); |
| if (!statement) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> test = this->convertExpression(*(iter++)); |
| if (!test) { |
| return nullptr; |
| } |
| if (this->detectVarDeclarationWithoutScope(*statement)) { |
| return nullptr; |
| } |
| return DoStatement::Make(fContext, std::move(statement), std::move(test)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) { |
| SkASSERT(s.fKind == ASTNode::Kind::kSwitch); |
| |
| auto iter = s.begin(); |
| std::unique_ptr<Expression> value = this->convertExpression(*(iter++)); |
| if (!value) { |
| return nullptr; |
| } |
| AutoSymbolTable table(this); |
| ExpressionArray caseValues; |
| SkTArray<StatementArray> caseStatements; |
| for (; iter != s.end(); ++iter) { |
| const ASTNode& c = *iter; |
| SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase); |
| std::unique_ptr<Expression>& caseValue = caseValues.emplace_back(); |
| auto childIter = c.begin(); |
| if (*childIter) { |
| caseValue = this->convertExpression(*childIter); |
| if (!caseValue) { |
| return nullptr; |
| } |
| } |
| ++childIter; |
| StatementArray statements; |
| for (; childIter != c.end(); ++childIter) { |
| std::unique_ptr<Statement> converted = this->convertStatement(*childIter); |
| if (!converted) { |
| return nullptr; |
| } |
| statements.push_back(std::move(converted)); |
| } |
| caseStatements.push_back(std::move(statements)); |
| } |
| return SwitchStatement::Make(fContext, s.fOffset, s.getBool(), std::move(value), |
| std::move(caseValues), std::move(caseStatements), fSymbolTable); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) { |
| std::unique_ptr<Expression> e = this->convertExpression(s); |
| if (!e) { |
| return nullptr; |
| } |
| return ExpressionStatement::Make(fContext, std::move(e)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertReturn(int offset, |
| std::unique_ptr<Expression> result) { |
| if (result) { |
| return std::make_unique<ReturnStatement>(std::move(result)); |
| } else { |
| return std::make_unique<ReturnStatement>(offset); |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) { |
| SkASSERT(r.fKind == ASTNode::Kind::kReturn); |
| if (r.begin() != r.end()) { |
| std::unique_ptr<Expression> value = this->convertExpression(*r.begin()); |
| if (!value) { |
| return nullptr; |
| } |
| return this->convertReturn(r.fOffset, std::move(value)); |
| } else { |
| return this->convertReturn(r.fOffset, /*result=*/nullptr); |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) { |
| SkASSERT(b.fKind == ASTNode::Kind::kBreak); |
| return std::make_unique<BreakStatement>(b.fOffset); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) { |
| SkASSERT(c.fKind == ASTNode::Kind::kContinue); |
| return std::make_unique<ContinueStatement>(c.fOffset); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) { |
| SkASSERT(d.fKind == ASTNode::Kind::kDiscard); |
| if (this->programKind() != ProgramKind::kFragment && |
| this->programKind() != ProgramKind::kFragmentProcessor) { |
| this->errorReporter().error(d.fOffset, |
| "discard statement is only permitted in fragment shaders"); |
| return nullptr; |
| } |
| return std::make_unique<DiscardStatement>(d.fOffset); |
| } |
| |
| std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) { |
| Layout invokeLayout; |
| Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag); |
| const FunctionDeclaration* invokeDecl = fSymbolTable->add(std::make_unique<FunctionDeclaration>( |
| /*offset=*/-1, |
| fModifiers->addToPool(invokeModifiers), |
| "_invoke", |
| std::vector<const Variable*>(), |
| fContext.fTypes.fVoid.get(), |
| fIsBuiltinCode)); |
| auto invokeDef = std::make_unique<FunctionDefinition>(/*offset=*/-1, invokeDecl, fIsBuiltinCode, |
| std::move(main)); |
| invokeDecl->setDefinition(invokeDef.get()); |
| fProgramElements->push_back(std::move(invokeDef)); |
| std::vector<std::unique_ptr<VarDeclaration>> variables; |
| const Variable* loopIdx = &(*fSymbolTable)["sk_InvocationID"]->as<Variable>(); |
| auto test = std::make_unique<BinaryExpression>( |
| /*offset=*/-1, |
| std::make_unique<VariableReference>(/*offset=*/-1, loopIdx), |
| Token::Kind::TK_LT, |
| std::make_unique<IntLiteral>(fContext, /*offset=*/-1, fInvocations), |
| fContext.fTypes.fBool.get()); |
| auto next = PostfixExpression::Make( |
| fContext, |
| std::make_unique<VariableReference>(/*offset=*/-1, loopIdx, |
| VariableReference::RefKind::kReadWrite), |
| Token::Kind::TK_PLUSPLUS); |
| ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive"); |
| std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID); |
| SkASSERT(endPrimitive); |
| |
| StatementArray loopBody; |
| loopBody.reserve_back(2); |
| loopBody.push_back(ExpressionStatement::Make(fContext, this->call(/*offset=*/-1, |
| *invokeDecl, |
| ExpressionArray{}))); |
| loopBody.push_back(ExpressionStatement::Make(fContext, this->call(/*offset=*/-1, |
| std::move(endPrimitive), |
| ExpressionArray{}))); |
| auto assignment = std::make_unique<BinaryExpression>( |
| /*offset=*/-1, |
| std::make_unique<VariableReference>(/*offset=*/-1, loopIdx, |
| VariableReference::RefKind::kWrite), |
| Token::Kind::TK_EQ, |
| std::make_unique<IntLiteral>(fContext, /*offset=*/-1, /*value=*/0), |
| fContext.fTypes.fInt.get()); |
| auto initializer = ExpressionStatement::Make(fContext, std::move(assignment)); |
| auto loop = ForStatement::Make( |
| fContext, /*offset=*/-1, std::move(initializer), std::move(test), std::move(next), |
| std::make_unique<Block>(/*offset=*/-1, std::move(loopBody)), fSymbolTable); |
| StatementArray children; |
| children.push_back(std::move(loop)); |
| return std::make_unique<Block>(/*offset=*/-1, std::move(children)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() { |
| const Variable* skPerVertex = nullptr; |
| if (const ProgramElement* perVertexDecl = fIntrinsics->find(Compiler::PERVERTEX_NAME)) { |
| SkASSERT(perVertexDecl->is<InterfaceBlock>()); |
| skPerVertex = &perVertexDecl->as<InterfaceBlock>().variable(); |
| } |
| |
| // sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw, |
| // 0, |
| // sk_Position.w); |
| SkASSERT(skPerVertex && fRTAdjust); |
| auto Ref = [](const Variable* var) -> std::unique_ptr<Expression> { |
| return std::make_unique<VariableReference>(/*offset=*/-1, var, |
| VariableReference::RefKind::kRead); |
| }; |
| auto WRef = [](const Variable* var) -> std::unique_ptr<Expression> { |
| return std::make_unique<VariableReference>(/*offset=*/-1, var, |
| VariableReference::RefKind::kWrite); |
| }; |
| auto Field = [&](const Variable* var, int idx) -> std::unique_ptr<Expression> { |
| return std::make_unique<FieldAccess>(Ref(var), idx, |
| FieldAccess::OwnerKind::kAnonymousInterfaceBlock); |
| }; |
| auto Pos = [&]() -> std::unique_ptr<Expression> { |
| return std::make_unique<FieldAccess>(WRef(skPerVertex), 0, |
| FieldAccess::OwnerKind::kAnonymousInterfaceBlock); |
| }; |
| auto Adjust = [&]() -> std::unique_ptr<Expression> { |
| return fRTAdjustInterfaceBlock ? Field(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) |
| : Ref(fRTAdjust); |
| }; |
| auto Swizzle = [&](std::unique_ptr<Expression> expr, |
| const ComponentArray& comp) -> std::unique_ptr<Expression> { |
| return std::make_unique<SkSL::Swizzle>(fContext, std::move(expr), comp); |
| }; |
| auto Op = [&](std::unique_ptr<Expression> left, Token::Kind op, |
| std::unique_ptr<Expression> right) -> std::unique_ptr<Expression> { |
| return std::make_unique<BinaryExpression>(/*offset=*/-1, std::move(left), op, |
| std::move(right), fContext.fTypes.fFloat2.get()); |
| }; |
| |
| static const ComponentArray kXYIndices{0, 1}; |
| static const ComponentArray kXZIndices{0, 2}; |
| static const ComponentArray kYWIndices{1, 3}; |
| static const ComponentArray kWWIndices{3, 3}; |
| static const ComponentArray kWIndex{3}; |
| |
| ExpressionArray children; |
| children.reserve_back(3); |
| children.push_back(Op( |
| Op(Swizzle(Pos(), kXYIndices), Token::Kind::TK_STAR, Swizzle(Adjust(), kXZIndices)), |
| Token::Kind::TK_PLUS, |
| Op(Swizzle(Pos(), kWWIndices), Token::Kind::TK_STAR, Swizzle(Adjust(), kYWIndices)))); |
| children.push_back(std::make_unique<FloatLiteral>(fContext, /*offset=*/-1, /*value=*/0.0)); |
| children.push_back(Swizzle(Pos(), kWIndex)); |
| std::unique_ptr<Expression> result = Op(Pos(), Token::Kind::TK_EQ, |
| Constructor::Make(fContext, /*offset=*/-1, |
| *fContext.fTypes.fFloat4, std::move(children))); |
| return ExpressionStatement::Make(fContext, std::move(result)); |
| } |
| |
| void IRGenerator::checkModifiers(int offset, |
| const Modifiers& modifiers, |
| int permittedModifierFlags, |
| int permittedLayoutFlags) { |
| int flags = modifiers.fFlags; |
| auto checkModifier = [&](Modifiers::Flag flag, const char* name) { |
| if (flags & flag) { |
| if (!(permittedModifierFlags & flag)) { |
| this->errorReporter().error(offset, "'" + String(name) + "' is not permitted here"); |
| } |
| flags &= ~flag; |
| } |
| }; |
| |
| checkModifier(Modifiers::kConst_Flag, "const"); |
| checkModifier(Modifiers::kIn_Flag, "in"); |
| checkModifier(Modifiers::kOut_Flag, "out"); |
| checkModifier(Modifiers::kUniform_Flag, "uniform"); |
| checkModifier(Modifiers::kFlat_Flag, "flat"); |
| checkModifier(Modifiers::kNoPerspective_Flag, "noperspective"); |
| checkModifier(Modifiers::kHasSideEffects_Flag, "sk_has_side_effects"); |
| checkModifier(Modifiers::kVarying_Flag, "varying"); |
| checkModifier(Modifiers::kInline_Flag, "inline"); |
| SkASSERT(flags == 0); |
| |
| int layoutFlags = modifiers.fLayout.fFlags; |
| auto checkLayout = [&](Layout::Flag flag, const char* name) { |
| if (layoutFlags & flag) { |
| if (!(permittedLayoutFlags & flag)) { |
| this->errorReporter().error( |
| offset, "layout qualifier '" + String(name) + "' is not permitted here"); |
| } |
| layoutFlags &= ~flag; |
| } |
| }; |
| |
| checkLayout(Layout::kOriginUpperLeft_Flag, "origin_upper_left"); |
| checkLayout(Layout::kOverrideCoverage_Flag, "override_coverage"); |
| checkLayout(Layout::kPushConstant_Flag, "push_constant"); |
| checkLayout(Layout::kBlendSupportAllEquations_Flag, "blend_support_all_equations"); |
| checkLayout(Layout::kTracked_Flag, "tracked"); |
| checkLayout(Layout::kSRGBUnpremul_Flag, "srgb_unpremul"); |
| checkLayout(Layout::kKey_Flag, "key"); |
| checkLayout(Layout::kLocation_Flag, "location"); |
| checkLayout(Layout::kOffset_Flag, "offset"); |
| checkLayout(Layout::kBinding_Flag, "binding"); |
| checkLayout(Layout::kIndex_Flag, "index"); |
| checkLayout(Layout::kSet_Flag, "set"); |
| checkLayout(Layout::kBuiltin_Flag, "builtin"); |
| checkLayout(Layout::kInputAttachmentIndex_Flag, "input_attachment_index"); |
| checkLayout(Layout::kPrimitive_Flag, "primitive-type"); |
| checkLayout(Layout::kMaxVertices_Flag, "max_vertices"); |
| checkLayout(Layout::kInvocations_Flag, "invocations"); |
| checkLayout(Layout::kMarker_Flag, "marker"); |
| checkLayout(Layout::kWhen_Flag, "when"); |
| checkLayout(Layout::kCType_Flag, "ctype"); |
| SkASSERT(layoutFlags == 0); |
| } |
| |
| void IRGenerator::finalizeFunction(FunctionDefinition& f) { |
| class Finalizer : public ProgramWriter { |
| public: |
| Finalizer(IRGenerator* irGenerator, const FunctionDeclaration* function) |
| : fIRGenerator(irGenerator) |
| , fFunction(function) {} |
| |
| ~Finalizer() override { |
| SkASSERT(!fBreakableLevel); |
| SkASSERT(!fContinuableLevel); |
| } |
| |
| bool visitStatement(Statement& stmt) override { |
| switch (stmt.kind()) { |
| case Statement::Kind::kReturn: { |
| // early returns from a vertex main function will bypass the sk_Position |
| // normalization, so SkASSERT that we aren't doing that. It is of course |
| // possible to fix this by adding a normalization before each return, but it |
| // will probably never actually be necessary. |
| SkASSERT(fIRGenerator->programKind() != ProgramKind::kVertex || |
| !fIRGenerator->fRTAdjust || |
| fFunction->name() != "main"); |
| ReturnStatement& r = stmt.as<ReturnStatement>(); |
| const Type& returnType = fFunction->returnType(); |
| std::unique_ptr<Expression> result; |
| if (r.expression()) { |
| if (returnType == *fIRGenerator->fContext.fTypes.fVoid) { |
| fIRGenerator->errorReporter().error(r.fOffset, |
| "may not return a value from a void function"); |
| } else { |
| result = fIRGenerator->coerce(std::move(r.expression()), returnType); |
| } |
| } else if (returnType != *fIRGenerator->fContext.fTypes.fVoid) { |
| fIRGenerator->errorReporter().error(r.fOffset, |
| "expected function to return '" + |
| returnType.displayName() + "'"); |
| } |
| r.setExpression(std::move(result)); |
| break; |
| } |
| case Statement::Kind::kDo: |
| case Statement::Kind::kFor: { |
| ++fBreakableLevel; |
| ++fContinuableLevel; |
| bool result = INHERITED::visitStatement(stmt); |
| --fContinuableLevel; |
| --fBreakableLevel; |
| return result; |
| } |
| case Statement::Kind::kSwitch: { |
| ++fBreakableLevel; |
| bool result = INHERITED::visitStatement(stmt); |
| --fBreakableLevel; |
| return result; |
| } |
| case Statement::Kind::kBreak: |
| if (!fBreakableLevel) { |
| fIRGenerator->errorReporter().error(stmt.fOffset, |
| "break statement must be inside a loop or switch"); |
| } |
| break; |
| case Statement::Kind::kContinue: |
| if (!fContinuableLevel) { |
| fIRGenerator->errorReporter().error(stmt.fOffset, |
| "continue statement must be inside a loop"); |
| } |
| break; |
| default: |
| break; |
| } |
| return INHERITED::visitStatement(stmt); |
| } |
| |
| private: |
| IRGenerator* fIRGenerator; |
| const FunctionDeclaration* fFunction; |
| // how deeply nested we are in breakable constructs (for, do, switch). |
| int fBreakableLevel = 0; |
| // how deeply nested we are in continuable constructs (for, do). |
| int fContinuableLevel = 0; |
| |
| using INHERITED = ProgramWriter; |
| }; |
| Finalizer(this, &f.declaration()).visitStatement(*f.body()); |
| } |
| |
| static bool type_is_or_contains_array(const Type* type) { |
| if (type->isStruct()) { |
| for (const auto& f : type->fields()) { |
| if (type_is_or_contains_array(f.fType)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| return type->isArray(); |
| } |
| |
| void IRGenerator::convertFunction(const ASTNode& f) { |
| SkASSERT(fReferencedIntrinsics.empty()); |
| SK_AT_SCOPE_EXIT(fReferencedIntrinsics.clear()); |
| |
| auto iter = f.begin(); |
| const Type* returnType = this->convertType(*(iter++), /*allowVoid=*/true); |
| if (returnType == nullptr) { |
| return; |
| } |
| if (returnType->isArray()) { |
| this->errorReporter().error( |
| f.fOffset, "functions may not return type '" + returnType->displayName() + "'"); |
| return; |
| } |
| if (this->strictES2Mode() && type_is_or_contains_array(returnType)) { |
| this->errorReporter().error(f.fOffset, |
| "functions may not return structs containing arrays"); |
| return; |
| } |
| if (!fIsBuiltinCode && *returnType != *fContext.fTypes.fVoid && |
| returnType->componentType().isOpaque()) { |
| this->errorReporter().error( |
| f.fOffset, |
| "functions may not return opaque type '" + returnType->displayName() + "'"); |
| return; |
| } |
| const ASTNode::FunctionData& funcData = f.getFunctionData(); |
| this->checkModifiers(f.fOffset, funcData.fModifiers, |
| Modifiers::kHasSideEffects_Flag | Modifiers::kInline_Flag, |
| /*permittedLayoutFlags=*/0); |
| std::vector<const Variable*> parameters; |
| for (size_t i = 0; i < funcData.fParameterCount; ++i) { |
| const ASTNode& param = *(iter++); |
| SkASSERT(param.fKind == ASTNode::Kind::kParameter); |
| ASTNode::ParameterData pd = param.getParameterData(); |
| this->checkModifiers(param.fOffset, pd.fModifiers, |
| Modifiers::kConst_Flag | Modifiers::kIn_Flag | Modifiers::kOut_Flag, |
| /*permittedLayoutFlags=*/0); |
| auto paramIter = param.begin(); |
| const Type* type = this->convertType(*(paramIter++)); |
| if (!type) { |
| return; |
| } |
| if (pd.fIsArray) { |
| int arraySize = this->convertArraySize(*type, param.fOffset, *paramIter++); |
| if (!arraySize) { |
| return; |
| } |
| type = fSymbolTable->addArrayDimension(type, arraySize); |
| } |
| // Only the (builtin) declarations of 'sample' are allowed to have FP parameters. |
| // (You can pass other opaque types to functions safely; this restriction is |
| // fragment-processor specific.) |
| if (*type == *fContext.fTypes.fFragmentProcessor && !fIsBuiltinCode) { |
| this->errorReporter().error( |
| param.fOffset, "parameters of type '" + type->displayName() + "' not allowed"); |
| return; |
| } |
| |
| Modifiers m = pd.fModifiers; |
| if (funcData.fName == "main" && (this->programKind() == ProgramKind::kRuntimeEffect || |
| this->programKind() == ProgramKind::kFragmentProcessor)) { |
| if (i == 0) { |
| // We verify that the type is correct later, for now, if there is a parameter to |
| // a .fp or runtime-effect main(), it's supposed to be the coords: |
| m.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN; |
| } |
| } |
| |
| const Variable* var = fSymbolTable->takeOwnershipOfSymbol( |
| std::make_unique<Variable>(param.fOffset, fModifiers->addToPool(m), pd.fName, type, |
| fIsBuiltinCode, Variable::Storage::kParameter)); |
| parameters.push_back(var); |
| } |
| |
| auto paramIsCoords = [&](int idx) { |
| return parameters[idx]->type() == *fContext.fTypes.fFloat2 && |
| parameters[idx]->modifiers().fFlags == 0 && |
| parameters[idx]->modifiers().fLayout.fBuiltin == SK_MAIN_COORDS_BUILTIN; |
| }; |
| |
| if (funcData.fName == "main") { |
| switch (this->programKind()) { |
| case ProgramKind::kRuntimeEffect: { |
| // (half4|float4) main() -or- (half4|float4) main(float2) |
| if (*returnType != *fContext.fTypes.fHalf4 && |
| *returnType != *fContext.fTypes.fFloat4) { |
| this->errorReporter().error(f.fOffset, |
| "'main' must return: 'vec4', 'float4', or 'half4'"); |
| return; |
| } |
| bool validParams = (parameters.size() == 0) || |
| (parameters.size() == 1 && paramIsCoords(0)); |
| if (!validParams) { |
| this->errorReporter().error( |
| f.fOffset, "'main' parameters must be: (), (vec2), or (float2)"); |
| return; |
| } |
| break; |
| } |
| case ProgramKind::kFragmentProcessor: { |
| if (*returnType != *fContext.fTypes.fHalf4) { |
| this->errorReporter().error(f.fOffset, ".fp 'main' must return 'half4'"); |
| return; |
| } |
| bool validParams = (parameters.size() == 0) || |
| (parameters.size() == 1 && paramIsCoords(0)); |
| if (!validParams) { |
| this->errorReporter().error( |
| f.fOffset, ".fp 'main' must be declared main() or main(float2)"); |
| return; |
| } |
| break; |
| } |
| case ProgramKind::kGeneric: |
| break; |
| default: |
| if (parameters.size()) { |
| this->errorReporter().error(f.fOffset, |
| "shader 'main' must have zero parameters"); |
| } |
| break; |
| } |
| } |
| |
| // find existing declaration |
| const FunctionDeclaration* decl = nullptr; |
| const Symbol* entry = (*fSymbolTable)[funcData.fName]; |
| if (entry) { |
| std::vector<const FunctionDeclaration*> functions; |
| switch (entry->kind()) { |
| case Symbol::Kind::kUnresolvedFunction: |
| functions = entry->as<UnresolvedFunction>().functions(); |
| break; |
| case Symbol::Kind::kFunctionDeclaration: |
| functions.push_back(&entry->as<FunctionDeclaration>()); |
| break; |
| default: |
| this->errorReporter().error(f.fOffset, |
| "symbol '" + funcData.fName + "' was already defined"); |
| return; |
| } |
| for (const FunctionDeclaration* other : functions) { |
| SkASSERT(other->name() == funcData.fName); |
| if (parameters.size() == other->parameters().size()) { |
| bool match = true; |
| for (size_t i = 0; i < parameters.size(); i++) { |
| if (parameters[i]->type() != other->parameters()[i]->type()) { |
| match = false; |
| break; |
| } |
| } |
| if (match) { |
| if (*returnType != other->returnType()) { |
| FunctionDeclaration newDecl(f.fOffset, |
| fModifiers->addToPool(funcData.fModifiers), |
| funcData.fName, |
| parameters, |
| returnType, |
| fIsBuiltinCode); |
| this->errorReporter().error( |
| f.fOffset, "functions '" + newDecl.description() + "' and '" + |
| other->description() + "' differ only in return type"); |
| return; |
| } |
| decl = other; |
| for (size_t i = 0; i < parameters.size(); i++) { |
| if (parameters[i]->modifiers() != other->parameters()[i]->modifiers()) { |
| this->errorReporter().error( |
| f.fOffset, |
| "modifiers on parameter " + to_string((uint64_t)i + 1) + |
| " differ between declaration and definition"); |
| return; |
| } |
| } |
| if (other->definition() && !other->isBuiltin()) { |
| this->errorReporter().error( |
| f.fOffset, "duplicate definition of " + other->description()); |
| return; |
| } |
| break; |
| } |
| } |
| } |
| } |
| if (!decl) { |
| // Conservatively assume all user-defined functions have side effects. |
| Modifiers declModifiers = funcData.fModifiers; |
| if (!fIsBuiltinCode) { |
| declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag; |
| } |
| |
| // Create a new declaration. |
| decl = fSymbolTable->add( |
| std::make_unique<FunctionDeclaration>(f.fOffset, |
| fModifiers->addToPool(declModifiers), |
| funcData.fName, |
| parameters, |
| returnType, |
| fIsBuiltinCode)); |
| } |
| if (iter == f.end()) { |
| // If there's no body, we've found a prototype. |
| fProgramElements->push_back(std::make_unique<FunctionPrototype>(f.fOffset, decl, |
| fIsBuiltinCode)); |
| } else { |
| // Compile function body. |
| AutoSymbolTable table(this); |
| for (const Variable* param : decl->parameters()) { |
| fSymbolTable->addWithoutOwnership(param); |
| } |
| bool needInvocationIDWorkaround = fInvocations != -1 && funcData.fName == "main" && |
| !this->caps().gsInvocationsSupport(); |
| std::unique_ptr<Block> body = this->convertBlock(*iter); |
| if (!body) { |
| return; |
| } |
| if (needInvocationIDWorkaround) { |
| body = this->applyInvocationIDWorkaround(std::move(body)); |
| } |
| if (ProgramKind::kVertex == this->programKind() && funcData.fName == "main" && fRTAdjust) { |
| body->children().push_back(this->getNormalizeSkPositionCode()); |
| } |
| auto result = std::make_unique<FunctionDefinition>( |
| f.fOffset, decl, fIsBuiltinCode, std::move(body), std::move(fReferencedIntrinsics)); |
| this->finalizeFunction(*result); |
| decl->setDefinition(result.get()); |
| result->setSource(&f); |
| fProgramElements->push_back(std::move(result)); |
| } |
| } |
| |
| std::unique_ptr<StructDefinition> IRGenerator::convertStructDefinition(const ASTNode& node) { |
| SkASSERT(node.fKind == ASTNode::Kind::kType); |
| |
| const Type* type = this->convertType(node); |
| if (!type) { |
| return nullptr; |
| } |
| if (!type->isStruct()) { |
| this->errorReporter().error(node.fOffset, |
| "expected a struct here, found '" + type->name() + "'"); |
| return nullptr; |
| } |
| SkDEBUGCODE(auto [iter, wasInserted] =) fDefinedStructs.insert(type); |
| SkASSERT(wasInserted); |
| return std::make_unique<StructDefinition>(node.fOffset, *type); |
| } |
| |
| std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) { |
| if (this->programKind() != ProgramKind::kFragment && |
| this->programKind() != ProgramKind::kVertex && |
| this->programKind() != ProgramKind::kGeometry) { |
| this->errorReporter().error(intf.fOffset, "interface block is not allowed here"); |
| return nullptr; |
| } |
| |
| SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock); |
| ASTNode::InterfaceBlockData id = intf.getInterfaceBlockData(); |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| std::shared_ptr<SymbolTable> symbols; |
| std::vector<Type::Field> fields; |
| bool foundRTAdjust = false; |
| auto iter = intf.begin(); |
| { |
| AutoSymbolTable table(this); |
| symbols = fSymbolTable; |
| for (size_t i = 0; i < id.fDeclarationCount; ++i) { |
| StatementArray decls = this->convertVarDeclarations(*(iter++), |
| Variable::Storage::kInterfaceBlock); |
| if (decls.empty()) { |
| return nullptr; |
| } |
| for (const auto& decl : decls) { |
| const VarDeclaration& vd = decl->as<VarDeclaration>(); |
| if (vd.var().type().isOpaque()) { |
| this->errorReporter().error(decl->fOffset, |
| "opaque type '" + vd.var().type().name() + |
| "' is not permitted in an interface block"); |
| } |
| if (&vd.var() == fRTAdjust) { |
| foundRTAdjust = true; |
| SkASSERT(vd.var().type() == *fContext.fTypes.fFloat4); |
| fRTAdjustFieldIndex = fields.size(); |
| } |
| fields.push_back(Type::Field(vd.var().modifiers(), vd.var().name(), |
| &vd.var().type())); |
| if (vd.value()) { |
| this->errorReporter().error( |
| decl->fOffset, |
| "initializers are not permitted on interface block fields"); |
| } |
| } |
| } |
| } |
| const Type* type = old->takeOwnershipOfSymbol(Type::MakeStructType(intf.fOffset, id.fTypeName, |
| fields)); |
| int arraySize = 0; |
| if (id.fIsArray) { |
| const ASTNode& size = *(iter++); |
| if (size) { |
| // convertArraySize rejects unsized arrays. This is the one place we allow those, but |
| // we've already checked for that, so this is verifying the other aspects (constant, |
| // positive, not too large). |
| arraySize = this->convertArraySize(*type, size.fOffset, size); |
| if (!arraySize) { |
| return nullptr; |
| } |
| } else { |
| arraySize = Type::kUnsizedArray; |
| } |
| type = symbols->addArrayDimension(type, arraySize); |
| } |
| const Variable* var = old->takeOwnershipOfSymbol( |
| std::make_unique<Variable>(intf.fOffset, |
| fModifiers->addToPool(id.fModifiers), |
| id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName, |
| type, |
| fIsBuiltinCode, |
| Variable::Storage::kGlobal)); |
| if (foundRTAdjust) { |
| fRTAdjustInterfaceBlock = var; |
| } |
| if (id.fInstanceName.fLength) { |
| old->addWithoutOwnership(var); |
| } else { |
| for (size_t i = 0; i < fields.size(); i++) { |
| old->add(std::make_unique<Field>(intf.fOffset, var, (int)i)); |
| } |
| } |
| return std::make_unique<InterfaceBlock>(intf.fOffset, |
| var, |
| id.fTypeName, |
| id.fInstanceName, |
| arraySize, |
| symbols); |
| } |
| |
| void IRGenerator::convertGlobalVarDeclarations(const ASTNode& decl) { |
| StatementArray decls = this->convertVarDeclarations(decl, Variable::Storage::kGlobal); |
| for (std::unique_ptr<Statement>& stmt : decls) { |
| const Type* type = &stmt->as<VarDeclaration>().baseType(); |
| if (type->isStruct()) { |
| auto [iter, wasInserted] = fDefinedStructs.insert(type); |
| if (wasInserted) { |
| fProgramElements->push_back( |
| std::make_unique<StructDefinition>(decl.fOffset, *type)); |
| } |
| } |
| fProgramElements->push_back(std::make_unique<GlobalVarDeclaration>(decl.fOffset, |
| std::move(stmt))); |
| } |
| } |
| |
| void IRGenerator::convertEnum(const ASTNode& e) { |
| if (this->strictES2Mode()) { |
| this->errorReporter().error(e.fOffset, "enum is not allowed here"); |
| return; |
| } |
| |
| SkASSERT(e.fKind == ASTNode::Kind::kEnum); |
| SKSL_INT currentValue = 0; |
| Layout layout; |
| ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType, e.getString()); |
| const Type* type = this->convertType(enumType); |
| Modifiers modifiers(layout, Modifiers::kConst_Flag); |
| std::shared_ptr<SymbolTable> oldTable = fSymbolTable; |
| fSymbolTable = std::make_shared<SymbolTable>(fSymbolTable, fIsBuiltinCode); |
| for (auto iter = e.begin(); iter != e.end(); ++iter) { |
| const ASTNode& child = *iter; |
| SkASSERT(child.fKind == ASTNode::Kind::kEnumCase); |
| std::unique_ptr<Expression> value; |
| if (child.begin() != child.end()) { |
| value = this->convertExpression(*child.begin()); |
| if (!value) { |
| fSymbolTable = oldTable; |
| return; |
| } |
| if (!ConstantFolder::GetConstantInt(*value, ¤tValue)) { |
| this->errorReporter().error(value->fOffset, |
| "enum value must be a constant integer"); |
| fSymbolTable = oldTable; |
| return; |
| } |
| } |
| value = std::make_unique<IntLiteral>(fContext, e.fOffset, currentValue); |
| ++currentValue; |
| auto var = std::make_unique<Variable>(e.fOffset, fModifiers->addToPool(modifiers), |
| child.getString(), type, fIsBuiltinCode, |
| Variable::Storage::kGlobal); |
| // enum variables aren't really 'declared', but we have to create a declaration to store |
| // the value |
| auto declaration = std::make_unique<VarDeclaration>(var.get(), &var->type(), |
| /*arraySize=*/0, std::move(value)); |
| var->setDeclaration(declaration.get()); |
| fSymbolTable->add(std::move(var)); |
| fSymbolTable->takeOwnershipOfIRNode(std::move(declaration)); |
| } |
| // Now we orphanize the Enum's symbol table, so that future lookups in it are strict |
| fSymbolTable->fParent = nullptr; |
| fProgramElements->push_back(std::make_unique<Enum>(e.fOffset, e.getString(), fSymbolTable, |
| /*isSharedWithCpp=*/fIsBuiltinCode, |
| /*isBuiltin=*/fIsBuiltinCode)); |
| fSymbolTable = oldTable; |
| } |
| |
| bool IRGenerator::typeContainsPrivateFields(const Type& type) { |
| // Checks for usage of private types, including fields inside a struct. |
| if (type.isPrivate()) { |
| return true; |
| } |
| if (type.isStruct()) { |
| for (const auto& f : type.fields()) { |
| if (this->typeContainsPrivateFields(*f.fType)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| const Type* IRGenerator::convertType(const ASTNode& type, bool allowVoid) { |
| StringFragment name = type.getString(); |
| const Symbol* symbol = (*fSymbolTable)[name]; |
| if (!symbol || !symbol->is<Type>()) { |
| this->errorReporter().error(type.fOffset, "unknown type '" + name + "'"); |
| return nullptr; |
| } |
| const Type* result = &symbol->as<Type>(); |
| const bool isArray = (type.begin() != type.end()); |
| if (*result == *fContext.fTypes.fVoid && !allowVoid) { |
| this->errorReporter().error(type.fOffset, |
| "type '" + name + "' not allowed in this context"); |
| return nullptr; |
| } |
| if (!fIsBuiltinCode && this->typeContainsPrivateFields(*result)) { |
| this->errorReporter().error(type.fOffset, "type '" + name + "' is private"); |
| return nullptr; |
| } |
| if (isArray) { |
| auto iter = type.begin(); |
| int arraySize = this->convertArraySize(*result, type.fOffset, *iter); |
| if (!arraySize) { |
| return nullptr; |
| } |
| result = fSymbolTable->addArrayDimension(result, arraySize); |
| } |
| return result; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) { |
| switch (expr.fKind) { |
| case ASTNode::Kind::kBinary: |
| return this->convertBinaryExpression(expr); |
| case ASTNode::Kind::kBool: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset, |
| expr.getBool())); |
| case ASTNode::Kind::kCall: |
| return this->convertCallExpression(expr); |
| case ASTNode::Kind::kField: |
| return this->convertFieldExpression(expr); |
| case ASTNode::Kind::kFloat: |
| return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset, |
| expr.getFloat())); |
| case ASTNode::Kind::kIdentifier: |
| return this->convertIdentifier(expr); |
| case ASTNode::Kind::kIndex: |
| return this->convertIndexExpression(expr); |
| case ASTNode::Kind::kInt: |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset, |
| expr.getInt())); |
| case ASTNode::Kind::kPostfix: |
| return this->convertPostfixExpression(expr); |
| case ASTNode::Kind::kPrefix: |
| return this->convertPrefixExpression(expr); |
| case ASTNode::Kind::kScope: |
| return this->convertScopeExpression(expr); |
| case ASTNode::Kind::kTernary: |
| return this->convertTernaryExpression(expr); |
| default: |
| SkDEBUGFAILF("unsupported expression: %s\n", expr.description().c_str()); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIdentifier(int offset, StringFragment name) { |
| const Symbol* result = (*fSymbolTable)[name]; |
| if (!result) { |
| this->errorReporter().error(offset, "unknown identifier '" + name + "'"); |
| return nullptr; |
| } |
| switch (result->kind()) { |
| case Symbol::Kind::kFunctionDeclaration: { |
| std::vector<const FunctionDeclaration*> f = { |
| &result->as<FunctionDeclaration>() |
| }; |
| return std::make_unique<FunctionReference>(fContext, offset, f); |
| } |
| case Symbol::Kind::kUnresolvedFunction: { |
| const UnresolvedFunction* f = &result->as<UnresolvedFunction>(); |
| return std::make_unique<FunctionReference>(fContext, offset, f->functions()); |
| } |
| case Symbol::Kind::kVariable: { |
| const Variable* var = &result->as<Variable>(); |
| const Modifiers& modifiers = var->modifiers(); |
| switch (modifiers.fLayout.fBuiltin) { |
| case SK_WIDTH_BUILTIN: |
| fInputs.fRTWidth = true; |
| break; |
| case SK_HEIGHT_BUILTIN: |
| fInputs.fRTHeight = true; |
| break; |
| #ifndef SKSL_STANDALONE |
| case SK_FRAGCOORD_BUILTIN: |
| fInputs.fFlipY = true; |
| if (this->settings().fFlipY && |
| !this->caps().fragCoordConventionsExtensionString()) { |
| fInputs.fRTHeight = true; |
| } |
| #endif |
| } |
| if (this->programKind() == ProgramKind::kFragmentProcessor && |
| (modifiers.fFlags & Modifiers::kIn_Flag) && |
| !(modifiers.fFlags & Modifiers::kUniform_Flag) && |
| !(modifiers.fLayout.fFlags & Layout::kKey_Flag) && |
| modifiers.fLayout.fBuiltin == -1 && |
| var->type() != *fContext.fTypes.fFragmentProcessor && |
| var->type().typeKind() != Type::TypeKind::kSampler) { |
| bool valid = false; |
| for (const auto& decl : fFile->root()) { |
| if (decl.fKind == ASTNode::Kind::kSection) { |
| ASTNode::SectionData section = decl.getSectionData(); |
| if (section.fName == "setData") { |
| valid = true; |
| break; |
| } |
| } |
| } |
| if (!valid) { |
| this->errorReporter().error( |
| offset, |
| "'in' variable must be either 'uniform' or 'layout(key)', or there " |
| "must be a custom @setData function"); |
| } |
| } |
| // default to kRead_RefKind; this will be corrected later if the variable is written to |
| return std::make_unique<VariableReference>(offset, |
| var, |
| VariableReference::RefKind::kRead); |
| } |
| case Symbol::Kind::kField: { |
| const Field* field = &result->as<Field>(); |
| auto base = std::make_unique<VariableReference>(offset, &field->owner(), |
| VariableReference::RefKind::kRead); |
| return std::make_unique<FieldAccess>(std::move(base), |
| field->fieldIndex(), |
| FieldAccess::OwnerKind::kAnonymousInterfaceBlock); |
| } |
| case Symbol::Kind::kType: { |
| const Type* t = &result->as<Type>(); |
| return std::make_unique<TypeReference>(fContext, offset, t); |
| } |
| case Symbol::Kind::kExternal: { |
| const ExternalFunction* r = &result->as<ExternalFunction>(); |
| return std::make_unique<ExternalFunctionReference>(offset, r); |
| } |
| default: |
| SK_ABORT("unsupported symbol type %d\n", (int) result->kind()); |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) { |
| return this->convertIdentifier(identifier.fOffset, identifier.getString()); |
| } |
| |
| std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) { |
| if (this->programKind() != ProgramKind::kFragmentProcessor) { |
| this->errorReporter().error(s.fOffset, "syntax error"); |
| return nullptr; |
| } |
| |
| ASTNode::SectionData section = s.getSectionData(); |
| return std::make_unique<Section>(s.fOffset, section.fName, section.fArgument, |
| section.fText); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr, |
| const Type& type) { |
| return type.coerceExpression(std::move(expr), fContext); |
| } |
| |
| static bool is_matrix_multiply(const Type& left, Operator op, const Type& right) { |
| if (op.kind() != Token::Kind::TK_STAR && op.kind() != Token::Kind::TK_STAREQ) { |
| return false; |
| } |
| if (left.isMatrix()) { |
| return right.isMatrix() || right.isVector(); |
| } |
| return left.isVector() && right.isMatrix(); |
| } |
| |
| /** |
| * Determines the operand and result types of a binary expression. Returns true if the expression is |
| * legal, false otherwise. If false, the values of the out parameters are undefined. |
| */ |
| static bool determine_binary_type(const Context& context, |
| bool allowNarrowing, |
| Operator op, |
| const Type& left, |
| const Type& right, |
| const Type** outLeftType, |
| const Type** outRightType, |
| const Type** outResultType) { |
| switch (op.kind()) { |
| case Token::Kind::TK_EQ: // left = right |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = &left; |
| return right.canCoerceTo(left, allowNarrowing); |
| |
| case Token::Kind::TK_EQEQ: // left == right |
| case Token::Kind::TK_NEQ: { // left != right |
| CoercionCost rightToLeft = right.coercionCost(left), |
| leftToRight = left.coercionCost(right); |
| if (rightToLeft < leftToRight) { |
| if (rightToLeft.isPossible(allowNarrowing)) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = context.fTypes.fBool.get(); |
| return true; |
| } |
| } else { |
| if (leftToRight.isPossible(allowNarrowing)) { |
| *outLeftType = &right; |
| *outRightType = &right; |
| *outResultType = context.fTypes.fBool.get(); |
| return true; |
| } |
| } |
| return false; |
| } |
| case Token::Kind::TK_LOGICALOR: // left || right |
| case Token::Kind::TK_LOGICALAND: // left && right |
| case Token::Kind::TK_LOGICALXOR: // left ^^ right |
| *outLeftType = context.fTypes.fBool.get(); |
| *outRightType = context.fTypes.fBool.get(); |
| *outResultType = context.fTypes.fBool.get(); |
| return left.canCoerceTo(*context.fTypes.fBool, allowNarrowing) && |
| right.canCoerceTo(*context.fTypes.fBool, allowNarrowing); |
| |
| case Token::Kind::TK_COMMA: // left, right |
| *outLeftType = &left; |
| *outRightType = &right; |
| *outResultType = &right; |
| return true; |
| |
| default: |
| break; |
| } |
| |
| // Boolean types only support the operators listed above (, = == != || && ^^). |
| // If we've gotten this far with a boolean, we have an unsupported operator. |
| const Type& leftComponentType = left.componentType(); |
| const Type& rightComponentType = right.componentType(); |
| if (leftComponentType.isBoolean() || rightComponentType.isBoolean()) { |
| return false; |
| } |
| |
| bool isAssignment = op.isAssignment(); |
| if (is_matrix_multiply(left, op, right)) { // left * right |
| // Determine final component type. |
| if (!determine_binary_type(context, allowNarrowing, op, |
| left.componentType(), right.componentType(), |
| outLeftType, outRightType, outResultType)) { |
| return false; |
| } |
| *outLeftType = &(*outResultType)->toCompound(context, left.columns(), left.rows()); |
| *outRightType = &(*outResultType)->toCompound(context, right.columns(), right.rows()); |
| int leftColumns = left.columns(), leftRows = left.rows(); |
| int rightColumns = right.columns(), rightRows = right.rows(); |
| if (right.isVector()) { |
| // `matrix * vector` treats the vector as a column vector; we need to transpose it. |
| std::swap(rightColumns, rightRows); |
| SkASSERT(rightColumns == 1); |
| } |
| if (rightColumns > 1) { |
| *outResultType = &(*outResultType)->toCompound(context, rightColumns, leftRows); |
| } else { |
| // The result was a column vector. Transpose it back to a row. |
| *outResultType = &(*outResultType)->toCompound(context, leftRows, rightColumns); |
| } |
| if (isAssignment && ((*outResultType)->columns() != leftColumns || |
| (*outResultType)->rows() != leftRows)) { |
| return false; |
| } |
| return leftColumns == rightRows; |
| } |
| |
| bool leftIsVectorOrMatrix = left.isVector() || left.isMatrix(); |
| bool validMatrixOrVectorOp = op.isValidForMatrixOrVector(); |
| |
| if (leftIsVectorOrMatrix && validMatrixOrVectorOp && right.isScalar()) { |
| if (determine_binary_type(context, allowNarrowing, op, left.componentType(), right, |
| outLeftType, outRightType, outResultType)) { |
| *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows()); |
| if (!op.isLogical()) { |
| *outResultType = &(*outResultType)->toCompound(context, left.columns(), |
| left.rows()); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| bool rightIsVectorOrMatrix = right.isVector() || right.isMatrix(); |
| |
| if (!isAssignment && rightIsVectorOrMatrix && validMatrixOrVectorOp && left.isScalar()) { |
| if (determine_binary_type(context, allowNarrowing, op, left, right.componentType(), |
| outLeftType, outRightType, outResultType)) { |
| *outRightType = &(*outRightType)->toCompound(context, right.columns(), right.rows()); |
| if (!op.isLogical()) { |
| *outResultType = &(*outResultType)->toCompound(context, right.columns(), |
| right.rows()); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| CoercionCost rightToLeftCost = right.coercionCost(left); |
| CoercionCost leftToRightCost = isAssignment ? CoercionCost::Impossible() |
| : left.coercionCost(right); |
| |
| if ((left.isScalar() && right.isScalar()) || (leftIsVectorOrMatrix && validMatrixOrVectorOp)) { |
| if (op.isOnlyValidForIntegralTypes()) { |
| if (!leftComponentType.isInteger() || !rightComponentType.isInteger()) { |
| return false; |
| } |
| } |
| if (rightToLeftCost.isPossible(allowNarrowing) && rightToLeftCost < leftToRightCost) { |
| // Right-to-Left conversion is possible and cheaper |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = &left; |
| } else if (leftToRightCost.isPossible(allowNarrowing)) { |
| // Left-to-Right conversion is possible (and at least as cheap as Right-to-Left) |
| *outLeftType = &right; |
| *outRightType = &right; |
| *outResultType = &right; |
| } else { |
| return false; |
| } |
| if (op.isLogical()) { |
| *outResultType = context.fTypes.fBool.get(); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) { |
| SkASSERT(expression.fKind == ASTNode::Kind::kBinary); |
| auto iter = expression.begin(); |
| std::unique_ptr<Expression> left = this->convertExpression(*(iter++)); |
| if (!left) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> right = this->convertExpression(*(iter++)); |
| if (!right) { |
| return nullptr; |
| } |
| return this->convertBinaryExpression(std::move(left), expression.getOperator(), |
| std::move(right)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertBinaryExpression( |
| std::unique_ptr<Expression> left, |
| Operator op, |
| std::unique_ptr<Expression> right) { |
| if (!left || !right) { |
| return nullptr; |
| } |
| int offset = left->fOffset; |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| const Type* rawLeftType; |
| if (left->is<IntLiteral>() && right->type().isInteger()) { |
| rawLeftType = &right->type(); |
| } else { |
| rawLeftType = &left->type(); |
| } |
| const Type* rawRightType; |
| if (right->is<IntLiteral>() && left->type().isInteger()) { |
| rawRightType = &left->type(); |
| } else { |
| rawRightType = &right->type(); |
| } |
| if (this->strictES2Mode() && !op.isAllowedInStrictES2Mode()) { |
| this->errorReporter().error(offset, |
| String("operator '") + op.operatorName() + "' is not allowed"); |
| return nullptr; |
| } |
| bool isAssignment = op.isAssignment(); |
| if (isAssignment && |
| !Analysis::MakeAssignmentExpr(left.get(), |
| op.kind() != Token::Kind::TK_EQ |
| ? VariableReference::RefKind::kReadWrite |
| : VariableReference::RefKind::kWrite, |
| &fContext.fErrors)) { |
| return nullptr; |
| } |
| if (!determine_binary_type(fContext, this->settings().fAllowNarrowingConversions, op, |
| *rawLeftType, *rawRightType, &leftType, &rightType, &resultType)) { |
| this->errorReporter().error( |
| offset, String("type mismatch: '") + op.operatorName() + |
| "' cannot operate on '" + left->type().displayName() + "', '" + |
| right->type().displayName() + "'"); |
| return nullptr; |
| } |
| if (isAssignment && leftType->componentType().isOpaque()) { |
| this->errorReporter().error(offset, "assignments to opaque type '" + |
| left->type().displayName() + "' are not permitted"); |
| } |
| if (this->strictES2Mode() && type_is_or_contains_array(leftType)) { |
| // Most operators are already rejected on arrays, but GLSL ES 1.0 is very explicit that the |
| // *only* operator allowed on arrays is subscripting (and the rules against assignment, |
| // comparison, and even sequence apply to structs containing arrays as well). |
| this->errorReporter().error( |
| offset, |
| String("operator '") + op.operatorName() + |
| "' can not operate on arrays (or structs containing arrays)"); |
| return nullptr; |
| } |
| left = this->coerce(std::move(left), *leftType); |
| right = this->coerce(std::move(right), *rightType); |
| if (!left || !right) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> result; |
| if (!ConstantFolder::ErrorOnDivideByZero(fContext, offset, op, *right)) { |
| result = ConstantFolder::Simplify(fContext, offset, *left, op, *right); |
| } |
| if (!result) { |
| result = std::make_unique<BinaryExpression>(offset, std::move(left), op, std::move(right), |
| resultType); |
| } |
| return result; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertTernaryExpression( |
| std::unique_ptr<Expression> test, |
| std::unique_ptr<Expression> ifTrue, |
| std::unique_ptr<Expression> ifFalse) { |
| test = this->coerce(std::move(test), *fContext.fTypes.fBool); |
| if (!test || !ifTrue || !ifFalse) { |
| return nullptr; |
| } |
| int offset = test->fOffset; |
| const Type* trueType; |
| const Type* falseType; |
| const Type* resultType; |
| if (!determine_binary_type(fContext, this->settings().fAllowNarrowingConversions, |
| Token::Kind::TK_EQEQ, ifTrue->type(), ifFalse->type(), |
| &trueType, &falseType, &resultType) || |
| trueType != falseType) { |
| this->errorReporter().error(offset, "ternary operator result mismatch: '" + |
| ifTrue->type().displayName() + "', '" + |
| ifFalse->type().displayName() + "'"); |
| return nullptr; |
| } |
| if (trueType->componentType().isOpaque()) { |
| this->errorReporter().error( |
| offset, |
| "ternary expression of opaque type '" + trueType->displayName() + "' not allowed"); |
| return nullptr; |
| } |
| if (this->strictES2Mode() && type_is_or_contains_array(trueType)) { |
| this->errorReporter().error( |
| offset, |
| "ternary operator result may not be an array (or struct containing an array)"); |
| return nullptr; |
| } |
| ifTrue = this->coerce(std::move(ifTrue), *trueType); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| ifFalse = this->coerce(std::move(ifFalse), *falseType); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| if (test->kind() == Expression::Kind::kBoolLiteral) { |
| // static boolean test, just return one of the branches |
| if (test->as<BoolLiteral>().value()) { |
| return ifTrue; |
| } else { |
| return ifFalse; |
| } |
| } |
| return std::make_unique<TernaryExpression>(offset, |
| std::move(test), |
| std::move(ifTrue), |
| std::move(ifFalse)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) { |
| SkASSERT(node.fKind == ASTNode::Kind::kTernary); |
| auto iter = node.begin(); |
| std::unique_ptr<Expression> test = this->convertExpression(*(iter++)); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++)); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++)); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| return this->convertTernaryExpression(std::move(test), std::move(ifTrue), std::move(ifFalse)); |
| } |
| |
| void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) { |
| if (const ProgramElement* found = fIntrinsics->findAndInclude(function.description())) { |
| const FunctionDefinition& original = found->as<FunctionDefinition>(); |
| |
| // Sort the referenced intrinsics into a consistent order; otherwise our output will become |
| // non-deterministic. |
| std::vector<const FunctionDeclaration*> intrinsics(original.referencedIntrinsics().begin(), |
| original.referencedIntrinsics().end()); |
| std::sort(intrinsics.begin(), intrinsics.end(), |
| [](const FunctionDeclaration* a, const FunctionDeclaration* b) { |
| if (a->isBuiltin() != b->isBuiltin()) { |
| return a->isBuiltin() < b->isBuiltin(); |
| } |
| if (a->fOffset != b->fOffset) { |
| return a->fOffset < b->fOffset; |
| } |
| if (a->name() != b->name()) { |
| return a->name() < b->name(); |
| } |
| return a->description() < b->description(); |
| }); |
| for (const FunctionDeclaration* f : intrinsics) { |
| this->copyIntrinsicIfNeeded(*f); |
| } |
| |
| fSharedElements->push_back(found); |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::call(int offset, |
| const FunctionDeclaration& function, |
| ExpressionArray arguments) { |
| if (function.isBuiltin()) { |
| if (function.definition()) { |
| fReferencedIntrinsics.insert(&function); |
| } |
| if (!fIsBuiltinCode && fIntrinsics) { |
| this->copyIntrinsicIfNeeded(function); |
| } |
| } |
| if (function.parameters().size() != arguments.size()) { |
| String msg = "call to '" + function.name() + "' expected " + |
| to_string((uint64_t) function.parameters().size()) + |
| " argument"; |
| if (function.parameters().size() != 1) { |
| msg += "s"; |
| } |
| msg += ", but found " + to_string((uint64_t) arguments.size()); |
| this->errorReporter().error(offset, msg); |
| return nullptr; |
| } |
| // GLSL ES 1.0 requires static recursion be rejected by the compiler. Also, our CPU back-end |
| // can not handle recursion (and is tied to strictES2Mode front-ends). The safest way to reject |
| // all (potentially) recursive code is to disallow calls to functions before they're defined. |
| if (this->strictES2Mode() && !function.definition() && !function.isBuiltin()) { |
| String msg = "call to undefined function '" + function.name() + "'"; |
| this->errorReporter().error(offset, msg); |
| return nullptr; |
| } |
| FunctionDeclaration::ParamTypes types; |
| const Type* returnType; |
| if (!function.determineFinalTypes(arguments, &types, &returnType)) { |
| String msg = "no match for " + function.name() + "("; |
| String separator; |
| for (size_t i = 0; i < arguments.size(); i++) { |
| msg += separator; |
| separator = ", "; |
| msg += arguments[i]->type().displayName(); |
| } |
| msg += ")"; |
| this->errorReporter().error(offset, msg); |
| return nullptr; |
| } |
| for (size_t i = 0; i < arguments.size(); i++) { |
| arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); |
| if (!arguments[i]) { |
| return nullptr; |
| } |
| const Modifiers& paramModifiers = function.parameters()[i]->modifiers(); |
| if (paramModifiers.fFlags & Modifiers::kOut_Flag) { |
| if (!Analysis::MakeAssignmentExpr(arguments[i].get(), |
| paramModifiers.fFlags & Modifiers::kIn_Flag |
| ? VariableReference::RefKind::kReadWrite |
| : VariableReference::RefKind::kPointer, |
| &fContext.fErrors)) { |
| return nullptr; |
| } |
| } |
| } |
| |
| return std::make_unique<FunctionCall>(offset, returnType, &function, std::move(arguments)); |
| } |
| |
| /** |
| * Determines the cost of coercing the arguments of a function to the required types. Cost has no |
| * particular meaning other than "lower costs are preferred". Returns CoercionCost::Impossible() if |
| * the call is not valid. |
| */ |
| CoercionCost IRGenerator::callCost(const FunctionDeclaration& function, |
| const ExpressionArray& arguments) { |
| if (function.parameters().size() != arguments.size()) { |
| return CoercionCost::Impossible(); |
| } |
| FunctionDeclaration::ParamTypes types; |
| const Type* ignored; |
| if (!function.determineFinalTypes(arguments, &types, &ignored)) { |
| return CoercionCost::Impossible(); |
| } |
| CoercionCost total = CoercionCost::Free(); |
| for (size_t i = 0; i < arguments.size(); i++) { |
| total = total + arguments[i]->coercionCost(*types[i]); |
| } |
| return total; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::call(int offset, |
| std::unique_ptr<Expression> functionValue, |
| ExpressionArray arguments) { |
| switch (functionValue->kind()) { |
| case Expression::Kind::kTypeReference: |
| return Constructor::Make(fContext, |
| offset, |
| functionValue->as<TypeReference>().value(), |
| std::move(arguments)); |
| case Expression::Kind::kExternalFunctionReference: { |
| const ExternalFunction& f = functionValue->as<ExternalFunctionReference>().function(); |
| int count = f.callParameterCount(); |
| if (count != (int) arguments.size()) { |
| this->errorReporter().error(offset, "external function expected " + |
| to_string(count) + " arguments, but found " + |
| to_string((int)arguments.size())); |
| return nullptr; |
| } |
| static constexpr int PARAMETER_MAX = 16; |
| SkASSERT(count < PARAMETER_MAX); |
| const Type* types[PARAMETER_MAX]; |
| f.getCallParameterTypes(types); |
| for (int i = 0; i < count; ++i) { |
| arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); |
| if (!arguments[i]) { |
| return nullptr; |
| } |
| } |
| return std::make_unique<ExternalFunctionCall>(offset, &f, std::move(arguments)); |
| } |
| case Expression::Kind::kFunctionReference: { |
| const FunctionReference& ref = functionValue->as<FunctionReference>(); |
| const std::vector<const FunctionDeclaration*>& functions = ref.functions(); |
| CoercionCost bestCost = CoercionCost::Impossible(); |
| const FunctionDeclaration* best = nullptr; |
| if (functions.size() > 1) { |
| for (const auto& f : functions) { |
| CoercionCost cost = this->callCost(*f, arguments); |
| if (cost < bestCost) { |
| bestCost = cost; |
| best = f; |
| } |
| } |
| if (best) { |
| return this->call(offset, *best, std::move(arguments)); |
| } |
| String msg = "no match for " + functions[0]->name() + "("; |
| String separator; |
| for (size_t i = 0; i < arguments.size(); i++) { |
| msg += separator; |
| separator = ", "; |
| msg += arguments[i]->type().displayName(); |
| } |
| msg += ")"; |
| this->errorReporter().error(offset, msg); |
| return nullptr; |
| } |
| return this->call(offset, *functions[0], std::move(arguments)); |
| } |
| default: |
| this->errorReporter().error(offset, "not a function"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) { |
| SkASSERT(expression.fKind == ASTNode::Kind::kPrefix); |
| std::unique_ptr<Expression> base = this->convertExpression(*expression.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| return PrefixExpression::Make(fContext, expression.getOperator(), std::move(base)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base, |
| StringFragment field) { |
| const Type& baseType = base->type(); |
| auto fields = baseType.fields(); |
| for (size_t i = 0; i < fields.size(); i++) { |
| if (fields[i].fName == field) { |
| return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i)); |
| } |
| } |
| this->errorReporter().error( |
| base->fOffset, |
| "type '" + baseType.displayName() + "' does not have a field named '" + field + "'"); |
| return nullptr; |
| } |
| |
| // Swizzles are complicated due to constant components. The most difficult case is a mask like |
| // '.x1w0'. A naive approach might turn that into 'float4(base.x, 1, base.w, 0)', but that evaluates |
| // 'base' twice. We instead group the swizzle mask ('xw') and constants ('1, 0') together and use a |
| // secondary swizzle to put them back into the right order, so in this case we end up with |
| // 'float4(base.xw, 1, 0).xzyw'. |
| std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base, |
| String fields) { |
| const int offset = base->fOffset; |
| const Type& baseType = base->type(); |
| if (!baseType.isVector() && !baseType.isNumber()) { |
| this->errorReporter().error( |
| offset, "cannot swizzle value of type '" + baseType.displayName() + "'"); |
| return nullptr; |
| } |
| |
| if (fields.length() > 4) { |
| this->errorReporter().error(offset, "too many components in swizzle mask '" + fields + "'"); |
| return nullptr; |
| } |
| |
| ComponentArray components; |
| bool found01 = false; |
| bool foundXYZW = false; |
| for (char field : fields) { |
| switch (field) { |
| case '0': |
| components.push_back(SwizzleComponent::ZERO); |
| found01 = true; |
| break; |
| case '1': |
| components.push_back(SwizzleComponent::ONE); |
| found01 = true; |
| break; |
| case 'x': |
| case 'r': |
| case 's': |
| case 'L': |
| components.push_back(SwizzleComponent::X); |
| foundXYZW = true; |
| break; |
| case 'y': |
| case 'g': |
| case 't': |
| case 'T': |
| if (baseType.columns() >= 2) { |
| components.push_back(SwizzleComponent::Y); |
| foundXYZW = true; |
| break; |
| } |
| [[fallthrough]]; |
| case 'z': |
| case 'b': |
| case 'p': |
| case 'R': |
| if (baseType.columns() >= 3) { |
| components.push_back(SwizzleComponent::Z); |
| foundXYZW = true; |
| break; |
| } |
| [[fallthrough]]; |
| case 'w': |
| case 'a': |
| case 'q': |
| case 'B': |
| if (baseType.columns() >= 4) { |
| components.push_back(SwizzleComponent::W); |
| foundXYZW = true; |
| break; |
| } |
| [[fallthrough]]; |
| default: |
| this->errorReporter().error( |
| offset, String::printf("invalid swizzle component '%c'", field)); |
| return nullptr; |
| } |
| } |
| |
| if (!foundXYZW) { |
| this->errorReporter().error(offset, "swizzle must refer to base expression"); |
| return nullptr; |
| } |
| |
| return found01 ? Swizzle::MakeWith01(fContext, std::move(base), components) |
| : Swizzle::Make(fContext, std::move(base), components); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type, |
| StringFragment field) { |
| const ProgramElement* enumElement = nullptr; |
| // Find the Enum element that this type refers to, start by searching our elements |
| for (const std::unique_ptr<ProgramElement>& e : *fProgramElements) { |
| if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) { |
| enumElement = e.get(); |
| break; |
| } |
| } |
| // ... if that fails, look in our shared elements |
| if (!enumElement) { |
| for (const ProgramElement* e : *fSharedElements) { |
| if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) { |
| enumElement = e; |
| break; |
| } |
| } |
| } |
| // ... and if that fails, check the intrinsics, add it to our shared elements |
| if (!enumElement && !fIsBuiltinCode && fIntrinsics) { |
| if (const ProgramElement* found = fIntrinsics->findAndInclude(type.name())) { |
| fSharedElements->push_back(found); |
| enumElement = found; |
| } |
| } |
| if (!enumElement) { |
| this->errorReporter().error(offset, |
| "type '" + type.displayName() + "' is not a known enum"); |
| return nullptr; |
| } |
| |
| // We found the Enum element. Look for 'field' as a member. |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| fSymbolTable = enumElement->as<Enum>().symbols(); |
| std::unique_ptr<Expression> result = |
| convertIdentifier(ASTNode(&fFile->fNodes, offset, ASTNode::Kind::kIdentifier, field)); |
| if (result) { |
| const Variable& v = *result->as<VariableReference>().variable(); |
| SkASSERT(v.initialValue()); |
| result = std::make_unique<IntLiteral>(offset, v.initialValue()->as<IntLiteral>().value(), |
| &type); |
| } else { |
| this->errorReporter().error( |
| offset, "type '" + type.name() + "' does not contain enumerator '" + field + "'"); |
| } |
| fSymbolTable = old; |
| return result; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) { |
| SkASSERT(index.fKind == ASTNode::Kind::kIndex); |
| auto iter = index.begin(); |
| std::unique_ptr<Expression> base = this->convertExpression(*(iter++)); |
| if (!base) { |
| return nullptr; |
| } |
| if (base->is<TypeReference>()) { |
| // Convert an index expression starting with a type name: `int[12]` |
| if (iter == index.end()) { |
| this->errorReporter().error(index.fOffset, "array must have a size"); |
| return nullptr; |
| } |
| const Type* type = &base->as<TypeReference>().value(); |
| int arraySize = this->convertArraySize(*type, index.fOffset, *iter); |
| if (!arraySize) { |
| return nullptr; |
| } |
| type = fSymbolTable->addArrayDimension(type, arraySize); |
| return std::make_unique<TypeReference>(fContext, base->fOffset, type); |
| } |
| |
| if (iter == index.end()) { |
| this->errorReporter().error(base->fOffset, "missing index in '[]'"); |
| return nullptr; |
| } |
| std::unique_ptr<Expression> converted = this->convertExpression(*(iter++)); |
| if (!converted) { |
| return nullptr; |
| } |
| return this->convertIndex(std::move(base), std::move(converted)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base, |
| std::unique_ptr<Expression> index) { |
| // Convert an index expression with an expression inside of it: `arr[a * 3]`. |
| const Type& baseType = base->type(); |
| if (!baseType.isArray() && !baseType.isMatrix() && !baseType.isVector()) { |
| this->errorReporter().error(base->fOffset, |
| "expected array, but found '" + baseType.displayName() + "'"); |
| return nullptr; |
| } |
| if (!index->type().isInteger()) { |
| index = this->coerce(std::move(index), *fContext.fTypes.fInt); |
| if (!index) { |
| return nullptr; |
| } |
| } |
| // Perform compile-time bounds checking on constant indices. |
| if (index->is<IntLiteral>()) { |
| SKSL_INT indexValue = index->as<IntLiteral>().value(); |
| |
| const int upperBound = (baseType.isArray() && baseType.columns() == Type::kUnsizedArray) |
| ? INT_MAX |
| : baseType.columns(); |
| if (indexValue < 0 || indexValue >= upperBound) { |
| this->errorReporter().error(base->fOffset, "index " + to_string(indexValue) + |
| " out of range for '" + |
| baseType.displayName() + "'"); |
| return nullptr; |
| } |
| // Constant array indexes on vectors can be converted to swizzles: `myHalf4.z`. |
| // (Using a swizzle gives our optimizer a bit more to work with, compared to array indices.) |
| if (baseType.isVector()) { |
| return Swizzle::Make(fContext, std::move(base), ComponentArray{(int8_t)indexValue}); |
| } |
| } |
| return std::make_unique<IndexExpression>(fContext, std::move(base), std::move(index)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) { |
| SkASSERT(callNode.fKind == ASTNode::Kind::kCall); |
| auto iter = callNode.begin(); |
| std::unique_ptr<Expression> base = this->convertExpression(*(iter++)); |
| if (!base) { |
| return nullptr; |
| } |
| ExpressionArray arguments; |
| for (; iter != callNode.end(); ++iter) { |
| std::unique_ptr<Expression> converted = this->convertExpression(*iter); |
| if (!converted) { |
| return nullptr; |
| } |
| arguments.push_back(std::move(converted)); |
| } |
| return this->call(callNode.fOffset, std::move(base), std::move(arguments)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) { |
| std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| StringFragment field = fieldNode.getString(); |
| const Type& baseType = base->type(); |
| if (baseType == *fContext.fTypes.fSkCaps) { |
| return Setting::Make(fContext, fieldNode.fOffset, field); |
| } |
| switch (baseType.typeKind()) { |
| case Type::TypeKind::kStruct: |
| return this->convertField(std::move(base), field); |
| default: |
| return this->convertSwizzle(std::move(base), field); |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertScopeExpression(const ASTNode& scopeNode) { |
| std::unique_ptr<Expression> base = this->convertExpression(*scopeNode.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| if (!base->is<TypeReference>()) { |
| this->errorReporter().error(scopeNode.fOffset, "'::' must follow a type name"); |
| return nullptr; |
| } |
| StringFragment member = scopeNode.getString(); |
| return this->convertTypeField(base->fOffset, base->as<TypeReference>().value(), member); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) { |
| SkASSERT(expression.fKind == ASTNode::Kind::kPostfix); |
| std::unique_ptr<Expression> base = this->convertExpression(*expression.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| return PostfixExpression::Make(fContext, std::move(base), expression.getOperator()); |
| } |
| |
| void IRGenerator::checkValid(const Expression& expr) { |
| switch (expr.kind()) { |
| case Expression::Kind::kFunctionCall: { |
| const FunctionDeclaration& decl = expr.as<FunctionCall>().function(); |
| if (!decl.isBuiltin() && !decl.definition()) { |
| this->errorReporter().error(expr.fOffset, |
| "function '" + decl.description() + "' is not defined"); |
| } |
| break; |
| } |
| case Expression::Kind::kFunctionReference: |
| case Expression::Kind::kTypeReference: |
| SkDEBUGFAIL("invalid reference-expression, should have been reported by coerce()"); |
| this->errorReporter().error(expr.fOffset, "invalid expression"); |
| break; |
| default: |
| if (expr.type() == *fContext.fTypes.fInvalid) { |
| this->errorReporter().error(expr.fOffset, "invalid expression"); |
| } |
| break; |
| } |
| } |
| |
| void IRGenerator::findAndDeclareBuiltinVariables() { |
| class BuiltinVariableScanner : public ProgramVisitor { |
| public: |
| BuiltinVariableScanner(IRGenerator* generator) : fGenerator(generator) {} |
| |
| void addDeclaringElement(const String& name) { |
| // If this is the *first* time we've seen this builtin, findAndInclude will return |
| // the corresponding ProgramElement. |
| if (const ProgramElement* decl = fGenerator->fIntrinsics->findAndInclude(name)) { |
| SkASSERT(decl->is<GlobalVarDeclaration>() || decl->is<InterfaceBlock>()); |
| fNewElements.push_back(decl); |
| } |
| } |
| |
| bool visitProgramElement(const ProgramElement& pe) override { |
| if (pe.is<FunctionDefinition>()) { |
| const FunctionDefinition& funcDef = pe.as<FunctionDefinition>(); |
| // We synthesize writes to sk_FragColor if main() returns a color, even if it's |
| // otherwise unreferenced. Check main's return type to see if it's half4. |
| if (funcDef.declaration().name() == "main" && |
| funcDef.declaration().returnType() == *fGenerator->fContext.fTypes.fHalf4) { |
| fPreserveFragColor = true; |
| } |
| } |
| return INHERITED::visitProgramElement(pe); |
| } |
| |
| bool visitExpression(const Expression& e) override { |
| if (e.is<VariableReference>() && e.as<VariableReference>().variable()->isBuiltin()) { |
| this->addDeclaringElement(e.as<VariableReference>().variable()->name()); |
| } |
| return INHERITED::visitExpression(e); |
| } |
| |
| IRGenerator* fGenerator; |
| std::vector<const ProgramElement*> fNewElements; |
| bool fPreserveFragColor = false; |
| |
| using INHERITED = ProgramVisitor; |
| using INHERITED::visitProgramElement; |
| }; |
| |
| BuiltinVariableScanner scanner(this); |
| for (auto& e : *fProgramElements) { |
| scanner.visitProgramElement(*e); |
| } |
| |
| if (scanner.fPreserveFragColor) { |
| // main() returns a half4, so make sure we don't dead-strip sk_FragColor. |
| scanner.addDeclaringElement("sk_FragColor"); |
| } |
| |
| switch (this->programKind()) { |
| case ProgramKind::kFragment: |
| // Vulkan requires certain builtin variables be present, even if they're unused. At one |
| // time, validation errors would result if sk_Clockwise was missing. Now, it's just |
| // (Adreno) driver bugs that drop or corrupt draws if they're missing. |
| scanner.addDeclaringElement("sk_Clockwise"); |
| break; |
| default: |
| break; |
| } |
| |
| fSharedElements->insert( |
| fSharedElements->begin(), scanner.fNewElements.begin(), scanner.fNewElements.end()); |
| } |
| |
| IRGenerator::IRBundle IRGenerator::convertProgram( |
| const ParsedModule& base, |
| bool isBuiltinCode, |
| const char* text, |
| size_t length, |
| const std::vector<std::unique_ptr<ExternalFunction>>* externalFunctions) { |
| fSymbolTable = base.fSymbols; |
| fIntrinsics = base.fIntrinsics.get(); |
| if (fIntrinsics) { |
| fIntrinsics->resetAlreadyIncluded(); |
| } |
| fIsBuiltinCode = isBuiltinCode; |
| |
| std::vector<std::unique_ptr<ProgramElement>> elements; |
| std::vector<const ProgramElement*> sharedElements; |
| |
| fProgramElements = &elements; |
| fSharedElements = &sharedElements; |
| |
| fInputs.reset(); |
| fInvocations = -1; |
| fRTAdjust = nullptr; |
| fRTAdjustInterfaceBlock = nullptr; |
| fDefinedStructs.clear(); |
| |
| AutoSymbolTable table(this); |
| |
| if (this->programKind() == ProgramKind::kGeometry && !fIsBuiltinCode) { |
| // Declare sk_InvocationID programmatically. With invocations support, it's an 'in' builtin. |
| // If we're applying the workaround, then it's a plain global. |
| bool workaround = !this->caps().gsInvocationsSupport(); |
| Modifiers m; |
| if (!workaround) { |
| m.fFlags = Modifiers::kIn_Flag; |
| m.fLayout.fBuiltin = SK_INVOCATIONID_BUILTIN; |
| } |
| auto var = std::make_unique<Variable>(-1, fModifiers->addToPool(m), "sk_InvocationID", |
| fContext.fTypes.fInt.get(), false, |
| Variable::Storage::kGlobal); |
| auto decl = std::make_unique<VarDeclaration>(var.get(), fContext.fTypes.fInt.get(), |
| /*arraySize=*/0, /*value=*/nullptr); |
| fSymbolTable->add(std::move(var)); |
| fProgramElements->push_back( |
| std::make_unique<GlobalVarDeclaration>(/*offset=*/-1, std::move(decl))); |
| } |
| |
| if (externalFunctions) { |
| // Add any external values to the new symbol table, so they're only visible to this Program |
| for (const auto& ef : *externalFunctions) { |
| fSymbolTable->addWithoutOwnership(ef.get()); |
| } |
| } |
| |
| Parser parser(text, length, *fSymbolTable, this->errorReporter()); |
| fFile = parser.compilationUnit(); |
| if (this->errorReporter().errorCount()) { |
| return {}; |
| } |
| SkASSERT(fFile); |
| for (const auto& decl : fFile->root()) { |
| switch (decl.fKind) { |
| case ASTNode::Kind::kVarDeclarations: |
| this->convertGlobalVarDeclarations(decl); |
| break; |
| |
| case ASTNode::Kind::kEnum: |
| this->convertEnum(decl); |
| break; |
| |
| case ASTNode::Kind::kFunction: |
| this->convertFunction(decl); |
| break; |
| |
| case ASTNode::Kind::kModifiers: { |
| std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(decl); |
| if (f) { |
| fProgramElements->push_back(std::move(f)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kInterfaceBlock: { |
| std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(decl); |
| if (i) { |
| fProgramElements->push_back(std::move(i)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kExtension: { |
| std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset, |
| decl.getString()); |
| if (e) { |
| fProgramElements->push_back(std::move(e)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kSection: { |
| std::unique_ptr<Section> s = this->convertSection(decl); |
| if (s) { |
| fProgramElements->push_back(std::move(s)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kType: { |
| std::unique_ptr<StructDefinition> s = this->convertStructDefinition(decl); |
| if (s) { |
| fProgramElements->push_back(std::move(s)); |
| } |
| break; |
| } |
| default: |
| SkDEBUGFAILF("unsupported declaration: %s\n", decl.description().c_str()); |
| break; |
| } |
| } |
| |
| // Variables defined in the pre-includes need their declaring elements added to the program |
| if (!fIsBuiltinCode && fIntrinsics) { |
| this->findAndDeclareBuiltinVariables(); |
| } |
| |
| // Do a pass looking for dangling FunctionReference or TypeReference expressions |
| class FindIllegalExpressions : public ProgramVisitor { |
| public: |
| FindIllegalExpressions(IRGenerator* generator) : fGenerator(generator) {} |
| |
| bool visitExpression(const Expression& e) override { |
| fGenerator->checkValid(e); |
| return INHERITED::visitExpression(e); |
| } |
| |
| IRGenerator* fGenerator; |
| using INHERITED = ProgramVisitor; |
| using INHERITED::visitProgramElement; |
| }; |
| for (const auto& pe : *fProgramElements) { |
| FindIllegalExpressions{this}.visitProgramElement(*pe); |
| } |
| |
| // If we're in ES2 mode (runtime effects), do a pass to enforce Appendix A, Section 5 of the |
| // GLSL ES 1.00 spec -- Indexing. Don't bother if we've already found errors - this logic |
| // assumes that all loops meet the criteria of Section 4, and if they don't, could crash. |
| if (this->strictES2Mode() && this->errorReporter().errorCount() == 0) { |
| for (const auto& pe : *fProgramElements) { |
| Analysis::ValidateIndexingForES2(*pe, this->errorReporter()); |
| } |
| } |
| |
| return IRBundle{std::move(elements), std::move(sharedElements), this->releaseModifiers(), |
| fSymbolTable, fInputs}; |
| } |
| |
| } // namespace SkSL |