| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkCodec_libbmp.h" |
| #include "SkCodecPriv.h" |
| #include "SkColorPriv.h" |
| #include "SkStream.h" |
| |
| /* |
| * |
| * Checks if the conversion between the input image and the requested output |
| * image has been implemented |
| * |
| */ |
| static bool conversion_possible(const SkImageInfo& dst, |
| const SkImageInfo& src) { |
| // Ensure that the profile type is unchanged |
| if (dst.profileType() != src.profileType()) { |
| return false; |
| } |
| |
| // Check for supported alpha types |
| if (src.alphaType() != dst.alphaType()) { |
| if (kOpaque_SkAlphaType == src.alphaType()) { |
| // If the source is opaque, we must decode to opaque |
| return false; |
| } |
| |
| // The source is not opaque |
| switch (dst.alphaType()) { |
| case kPremul_SkAlphaType: |
| case kUnpremul_SkAlphaType: |
| // The source is not opaque, so either of these is okay |
| break; |
| default: |
| // We cannot decode a non-opaque image to opaque (or unknown) |
| return false; |
| } |
| } |
| |
| // Check for supported color types |
| switch (dst.colorType()) { |
| // Allow output to kN32 from any type of input |
| case kN32_SkColorType: |
| return true; |
| // Allow output to kIndex_8 from compatible inputs |
| case kIndex_8_SkColorType: |
| return kIndex_8_SkColorType == src.colorType(); |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * |
| * Defines the version and type of the second bitmap header |
| * |
| */ |
| enum BitmapHeaderType { |
| kInfoV1_BitmapHeaderType, |
| kInfoV2_BitmapHeaderType, |
| kInfoV3_BitmapHeaderType, |
| kInfoV4_BitmapHeaderType, |
| kInfoV5_BitmapHeaderType, |
| kOS2V1_BitmapHeaderType, |
| kOS2VX_BitmapHeaderType, |
| kUnknown_BitmapHeaderType |
| }; |
| |
| /* |
| * |
| * Possible bitmap compression types |
| * |
| */ |
| enum BitmapCompressionMethod { |
| kNone_BitmapCompressionMethod = 0, |
| k8BitRLE_BitmapCompressionMethod = 1, |
| k4BitRLE_BitmapCompressionMethod = 2, |
| kBitMasks_BitmapCompressionMethod = 3, |
| kJpeg_BitmapCompressionMethod = 4, |
| kPng_BitmapCompressionMethod = 5, |
| kAlphaBitMasks_BitmapCompressionMethod = 6, |
| kCMYK_BitmapCompressionMethod = 11, |
| kCMYK8BitRLE_BitmapCompressionMethod = 12, |
| kCMYK4BitRLE_BitmapCompressionMethod = 13 |
| }; |
| |
| /* |
| * |
| * Checks the start of the stream to see if the image is a bitmap |
| * |
| */ |
| bool SkBmpCodec::IsBmp(SkStream* stream) { |
| // TODO: Support "IC", "PT", "CI", "CP", "BA" |
| const char bmpSig[] = { 'B', 'M' }; |
| char buffer[sizeof(bmpSig)]; |
| return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
| !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
| } |
| |
| /* |
| * |
| * Assumes IsBmp was called and returned true |
| * Creates a bmp decoder |
| * Reads enough of the stream to determine the image format |
| * |
| */ |
| SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
| return SkBmpCodec::NewFromStream(stream, false); |
| } |
| |
| /* |
| * |
| * Creates a bmp decoder for a bmp embedded in ico |
| * Reads enough of the stream to determine the image format |
| * |
| */ |
| SkCodec* SkBmpCodec::NewFromIco(SkStream* stream) { |
| return SkBmpCodec::NewFromStream(stream, true); |
| } |
| |
| /* |
| * |
| * Read enough of the stream to initialize the SkBmpCodec. Returns a bool |
| * representing success or failure. If it returned true, and codecOut was |
| * not NULL, it will be set to a new SkBmpCodec. |
| * Does *not* take ownership of the passed in SkStream. |
| * |
| */ |
| bool SkBmpCodec::ReadHeader(SkStream* stream, bool isIco, SkCodec** codecOut) { |
| // Header size constants |
| static const uint32_t kBmpHeaderBytes = 14; |
| static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
| static const uint32_t kBmpOS2V1Bytes = 12; |
| static const uint32_t kBmpOS2V2Bytes = 64; |
| static const uint32_t kBmpInfoBaseBytes = 16; |
| static const uint32_t kBmpInfoV1Bytes = 40; |
| static const uint32_t kBmpInfoV2Bytes = 52; |
| static const uint32_t kBmpInfoV3Bytes = 56; |
| static const uint32_t kBmpInfoV4Bytes = 108; |
| static const uint32_t kBmpInfoV5Bytes = 124; |
| static const uint32_t kBmpMaskBytes = 12; |
| |
| // The total bytes in the bmp file |
| // We only need to use this value for RLE decoding, so we will only |
| // check that it is valid in the RLE case. |
| uint32_t totalBytes; |
| // The offset from the start of the file where the pixel data begins |
| uint32_t offset; |
| // The size of the second (info) header in bytes |
| uint32_t infoBytes; |
| |
| // Bmps embedded in Icos skip the first Bmp header |
| if (!isIco) { |
| // Read the first header and the size of the second header |
| SkAutoTDeleteArray<uint8_t> hBuffer( |
| SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
| if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
| kBmpHeaderBytesPlusFour) { |
| SkCodecPrintf("Error: unable to read first bitmap header.\n"); |
| return false; |
| } |
| |
| totalBytes = get_int(hBuffer.get(), 2); |
| offset = get_int(hBuffer.get(), 10); |
| if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
| SkCodecPrintf("Error: invalid starting location for pixel data\n"); |
| return false; |
| } |
| |
| // The size of the second (info) header in bytes |
| // The size is the first field of the second header, so we have already |
| // read the first four infoBytes. |
| infoBytes = get_int(hBuffer.get(), 14); |
| if (infoBytes < kBmpOS2V1Bytes) { |
| SkCodecPrintf("Error: invalid second header size.\n"); |
| return false; |
| } |
| } else { |
| // This value is only used by RLE compression. Bmp in Ico files do not |
| // use RLE. If the compression field is incorrectly signaled as RLE, |
| // we will catch this and signal an error below. |
| totalBytes = 0; |
| |
| // Bmps in Ico cannot specify an offset. We will always assume that |
| // pixel data begins immediately after the color table. This value |
| // will be corrected below. |
| offset = 0; |
| |
| // Read the size of the second header |
| SkAutoTDeleteArray<uint8_t> hBuffer( |
| SkNEW_ARRAY(uint8_t, 4)); |
| if (stream->read(hBuffer.get(), 4) != 4) { |
| SkCodecPrintf("Error: unable to read size of second bitmap header.\n"); |
| return false; |
| } |
| infoBytes = get_int(hBuffer.get(), 0); |
| if (infoBytes < kBmpOS2V1Bytes) { |
| SkCodecPrintf("Error: invalid second header size.\n"); |
| return false; |
| } |
| } |
| |
| // We already read the first four bytes of the info header to get the size |
| const uint32_t infoBytesRemaining = infoBytes - 4; |
| |
| // Read the second header |
| SkAutoTDeleteArray<uint8_t> iBuffer( |
| SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
| if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
| SkCodecPrintf("Error: unable to read second bitmap header.\n"); |
| return false; |
| } |
| |
| // The number of bits used per pixel in the pixel data |
| uint16_t bitsPerPixel; |
| |
| // The compression method for the pixel data |
| uint32_t compression = kNone_BitmapCompressionMethod; |
| |
| // Number of colors in the color table, defaults to 0 or max (see below) |
| uint32_t numColors = 0; |
| |
| // Bytes per color in the color table, early versions use 3, most use 4 |
| uint32_t bytesPerColor; |
| |
| // The image width and height |
| int width, height; |
| |
| // Determine image information depending on second header format |
| BitmapHeaderType headerType; |
| if (infoBytes >= kBmpInfoBaseBytes) { |
| // Check the version of the header |
| switch (infoBytes) { |
| case kBmpInfoV1Bytes: |
| headerType = kInfoV1_BitmapHeaderType; |
| break; |
| case kBmpInfoV2Bytes: |
| headerType = kInfoV2_BitmapHeaderType; |
| break; |
| case kBmpInfoV3Bytes: |
| headerType = kInfoV3_BitmapHeaderType; |
| break; |
| case kBmpInfoV4Bytes: |
| headerType = kInfoV4_BitmapHeaderType; |
| break; |
| case kBmpInfoV5Bytes: |
| headerType = kInfoV5_BitmapHeaderType; |
| break; |
| case 16: |
| case 20: |
| case 24: |
| case 28: |
| case 32: |
| case 36: |
| case 42: |
| case 46: |
| case 48: |
| case 60: |
| case kBmpOS2V2Bytes: |
| headerType = kOS2VX_BitmapHeaderType; |
| break; |
| default: |
| // We do not signal an error here because there is the |
| // possibility of new or undocumented bmp header types. Most |
| // of the newer versions of bmp headers are similar to and |
| // build off of the older versions, so we may still be able to |
| // decode the bmp. |
| SkCodecPrintf("Warning: unknown bmp header format.\n"); |
| headerType = kUnknown_BitmapHeaderType; |
| break; |
| } |
| // We check the size of the header before entering the if statement. |
| // We should not reach this point unless the size is large enough for |
| // these required fields. |
| SkASSERT(infoBytesRemaining >= 12); |
| width = get_int(iBuffer.get(), 0); |
| height = get_int(iBuffer.get(), 4); |
| bitsPerPixel = get_short(iBuffer.get(), 10); |
| |
| // Some versions do not have these fields, so we check before |
| // overwriting the default value. |
| if (infoBytesRemaining >= 16) { |
| compression = get_int(iBuffer.get(), 12); |
| if (infoBytesRemaining >= 32) { |
| numColors = get_int(iBuffer.get(), 28); |
| } |
| } |
| |
| // All of the headers that reach this point, store color table entries |
| // using 4 bytes per pixel. |
| bytesPerColor = 4; |
| } else if (infoBytes >= kBmpOS2V1Bytes) { |
| // The OS2V1 is treated separately because it has a unique format |
| headerType = kOS2V1_BitmapHeaderType; |
| width = (int) get_short(iBuffer.get(), 0); |
| height = (int) get_short(iBuffer.get(), 2); |
| bitsPerPixel = get_short(iBuffer.get(), 6); |
| bytesPerColor = 3; |
| } else { |
| // There are no valid bmp headers |
| SkCodecPrintf("Error: second bitmap header size is invalid.\n"); |
| return false; |
| } |
| |
| // Check for valid dimensions from header |
| RowOrder rowOrder = kBottomUp_RowOrder; |
| if (height < 0) { |
| height = -height; |
| rowOrder = kTopDown_RowOrder; |
| } |
| // The height field for bmp in ico is double the actual height because they |
| // contain an XOR mask followed by an AND mask |
| if (isIco) { |
| height /= 2; |
| } |
| if (width <= 0 || height <= 0) { |
| // TODO: Decide if we want to disable really large bmps as well. |
| // https://code.google.com/p/skia/issues/detail?id=3617 |
| SkCodecPrintf("Error: invalid bitmap dimensions.\n"); |
| return false; |
| } |
| |
| // Create mask struct |
| SkMasks::InputMasks inputMasks; |
| memset(&inputMasks, 0, sizeof(SkMasks::InputMasks)); |
| |
| // Determine the input compression format and set bit masks if necessary |
| uint32_t maskBytes = 0; |
| BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
| switch (compression) { |
| case kNone_BitmapCompressionMethod: |
| inputFormat = kStandard_BitmapInputFormat; |
| break; |
| case k8BitRLE_BitmapCompressionMethod: |
| if (bitsPerPixel != 8) { |
| SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
| bitsPerPixel = 8; |
| } |
| inputFormat = kRLE_BitmapInputFormat; |
| break; |
| case k4BitRLE_BitmapCompressionMethod: |
| if (bitsPerPixel != 4) { |
| SkCodecPrintf("Warning: correcting invalid bitmap format.\n"); |
| bitsPerPixel = 4; |
| } |
| inputFormat = kRLE_BitmapInputFormat; |
| break; |
| case kAlphaBitMasks_BitmapCompressionMethod: |
| case kBitMasks_BitmapCompressionMethod: |
| // Load the masks |
| inputFormat = kBitMask_BitmapInputFormat; |
| switch (headerType) { |
| case kInfoV1_BitmapHeaderType: { |
| // The V1 header stores the bit masks after the header |
| SkAutoTDeleteArray<uint8_t> mBuffer( |
| SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
| if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
| kBmpMaskBytes) { |
| SkCodecPrintf("Error: unable to read bit inputMasks.\n"); |
| return false; |
| } |
| maskBytes = kBmpMaskBytes; |
| inputMasks.red = get_int(mBuffer.get(), 0); |
| inputMasks.green = get_int(mBuffer.get(), 4); |
| inputMasks.blue = get_int(mBuffer.get(), 8); |
| break; |
| } |
| case kInfoV2_BitmapHeaderType: |
| case kInfoV3_BitmapHeaderType: |
| case kInfoV4_BitmapHeaderType: |
| case kInfoV5_BitmapHeaderType: |
| // Header types are matched based on size. If the header |
| // is V2+, we are guaranteed to be able to read at least |
| // this size. |
| SkASSERT(infoBytesRemaining >= 48); |
| inputMasks.red = get_int(iBuffer.get(), 36); |
| inputMasks.green = get_int(iBuffer.get(), 40); |
| inputMasks.blue = get_int(iBuffer.get(), 44); |
| break; |
| case kOS2VX_BitmapHeaderType: |
| // TODO: Decide if we intend to support this. |
| // It is unsupported in the previous version and |
| // in chromium. I have not come across a test case |
| // that uses this format. |
| SkCodecPrintf("Error: huffman format unsupported.\n"); |
| return false; |
| default: |
| SkCodecPrintf("Error: invalid bmp bit masks header.\n"); |
| return false; |
| } |
| break; |
| case kJpeg_BitmapCompressionMethod: |
| if (24 == bitsPerPixel) { |
| inputFormat = kRLE_BitmapInputFormat; |
| break; |
| } |
| // Fall through |
| case kPng_BitmapCompressionMethod: |
| // TODO: Decide if we intend to support this. |
| // It is unsupported in the previous version and |
| // in chromium. I think it is used mostly for printers. |
| SkCodecPrintf("Error: compression format not supported.\n"); |
| return false; |
| case kCMYK_BitmapCompressionMethod: |
| case kCMYK8BitRLE_BitmapCompressionMethod: |
| case kCMYK4BitRLE_BitmapCompressionMethod: |
| // TODO: Same as above. |
| SkCodecPrintf("Error: CMYK not supported for bitmap decoding.\n"); |
| return false; |
| default: |
| SkCodecPrintf("Error: invalid format for bitmap decoding.\n"); |
| return false; |
| } |
| |
| // Most versions of bmps should be rendered as opaque. Either they do |
| // not have an alpha channel, or they expect the alpha channel to be |
| // ignored. V3+ bmp files introduce an alpha mask and allow the creator |
| // of the image to use the alpha channels. However, many of these images |
| // leave the alpha channel blank and expect to be rendered as opaque. This |
| // is the case for almost all V3 images, so we render these as opaque. For |
| // V4+, we will use the alpha channel, and fix the image later if it turns |
| // out to be fully transparent. |
| // As an exception, V3 bmp-in-ico may use an alpha mask. |
| SkAlphaType alphaType = kOpaque_SkAlphaType; |
| if ((kInfoV3_BitmapHeaderType == headerType && isIco) || |
| kInfoV4_BitmapHeaderType == headerType || |
| kInfoV5_BitmapHeaderType == headerType) { |
| // Header types are matched based on size. If the header is |
| // V3+, we are guaranteed to be able to read at least this size. |
| SkASSERT(infoBytesRemaining > 52); |
| inputMasks.alpha = get_int(iBuffer.get(), 48); |
| if (inputMasks.alpha != 0) { |
| alphaType = kUnpremul_SkAlphaType; |
| } |
| } |
| iBuffer.free(); |
| |
| // Additionally, 32 bit bmp-in-icos use the alpha channel. |
| // And, RLE inputs may skip pixels, leaving them as transparent. This |
| // is uncommon, but we cannot be certain that an RLE bmp will be opaque. |
| if ((isIco && 32 == bitsPerPixel) || (kRLE_BitmapInputFormat == inputFormat)) { |
| alphaType = kUnpremul_SkAlphaType; |
| } |
| |
| // Check for valid bits per pixel. |
| // At the same time, use this information to choose a suggested color type |
| // and to set default masks. |
| SkColorType colorType = kN32_SkColorType; |
| switch (bitsPerPixel) { |
| // In addition to more standard pixel compression formats, bmp supports |
| // the use of bit masks to determine pixel components. The standard |
| // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
| // which does not map well to any Skia color formats. For this reason, |
| // we will always enable mask mode with 16 bits per pixel. |
| case 16: |
| if (kBitMask_BitmapInputFormat != inputFormat) { |
| inputMasks.red = 0x7C00; |
| inputMasks.green = 0x03E0; |
| inputMasks.blue = 0x001F; |
| inputFormat = kBitMask_BitmapInputFormat; |
| } |
| break; |
| // We want to decode to kIndex_8 for input formats that are already |
| // designed in index format. |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| // However, we cannot in RLE format since we may need to leave some |
| // pixels as transparent. Similarly, we also cannot for ICO images |
| // since we may need to apply a transparent mask. |
| if (kRLE_BitmapInputFormat != inputFormat && !isIco) { |
| colorType = kIndex_8_SkColorType; |
| } |
| case 24: |
| case 32: |
| break; |
| default: |
| SkCodecPrintf("Error: invalid input value for bits per pixel.\n"); |
| return false; |
| } |
| |
| // Check that input bit masks are valid and create the masks object |
| SkAutoTDelete<SkMasks> |
| masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); |
| if (NULL == masks) { |
| SkCodecPrintf("Error: invalid input masks.\n"); |
| return false; |
| } |
| |
| // Check for a valid number of total bytes when in RLE mode |
| if (totalBytes <= offset && kRLE_BitmapInputFormat == inputFormat) { |
| SkCodecPrintf("Error: RLE requires valid input size.\n"); |
| return false; |
| } |
| const size_t RLEBytes = totalBytes - offset; |
| |
| // Calculate the number of bytes read so far |
| const uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes; |
| if (!isIco && offset < bytesRead) { |
| SkCodecPrintf("Error: pixel data offset less than header size.\n"); |
| return false; |
| } |
| |
| if (codecOut) { |
| // Return the codec |
| // We will use ImageInfo to store width, height, suggested color type, and |
| // suggested alpha type. |
| const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
| colorType, alphaType); |
| *codecOut = SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
| inputFormat, masks.detach(), |
| numColors, bytesPerColor, |
| offset - bytesRead, rowOrder, |
| RLEBytes, isIco)); |
| } |
| return true; |
| } |
| |
| /* |
| * |
| * Creates a bmp decoder |
| * Reads enough of the stream to determine the image format |
| * |
| */ |
| SkCodec* SkBmpCodec::NewFromStream(SkStream* stream, bool isIco) { |
| SkAutoTDelete<SkStream> streamDeleter(stream); |
| SkCodec* codec = NULL; |
| if (ReadHeader(stream, isIco, &codec)) { |
| // codec has taken ownership of stream, so we do not need to |
| // delete it. |
| SkASSERT(codec); |
| streamDeleter.detach(); |
| return codec; |
| } |
| return NULL; |
| } |
| |
| /* |
| * |
| * Creates an instance of the decoder |
| * Called only by NewFromStream |
| * |
| */ |
| SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
| uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
| SkMasks* masks, uint32_t numColors, |
| uint32_t bytesPerColor, uint32_t offset, |
| RowOrder rowOrder, size_t RLEBytes, bool isIco) |
| : INHERITED(info, stream) |
| , fBitsPerPixel(bitsPerPixel) |
| , fInputFormat(inputFormat) |
| , fMasks(masks) |
| , fColorTable(NULL) |
| , fNumColors(numColors) |
| , fBytesPerColor(bytesPerColor) |
| , fOffset(offset) |
| , fRowOrder(rowOrder) |
| , fRLEBytes(RLEBytes) |
| , fIsIco(isIco) |
| |
| {} |
| |
| /* |
| * |
| * Initiates the bitmap decode |
| * |
| */ |
| SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
| void* dst, size_t dstRowBytes, |
| const Options& opts, |
| SkPMColor* inputColorPtr, |
| int* inputColorCount) { |
| // Check for proper input and output formats |
| SkCodec::RewindState rewindState = this->rewindIfNeeded(); |
| if (rewindState == kCouldNotRewind_RewindState) { |
| return kCouldNotRewind; |
| } else if (rewindState == kRewound_RewindState) { |
| if (!ReadHeader(this->stream(), fIsIco, NULL)) { |
| return kCouldNotRewind; |
| } |
| } |
| if (dstInfo.dimensions() != this->getInfo().dimensions()) { |
| SkCodecPrintf("Error: scaling not supported.\n"); |
| return kInvalidScale; |
| } |
| if (!conversion_possible(dstInfo, this->getInfo())) { |
| SkCodecPrintf("Error: cannot convert input type to output type.\n"); |
| return kInvalidConversion; |
| } |
| |
| // Create the color table if necessary and prepare the stream for decode |
| // Note that if it is non-NULL, inputColorCount will be modified |
| if (!createColorTable(dstInfo.alphaType(), inputColorCount)) { |
| SkCodecPrintf("Error: could not create color table.\n"); |
| return kInvalidInput; |
| } |
| |
| // Copy the color table to the client if necessary |
| copy_color_table(dstInfo, fColorTable, inputColorPtr, inputColorCount); |
| |
| // Perform the decode |
| switch (fInputFormat) { |
| case kBitMask_BitmapInputFormat: |
| return decodeMask(dstInfo, dst, dstRowBytes, opts); |
| case kRLE_BitmapInputFormat: |
| return decodeRLE(dstInfo, dst, dstRowBytes, opts); |
| case kStandard_BitmapInputFormat: |
| return decode(dstInfo, dst, dstRowBytes, opts); |
| default: |
| SkASSERT(false); |
| return kInvalidInput; |
| } |
| } |
| |
| /* |
| * |
| * Process the color table for the bmp input |
| * |
| */ |
| bool SkBmpCodec::createColorTable(SkAlphaType alphaType, int* numColors) { |
| // Allocate memory for color table |
| uint32_t colorBytes = 0; |
| uint32_t maxColors = 0; |
| SkPMColor colorTable[256]; |
| if (fBitsPerPixel <= 8) { |
| // Zero is a default for maxColors |
| // Also set fNumColors to maxColors when it is too large |
| maxColors = 1 << fBitsPerPixel; |
| if (fNumColors == 0 || fNumColors >= maxColors) { |
| fNumColors = maxColors; |
| } |
| |
| // Inform the caller of the number of colors |
| if (NULL != numColors) { |
| // We set the number of colors to maxColors in order to ensure |
| // safe memory accesses. Otherwise, an invalid pixel could |
| // access memory outside of our color table array. |
| *numColors = maxColors; |
| } |
| |
| // Read the color table from the stream |
| colorBytes = fNumColors * fBytesPerColor; |
| SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
| if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) { |
| SkCodecPrintf("Error: unable to read color table.\n"); |
| return false; |
| } |
| |
| // Choose the proper packing function |
| SkPMColor (*packARGB) (uint32_t, uint32_t, uint32_t, uint32_t); |
| switch (alphaType) { |
| case kOpaque_SkAlphaType: |
| case kUnpremul_SkAlphaType: |
| packARGB = &SkPackARGB32NoCheck; |
| break; |
| case kPremul_SkAlphaType: |
| packARGB = &SkPreMultiplyARGB; |
| break; |
| default: |
| // This should not be reached because conversion possible |
| // should fail if the alpha type is not one of the above |
| // values. |
| SkASSERT(false); |
| packARGB = NULL; |
| break; |
| } |
| |
| // Fill in the color table |
| uint32_t i = 0; |
| for (; i < fNumColors; i++) { |
| uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor); |
| uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1); |
| uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2); |
| uint8_t alpha; |
| if (kOpaque_SkAlphaType == alphaType || kRLE_BitmapInputFormat == fInputFormat) { |
| alpha = 0xFF; |
| } else { |
| alpha = (fMasks->getAlphaMask() >> 24) & |
| get_byte(cBuffer.get(), i*fBytesPerColor + 3); |
| } |
| colorTable[i] = packARGB(alpha, red, green, blue); |
| } |
| |
| // To avoid segmentation faults on bad pixel data, fill the end of the |
| // color table with black. This is the same the behavior as the |
| // chromium decoder. |
| for (; i < maxColors; i++) { |
| colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
| } |
| |
| // Set the color table |
| fColorTable.reset(SkNEW_ARGS(SkColorTable, (colorTable, maxColors))); |
| } |
| |
| // Bmp-in-Ico files do not use an offset to indicate where the pixel data |
| // begins. Pixel data always begins immediately after the color table. |
| if (!fIsIco) { |
| // Check that we have not read past the pixel array offset |
| if(fOffset < colorBytes) { |
| // This may occur on OS 2.1 and other old versions where the color |
| // table defaults to max size, and the bmp tries to use a smaller |
| // color table. This is invalid, and our decision is to indicate |
| // an error, rather than try to guess the intended size of the |
| // color table. |
| SkCodecPrintf("Error: pixel data offset less than color table size.\n"); |
| return false; |
| } |
| |
| // After reading the color table, skip to the start of the pixel array |
| if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) { |
| SkCodecPrintf("Error: unable to skip to image data.\n"); |
| return false; |
| } |
| } |
| |
| // Return true on success |
| return true; |
| } |
| |
| /* |
| * |
| * Get the destination row to start filling from |
| * Used to fill the remainder of the image on incomplete input |
| * |
| */ |
| static inline void* get_dst_start_row(void* dst, size_t dstRowBytes, int32_t y, |
| SkBmpCodec::RowOrder rowOrder) { |
| return (SkBmpCodec::kTopDown_RowOrder == rowOrder) ? |
| SkTAddOffset<void*>(dst, y * dstRowBytes) : dst; |
| } |
| |
| /* |
| * |
| * Performs the bitmap decoding for bit masks input format |
| * |
| */ |
| SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
| void* dst, size_t dstRowBytes, |
| const Options& opts) { |
| // Set constant values |
| const int width = dstInfo.width(); |
| const int height = dstInfo.height(); |
| const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
| |
| // Allocate a buffer large enough to hold the full image |
| SkAutoTDeleteArray<uint8_t> |
| srcBuffer(SkNEW_ARRAY(uint8_t, height*rowBytes)); |
| uint8_t* srcRow = srcBuffer.get(); |
| |
| // Create the swizzler |
| SkAutoTDelete<SkMaskSwizzler> maskSwizzler( |
| SkMaskSwizzler::CreateMaskSwizzler(dstInfo, dst, dstRowBytes, |
| fMasks, fBitsPerPixel)); |
| |
| // Iterate over rows of the image |
| bool transparent = true; |
| for (int y = 0; y < height; y++) { |
| // Read a row of the input |
| if (stream()->read(srcRow, rowBytes) != rowBytes) { |
| SkCodecPrintf("Warning: incomplete input stream.\n"); |
| // Fill the destination image on failure |
| SkPMColor fillColor = dstInfo.alphaType() == kOpaque_SkAlphaType ? |
| SK_ColorBLACK : SK_ColorTRANSPARENT; |
| if (kNo_ZeroInitialized == opts.fZeroInitialized || 0 != fillColor) { |
| void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
| SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, fillColor, |
| NULL); |
| } |
| return kIncompleteInput; |
| } |
| |
| // Decode the row in destination format |
| int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
| SkSwizzler::ResultAlpha r = maskSwizzler->next(srcRow, row); |
| transparent &= SkSwizzler::IsTransparent(r); |
| |
| // Move to the next row |
| srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
| } |
| |
| // Some fully transparent bmp images are intended to be opaque. Here, we |
| // correct for this possibility. |
| if (transparent) { |
| const SkImageInfo& opaqueInfo = |
| dstInfo.makeAlphaType(kOpaque_SkAlphaType); |
| SkAutoTDelete<SkMaskSwizzler> opaqueSwizzler( |
| SkMaskSwizzler::CreateMaskSwizzler(opaqueInfo, dst, dstRowBytes, |
| fMasks, fBitsPerPixel)); |
| srcRow = srcBuffer.get(); |
| for (int y = 0; y < height; y++) { |
| // Decode the row in opaque format |
| int row = kBottomUp_RowOrder == fRowOrder ? height - 1 - y : y; |
| opaqueSwizzler->next(srcRow, row); |
| |
| // Move to the next row |
| srcRow = SkTAddOffset<uint8_t>(srcRow, rowBytes); |
| } |
| } |
| |
| // Finished decoding the entire image |
| return kSuccess; |
| } |
| |
| /* |
| * |
| * Set an RLE pixel using the color table |
| * |
| */ |
| void SkBmpCodec::setRLEPixel(void* dst, size_t dstRowBytes, |
| const SkImageInfo& dstInfo, uint32_t x, uint32_t y, |
| uint8_t index) { |
| // Set the row |
| int height = dstInfo.height(); |
| int row; |
| if (kBottomUp_RowOrder == fRowOrder) { |
| row = height - y - 1; |
| } else { |
| row = y; |
| } |
| |
| // Set the pixel based on destination color type |
| switch (dstInfo.colorType()) { |
| case kN32_SkColorType: { |
| SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
| row * (int) dstRowBytes); |
| dstRow[x] = fColorTable->operator[](index); |
| break; |
| } |
| default: |
| // This case should not be reached. We should catch an invalid |
| // color type when we check that the conversion is possible. |
| SkASSERT(false); |
| break; |
| } |
| } |
| |
| /* |
| * |
| * Set an RLE pixel from R, G, B values |
| * |
| */ |
| void SkBmpCodec::setRLE24Pixel(void* dst, size_t dstRowBytes, |
| const SkImageInfo& dstInfo, uint32_t x, |
| uint32_t y, uint8_t red, uint8_t green, |
| uint8_t blue) { |
| // Set the row |
| int height = dstInfo.height(); |
| int row; |
| if (kBottomUp_RowOrder == fRowOrder) { |
| row = height - y - 1; |
| } else { |
| row = y; |
| } |
| |
| // Set the pixel based on destination color type |
| switch (dstInfo.colorType()) { |
| case kN32_SkColorType: { |
| SkPMColor* dstRow = SkTAddOffset<SkPMColor>((SkPMColor*) dst, |
| row * (int) dstRowBytes); |
| dstRow[x] = SkPackARGB32NoCheck(0xFF, red, green, blue); |
| break; |
| } |
| default: |
| // This case should not be reached. We should catch an invalid |
| // color type when we check that the conversion is possible. |
| SkASSERT(false); |
| break; |
| } |
| } |
| |
| /* |
| * |
| * Performs the bitmap decoding for RLE input format |
| * RLE decoding is performed all at once, rather than a one row at a time |
| * |
| */ |
| SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
| void* dst, size_t dstRowBytes, |
| const Options& opts) { |
| // Set RLE flags |
| static const uint8_t RLE_ESCAPE = 0; |
| static const uint8_t RLE_EOL = 0; |
| static const uint8_t RLE_EOF = 1; |
| static const uint8_t RLE_DELTA = 2; |
| |
| // Set constant values |
| const int width = dstInfo.width(); |
| const int height = dstInfo.height(); |
| |
| // Input buffer parameters |
| uint32_t currByte = 0; |
| SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRLEBytes)); |
| size_t totalBytes = stream()->read(buffer.get(), fRLEBytes); |
| if (totalBytes < fRLEBytes) { |
| SkCodecPrintf("Warning: incomplete RLE file.\n"); |
| } else if (totalBytes <= 0) { |
| SkCodecPrintf("Error: could not read RLE image data.\n"); |
| return kInvalidInput; |
| } |
| |
| // Destination parameters |
| int x = 0; |
| int y = 0; |
| |
| // Set the background as transparent. Then, if the RLE code skips pixels, |
| // the skipped pixels will be transparent. |
| // Because of the need for transparent pixels, kN32 is the only color |
| // type that makes sense for the destination format. |
| SkASSERT(kN32_SkColorType == dstInfo.colorType()); |
| if (kNo_ZeroInitialized == opts.fZeroInitialized) { |
| SkSwizzler::Fill(dst, dstInfo, dstRowBytes, height, SK_ColorTRANSPARENT, NULL); |
| } |
| |
| while (true) { |
| // Every entry takes at least two bytes |
| if ((int) totalBytes - currByte < 2) { |
| SkCodecPrintf("Warning: incomplete RLE input.\n"); |
| return kIncompleteInput; |
| } |
| |
| // Read the next two bytes. These bytes have different meanings |
| // depending on their values. In the first interpretation, the first |
| // byte is an escape flag and the second byte indicates what special |
| // task to perform. |
| const uint8_t flag = buffer.get()[currByte++]; |
| const uint8_t task = buffer.get()[currByte++]; |
| |
| // If we have reached a row that is beyond the image size, and the RLE |
| // code does not indicate end of file, abort and signal a warning. |
| if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
| SkCodecPrintf("Warning: invalid RLE input.\n"); |
| return kIncompleteInput; |
| } |
| |
| // Perform decoding |
| if (RLE_ESCAPE == flag) { |
| switch (task) { |
| case RLE_EOL: |
| x = 0; |
| y++; |
| break; |
| case RLE_EOF: |
| return kSuccess; |
| case RLE_DELTA: { |
| // Two bytes are needed to specify delta |
| if ((int) totalBytes - currByte < 2) { |
| SkCodecPrintf("Warning: incomplete RLE input\n"); |
| return kIncompleteInput; |
| } |
| // Modify x and y |
| const uint8_t dx = buffer.get()[currByte++]; |
| const uint8_t dy = buffer.get()[currByte++]; |
| x += dx; |
| y += dy; |
| if (x > width || y > height) { |
| SkCodecPrintf("Warning: invalid RLE input.\n"); |
| return kIncompleteInput; |
| } |
| break; |
| } |
| default: { |
| // If task does not match any of the above signals, it |
| // indicates that we have a sequence of non-RLE pixels. |
| // Furthermore, the value of task is equal to the number |
| // of pixels to interpret. |
| uint8_t numPixels = task; |
| const size_t rowBytes = compute_row_bytes(numPixels, |
| fBitsPerPixel); |
| // Abort if setting numPixels moves us off the edge of the |
| // image. Also abort if there are not enough bytes |
| // remaining in the stream to set numPixels. |
| if (x + numPixels > width || |
| (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
| SkCodecPrintf("Warning: invalid RLE input.\n"); |
| return kIncompleteInput; |
| } |
| // Set numPixels number of pixels |
| while (numPixels > 0) { |
| switch(fBitsPerPixel) { |
| case 4: { |
| SkASSERT(currByte < totalBytes); |
| uint8_t val = buffer.get()[currByte++]; |
| setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
| y, val >> 4); |
| numPixels--; |
| if (numPixels != 0) { |
| setRLEPixel(dst, dstRowBytes, dstInfo, |
| x++, y, val & 0xF); |
| numPixels--; |
| } |
| break; |
| } |
| case 8: |
| SkASSERT(currByte < totalBytes); |
| setRLEPixel(dst, dstRowBytes, dstInfo, x++, |
| y, buffer.get()[currByte++]); |
| numPixels--; |
| break; |
| case 24: { |
| SkASSERT(currByte + 2 < totalBytes); |
| uint8_t blue = buffer.get()[currByte++]; |
| uint8_t green = buffer.get()[currByte++]; |
| uint8_t red = buffer.get()[currByte++]; |
| setRLE24Pixel(dst, dstRowBytes, dstInfo, |
| x++, y, red, green, blue); |
| numPixels--; |
| } |
| default: |
| SkASSERT(false); |
| return kInvalidInput; |
| } |
| } |
| // Skip a byte if necessary to maintain alignment |
| if (!SkIsAlign2(rowBytes)) { |
| currByte++; |
| } |
| break; |
| } |
| } |
| } else { |
| // If the first byte read is not a flag, it indicates the number of |
| // pixels to set in RLE mode. |
| const uint8_t numPixels = flag; |
| const int endX = SkTMin<int>(x + numPixels, width); |
| |
| if (24 == fBitsPerPixel) { |
| // In RLE24, the second byte read is part of the pixel color. |
| // There are two more required bytes to finish encoding the |
| // color. |
| if ((int) totalBytes - currByte < 2) { |
| SkCodecPrintf("Warning: incomplete RLE input\n"); |
| return kIncompleteInput; |
| } |
| |
| // Fill the pixels up to endX with the specified color |
| uint8_t blue = task; |
| uint8_t green = buffer.get()[currByte++]; |
| uint8_t red = buffer.get()[currByte++]; |
| while (x < endX) { |
| setRLE24Pixel(dst, dstRowBytes, dstInfo, x++, y, red, |
| green, blue); |
| } |
| } else { |
| // In RLE8 or RLE4, the second byte read gives the index in the |
| // color table to look up the pixel color. |
| // RLE8 has one color index that gets repeated |
| // RLE4 has two color indexes in the upper and lower 4 bits of |
| // the bytes, which are alternated |
| uint8_t indices[2] = { task, task }; |
| if (4 == fBitsPerPixel) { |
| indices[0] >>= 4; |
| indices[1] &= 0xf; |
| } |
| |
| // Set the indicated number of pixels |
| for (int which = 0; x < endX; x++) { |
| setRLEPixel(dst, dstRowBytes, dstInfo, x, y, |
| indices[which]); |
| which = !which; |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * |
| * Performs the bitmap decoding for standard input format |
| * |
| */ |
| SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
| void* dst, size_t dstRowBytes, |
| const Options& opts) { |
| // Set constant values |
| const int width = dstInfo.width(); |
| const int height = dstInfo.height(); |
| const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
| |
| // Get swizzler configuration and choose the fill value for failures. We will use |
| // zero as the default palette index, black for opaque images, and transparent for |
| // non-opaque images. |
| SkSwizzler::SrcConfig config; |
| uint32_t fillColorOrIndex; |
| bool zeroFill = true; |
| switch (fBitsPerPixel) { |
| case 1: |
| config = SkSwizzler::kIndex1; |
| fillColorOrIndex = 0; |
| break; |
| case 2: |
| config = SkSwizzler::kIndex2; |
| fillColorOrIndex = 0; |
| break; |
| case 4: |
| config = SkSwizzler::kIndex4; |
| fillColorOrIndex = 0; |
| break; |
| case 8: |
| config = SkSwizzler::kIndex; |
| fillColorOrIndex = 0; |
| break; |
| case 24: |
| config = SkSwizzler::kBGR; |
| fillColorOrIndex = SK_ColorBLACK; |
| zeroFill = false; |
| break; |
| case 32: |
| if (kOpaque_SkAlphaType == dstInfo.alphaType()) { |
| config = SkSwizzler::kBGRX; |
| fillColorOrIndex = SK_ColorBLACK; |
| zeroFill = false; |
| } else { |
| config = SkSwizzler::kBGRA; |
| fillColorOrIndex = SK_ColorTRANSPARENT; |
| } |
| break; |
| default: |
| SkASSERT(false); |
| return kInvalidInput; |
| } |
| |
| // Get a pointer to the color table if it exists |
| const SkPMColor* colorPtr = NULL != fColorTable.get() ? fColorTable->readColors() : NULL; |
| |
| // Create swizzler |
| SkAutoTDelete<SkSwizzler> swizzler(SkSwizzler::CreateSwizzler(config, |
| colorPtr, dstInfo, dst, dstRowBytes, |
| SkImageGenerator::kNo_ZeroInitialized)); |
| |
| // Allocate space for a row buffer and a source for the swizzler |
| SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
| |
| // Iterate over rows of the image |
| // FIXME: bool transparent = true; |
| for (int y = 0; y < height; y++) { |
| // Read a row of the input |
| if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
| SkCodecPrintf("Warning: incomplete input stream.\n"); |
| // Fill the destination image on failure |
| if (kNo_ZeroInitialized == opts.fZeroInitialized || !zeroFill) { |
| void* dstStart = get_dst_start_row(dst, dstRowBytes, y, fRowOrder); |
| SkSwizzler::Fill(dstStart, dstInfo, dstRowBytes, dstInfo.height() - y, |
| fillColorOrIndex, colorPtr); |
| } |
| return kIncompleteInput; |
| } |
| |
| // Decode the row in destination format |
| uint32_t row; |
| if (kTopDown_RowOrder == fRowOrder) { |
| row = y; |
| } else { |
| row = height - 1 - y; |
| } |
| |
| swizzler->next(srcBuffer.get(), row); |
| // FIXME: SkSwizzler::ResultAlpha r = |
| // swizzler->next(srcBuffer.get(), row); |
| // FIXME: transparent &= SkSwizzler::IsTransparent(r); |
| } |
| |
| // FIXME: This code exists to match the behavior in the chromium decoder |
| // and to follow the bmp specification as it relates to alpha masks. It is |
| // commented out because we have yet to discover a test image that provides |
| // an alpha mask and uses this decode mode. |
| |
| // Now we adjust the output image with some additional behavior that |
| // SkSwizzler does not support. Firstly, all bmp images that contain |
| // alpha are masked by the alpha mask. Secondly, many fully transparent |
| // bmp images are intended to be opaque. Here, we make those corrections |
| // in the kN32 case. |
| /* |
| SkPMColor* dstRow = (SkPMColor*) dst; |
| if (SkSwizzler::kBGRA == config) { |
| for (int y = 0; y < height; y++) { |
| for (int x = 0; x < width; x++) { |
| if (transparent) { |
| dstRow[x] |= 0xFF000000; |
| } else { |
| dstRow[x] &= alphaMask; |
| } |
| dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
| } |
| } |
| } |
| */ |
| |
| // Finally, apply the AND mask for bmp-in-ico images |
| if (fIsIco) { |
| // The AND mask is always 1 bit per pixel |
| const size_t rowBytes = SkAlign4(compute_row_bytes(width, 1)); |
| |
| SkPMColor* dstPtr = (SkPMColor*) dst; |
| for (int y = 0; y < height; y++) { |
| // The srcBuffer will at least be large enough |
| if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
| SkCodecPrintf("Warning: incomplete AND mask for bmp-in-ico.\n"); |
| return kIncompleteInput; |
| } |
| |
| int row; |
| if (kBottomUp_RowOrder == fRowOrder) { |
| row = height - y - 1; |
| } else { |
| row = y; |
| } |
| |
| SkPMColor* dstRow = |
| SkTAddOffset<SkPMColor>(dstPtr, row * dstRowBytes); |
| |
| for (int x = 0; x < width; x++) { |
| int quotient; |
| int modulus; |
| SkTDivMod(x, 8, "ient, &modulus); |
| uint32_t shift = 7 - modulus; |
| uint32_t alphaBit = |
| (srcBuffer.get()[quotient] >> shift) & 0x1; |
| dstRow[x] &= alphaBit - 1; |
| } |
| } |
| } |
| |
| // Finished decoding the entire image |
| return kSuccess; |
| } |