| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include <ctype.h> |
| |
| #include "nanobench.h" |
| |
| #include "Benchmark.h" |
| #include "BitmapRegionDecoderBench.h" |
| #include "CodecBench.h" |
| #include "CodecBenchPriv.h" |
| #include "CrashHandler.h" |
| #include "DecodingBench.h" |
| #include "GMBench.h" |
| #include "ProcStats.h" |
| #include "ResultsWriter.h" |
| #include "RecordingBench.h" |
| #include "SKPAnimationBench.h" |
| #include "SKPBench.h" |
| #include "SubsetSingleBench.h" |
| #include "SubsetTranslateBench.h" |
| #include "SubsetZoomBench.h" |
| #include "Stats.h" |
| #include "Timer.h" |
| |
| #include "SkBitmapRegionDecoderInterface.h" |
| #include "SkBBoxHierarchy.h" |
| #include "SkCanvas.h" |
| #include "SkCodec.h" |
| #include "SkCommonFlags.h" |
| #include "SkData.h" |
| #include "SkForceLinking.h" |
| #include "SkGraphics.h" |
| #include "SkOSFile.h" |
| #include "SkPictureRecorder.h" |
| #include "SkPictureUtils.h" |
| #include "SkString.h" |
| #include "SkSurface.h" |
| #include "SkTaskGroup.h" |
| |
| #include <stdlib.h> |
| |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| #include "nanobenchAndroid.h" |
| #endif |
| |
| #if SK_SUPPORT_GPU |
| #include "gl/GrGLDefines.h" |
| #include "GrCaps.h" |
| #include "GrContextFactory.h" |
| SkAutoTDelete<GrContextFactory> gGrFactory; |
| #endif |
| |
| struct GrContextOptions; |
| |
| __SK_FORCE_IMAGE_DECODER_LINKING; |
| |
| static const int kTimedSampling = 0; |
| |
| static const int kAutoTuneLoops = 0; |
| |
| static const int kDefaultLoops = |
| #ifdef SK_DEBUG |
| 1; |
| #else |
| kAutoTuneLoops; |
| #endif |
| |
| static SkString loops_help_txt() { |
| SkString help; |
| help.printf("Number of times to run each bench. Set this to %d to auto-" |
| "tune for each bench. Timings are only reported when auto-tuning.", |
| kAutoTuneLoops); |
| return help; |
| } |
| |
| static SkString to_string(int n) { |
| SkString str; |
| str.appendS32(n); |
| return str; |
| } |
| |
| DEFINE_int32(loops, kDefaultLoops, loops_help_txt().c_str()); |
| |
| DEFINE_int32(samples, 10, "Number of samples to measure for each bench."); |
| DEFINE_string(samplingTime, "0", "Amount of time to run each bench. Takes precedence over samples." |
| "Must be \"0\", \"%%lfs\", or \"%%lfms\""); |
| DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead."); |
| DEFINE_double(overheadGoal, 0.0001, |
| "Loop until timer overhead is at most this fraction of our measurments."); |
| DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU."); |
| DEFINE_int32(gpuFrameLag, 5, "If unknown, estimated maximum number of frames GPU allows to lag."); |
| DEFINE_bool(gpuCompressAlphaMasks, false, "Compress masks generated from falling back to " |
| "software path rendering."); |
| |
| DEFINE_string(outResultsFile, "", "If given, write results here as JSON."); |
| DEFINE_int32(maxCalibrationAttempts, 3, |
| "Try up to this many times to guess loops for a bench, or skip the bench."); |
| DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this."); |
| DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs."); |
| DEFINE_string(scales, "1.0", "Space-separated scales for SKPs."); |
| DEFINE_string(zoom, "1.0,0", "Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom " |
| "function that ping-pongs between 1.0 and zoomMax."); |
| DEFINE_bool(bbh, true, "Build a BBH for SKPs?"); |
| DEFINE_bool(mpd, true, "Use MultiPictureDraw for the SKPs?"); |
| DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?"); |
| DEFINE_int32(flushEvery, 10, "Flush --outResultsFile every Nth run."); |
| DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each test."); |
| DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?"); |
| DEFINE_bool(pngBuildTileIndex, false, "If supported, use png buildTileIndex/decodeSubset."); |
| DEFINE_bool(jpgBuildTileIndex, false, "If supported, use jpg buildTileIndex/decodeSubset."); |
| |
| static SkString humanize(double ms) { |
| if (FLAGS_verbose) return SkStringPrintf("%llu", (uint64_t)(ms*1e6)); |
| return HumanizeMs(ms); |
| } |
| #define HUMANIZE(ms) humanize(ms).c_str() |
| |
| bool Target::init(SkImageInfo info, Benchmark* bench) { |
| if (Benchmark::kRaster_Backend == config.backend) { |
| this->surface.reset(SkSurface::NewRaster(info)); |
| if (!this->surface.get()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| bool Target::capturePixels(SkBitmap* bmp) { |
| SkCanvas* canvas = this->getCanvas(); |
| if (!canvas) { |
| return false; |
| } |
| bmp->setInfo(canvas->imageInfo()); |
| if (!canvas->readPixels(bmp, 0, 0)) { |
| SkDebugf("Can't read canvas pixels.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| #if SK_SUPPORT_GPU |
| struct GPUTarget : public Target { |
| explicit GPUTarget(const Config& c) : Target(c), gl(nullptr) { } |
| SkGLContext* gl; |
| |
| void setup() override { |
| this->gl->makeCurrent(); |
| // Make sure we're done with whatever came before. |
| SK_GL(*this->gl, Finish()); |
| } |
| void endTiming() override { |
| if (this->gl) { |
| SK_GL(*this->gl, Flush()); |
| this->gl->swapBuffers(); |
| } |
| } |
| void fence() override { |
| SK_GL(*this->gl, Finish()); |
| } |
| |
| bool needsFrameTiming(int* maxFrameLag) const override { |
| if (!this->gl->getMaxGpuFrameLag(maxFrameLag)) { |
| // Frame lag is unknown. |
| *maxFrameLag = FLAGS_gpuFrameLag; |
| } |
| return true; |
| } |
| bool init(SkImageInfo info, Benchmark* bench) override { |
| uint32_t flags = this->config.useDFText ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : |
| 0; |
| SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType); |
| this->surface.reset(SkSurface::NewRenderTarget(gGrFactory->get(this->config.ctxType), |
| SkSurface::kNo_Budgeted, info, |
| this->config.samples, &props)); |
| this->gl = gGrFactory->getGLContext(this->config.ctxType); |
| if (!this->surface.get()) { |
| return false; |
| } |
| if (!this->gl->fenceSyncSupport()) { |
| SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. " |
| "Timings might not be accurate.\n", this->config.name); |
| } |
| return true; |
| } |
| void fillOptions(ResultsWriter* log) override { |
| const GrGLubyte* version; |
| SK_GL_RET(*this->gl, version, GetString(GR_GL_VERSION)); |
| log->configOption("GL_VERSION", (const char*)(version)); |
| |
| SK_GL_RET(*this->gl, version, GetString(GR_GL_RENDERER)); |
| log->configOption("GL_RENDERER", (const char*) version); |
| |
| SK_GL_RET(*this->gl, version, GetString(GR_GL_VENDOR)); |
| log->configOption("GL_VENDOR", (const char*) version); |
| |
| SK_GL_RET(*this->gl, version, GetString(GR_GL_SHADING_LANGUAGE_VERSION)); |
| log->configOption("GL_SHADING_LANGUAGE_VERSION", (const char*) version); |
| } |
| }; |
| |
| #endif |
| |
| static double time(int loops, Benchmark* bench, Target* target) { |
| SkCanvas* canvas = target->getCanvas(); |
| if (canvas) { |
| canvas->clear(SK_ColorWHITE); |
| } |
| bench->preDraw(canvas); |
| WallTimer timer; |
| timer.start(); |
| canvas = target->beginTiming(canvas); |
| bench->draw(loops, canvas); |
| if (canvas) { |
| canvas->flush(); |
| } |
| target->endTiming(); |
| timer.end(); |
| bench->postDraw(canvas); |
| return timer.fWall; |
| } |
| |
| static double estimate_timer_overhead() { |
| double overhead = 0; |
| for (int i = 0; i < FLAGS_overheadLoops; i++) { |
| WallTimer timer; |
| timer.start(); |
| timer.end(); |
| overhead += timer.fWall; |
| } |
| return overhead / FLAGS_overheadLoops; |
| } |
| |
| static int detect_forever_loops(int loops) { |
| // look for a magic run-forever value |
| if (loops < 0) { |
| loops = SK_MaxS32; |
| } |
| return loops; |
| } |
| |
| static int clamp_loops(int loops) { |
| if (loops < 1) { |
| SkDebugf("ERROR: clamping loops from %d to 1. " |
| "There's probably something wrong with the bench.\n", loops); |
| return 1; |
| } |
| if (loops > FLAGS_maxLoops) { |
| SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops); |
| return FLAGS_maxLoops; |
| } |
| return loops; |
| } |
| |
| static bool write_canvas_png(Target* target, const SkString& filename) { |
| |
| if (filename.isEmpty()) { |
| return false; |
| } |
| if (target->getCanvas() && |
| kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) { |
| return false; |
| } |
| |
| SkBitmap bmp; |
| |
| if (!target->capturePixels(&bmp)) { |
| return false; |
| } |
| |
| SkString dir = SkOSPath::Dirname(filename.c_str()); |
| if (!sk_mkdir(dir.c_str())) { |
| SkDebugf("Can't make dir %s.\n", dir.c_str()); |
| return false; |
| } |
| SkFILEWStream stream(filename.c_str()); |
| if (!stream.isValid()) { |
| SkDebugf("Can't write %s.\n", filename.c_str()); |
| return false; |
| } |
| if (!SkImageEncoder::EncodeStream(&stream, bmp, SkImageEncoder::kPNG_Type, 100)) { |
| SkDebugf("Can't encode a PNG.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| static int kFailedLoops = -2; |
| static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) { |
| // First figure out approximately how many loops of bench it takes to make overhead negligible. |
| double bench_plus_overhead = 0.0; |
| int round = 0; |
| int loops = bench->calculateLoops(FLAGS_loops); |
| if (kAutoTuneLoops == loops) { |
| while (bench_plus_overhead < overhead) { |
| if (round++ == FLAGS_maxCalibrationAttempts) { |
| SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n", |
| bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead)); |
| return kFailedLoops; |
| } |
| bench_plus_overhead = time(1, bench, target); |
| } |
| } |
| |
| // Later we'll just start and stop the timer once but loop N times. |
| // We'll pick N to make timer overhead negligible: |
| // |
| // overhead |
| // ------------------------- < FLAGS_overheadGoal |
| // overhead + N * Bench Time |
| // |
| // where bench_plus_overhead ≈ overhead + Bench Time. |
| // |
| // Doing some math, we get: |
| // |
| // (overhead / FLAGS_overheadGoal) - overhead |
| // ------------------------------------------ < N |
| // bench_plus_overhead - overhead) |
| // |
| // Luckily, this also works well in practice. :) |
| if (kAutoTuneLoops == loops) { |
| const double numer = overhead / FLAGS_overheadGoal - overhead; |
| const double denom = bench_plus_overhead - overhead; |
| loops = (int)ceil(numer / denom); |
| loops = clamp_loops(loops); |
| } else { |
| loops = detect_forever_loops(loops); |
| } |
| |
| return loops; |
| } |
| |
| static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) { |
| // First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs. |
| int loops = bench->calculateLoops(FLAGS_loops); |
| if (kAutoTuneLoops == loops) { |
| loops = 1; |
| double elapsed = 0; |
| do { |
| if (1<<30 == loops) { |
| // We're about to wrap. Something's wrong with the bench. |
| loops = 0; |
| break; |
| } |
| loops *= 2; |
| // If the GPU lets frames lag at all, we need to make sure we're timing |
| // _this_ round, not still timing last round. |
| for (int i = 0; i < maxGpuFrameLag; i++) { |
| elapsed = time(loops, bench, target); |
| } |
| } while (elapsed < FLAGS_gpuMs); |
| |
| // We've overshot at least a little. Scale back linearly. |
| loops = (int)ceil(loops * FLAGS_gpuMs / elapsed); |
| loops = clamp_loops(loops); |
| |
| // Make sure we're not still timing our calibration. |
| target->fence(); |
| } else { |
| loops = detect_forever_loops(loops); |
| } |
| |
| // Pretty much the same deal as the calibration: do some warmup to make |
| // sure we're timing steady-state pipelined frames. |
| for (int i = 0; i < maxGpuFrameLag - 1; i++) { |
| time(loops, bench, target); |
| } |
| |
| return loops; |
| } |
| |
| static SkString to_lower(const char* str) { |
| SkString lower(str); |
| for (size_t i = 0; i < lower.size(); i++) { |
| lower[i] = tolower(lower[i]); |
| } |
| return lower; |
| } |
| |
| static bool is_cpu_config_allowed(const char* name) { |
| for (int i = 0; i < FLAGS_config.count(); i++) { |
| if (to_lower(FLAGS_config[i]).equals(name)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| #if SK_SUPPORT_GPU |
| static bool is_gpu_config_allowed(const char* name, GrContextFactory::GLContextType ctxType, |
| int sampleCnt) { |
| if (!is_cpu_config_allowed(name)) { |
| return false; |
| } |
| if (const GrContext* ctx = gGrFactory->get(ctxType)) { |
| return sampleCnt <= ctx->caps()->maxSampleCount(); |
| } |
| return false; |
| } |
| #endif |
| |
| #if SK_SUPPORT_GPU |
| #define kBogusGLContextType GrContextFactory::kNative_GLContextType |
| #else |
| #define kBogusGLContextType 0 |
| #endif |
| |
| // Append all configs that are enabled and supported. |
| static void create_configs(SkTDArray<Config>* configs) { |
| #define CPU_CONFIG(name, backend, color, alpha) \ |
| if (is_cpu_config_allowed(#name)) { \ |
| Config config = { #name, Benchmark::backend, color, alpha, 0, \ |
| kBogusGLContextType, false }; \ |
| configs->push(config); \ |
| } |
| |
| if (FLAGS_cpu) { |
| CPU_CONFIG(nonrendering, kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType) |
| CPU_CONFIG(8888, kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType) |
| CPU_CONFIG(565, kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType) |
| } |
| |
| #if SK_SUPPORT_GPU |
| #define GPU_CONFIG(name, ctxType, samples, useDFText) \ |
| if (is_gpu_config_allowed(#name, GrContextFactory::ctxType, samples)) { \ |
| Config config = { \ |
| #name, \ |
| Benchmark::kGPU_Backend, \ |
| kN32_SkColorType, \ |
| kPremul_SkAlphaType, \ |
| samples, \ |
| GrContextFactory::ctxType, \ |
| useDFText }; \ |
| configs->push(config); \ |
| } |
| |
| if (FLAGS_gpu) { |
| GPU_CONFIG(gpu, kNative_GLContextType, 0, false) |
| GPU_CONFIG(msaa4, kNative_GLContextType, 4, false) |
| GPU_CONFIG(msaa16, kNative_GLContextType, 16, false) |
| GPU_CONFIG(nvprmsaa4, kNVPR_GLContextType, 4, false) |
| GPU_CONFIG(nvprmsaa16, kNVPR_GLContextType, 16, false) |
| GPU_CONFIG(gpudft, kNative_GLContextType, 0, true) |
| GPU_CONFIG(debug, kDebug_GLContextType, 0, false) |
| GPU_CONFIG(nullgpu, kNull_GLContextType, 0, false) |
| #ifdef SK_ANGLE |
| GPU_CONFIG(angle, kANGLE_GLContextType, 0, false) |
| GPU_CONFIG(angle-gl, kANGLE_GL_GLContextType, 0, false) |
| #endif |
| #ifdef SK_COMMAND_BUFFER |
| GPU_CONFIG(commandbuffer, kCommandBuffer_GLContextType, 0, false) |
| #endif |
| #if SK_MESA |
| GPU_CONFIG(mesa, kMESA_GLContextType, 0, false) |
| #endif |
| } |
| #endif |
| |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| if (is_cpu_config_allowed("hwui")) { |
| Config config = { "hwui", Benchmark::kHWUI_Backend, kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType, 0, kBogusGLContextType, false }; |
| configs->push(config); |
| } |
| #endif |
| } |
| |
| // If bench is enabled for config, returns a Target* for it, otherwise nullptr. |
| static Target* is_enabled(Benchmark* bench, const Config& config) { |
| if (!bench->isSuitableFor(config.backend)) { |
| return nullptr; |
| } |
| |
| SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY, |
| config.color, config.alpha); |
| |
| Target* target = nullptr; |
| |
| switch (config.backend) { |
| #if SK_SUPPORT_GPU |
| case Benchmark::kGPU_Backend: |
| target = new GPUTarget(config); |
| break; |
| #endif |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| case Benchmark::kHWUI_Backend: |
| target = new HWUITarget(config, bench); |
| break; |
| #endif |
| default: |
| target = new Target(config); |
| break; |
| } |
| |
| if (!target->init(info, bench)) { |
| delete target; |
| return nullptr; |
| } |
| return target; |
| } |
| |
| /* |
| * We only run our subset benches on files that are supported by BitmapRegionDecoder: |
| * i.e. PNG, JPEG, and WEBP. We do *not* test WEBP when using codec, since we do not |
| * have a scanline decoder for WEBP, which is necessary for running the subset bench. |
| * (Another bench must be used to test WEBP, which decodes subsets natively.) |
| */ |
| static bool run_subset_bench(const SkString& path, bool useCodec) { |
| static const char* const exts[] = { |
| "jpg", "jpeg", |
| "JPG", "JPEG", |
| }; |
| |
| if (useCodec || FLAGS_jpgBuildTileIndex) { |
| for (uint32_t i = 0; i < SK_ARRAY_COUNT(exts); i++) { |
| if (path.endsWith(exts[i])) { |
| return true; |
| } |
| } |
| } |
| |
| // Test png in SkCodec, and optionally on SkImageDecoder. SkImageDecoder is |
| // disabled by default because it leaks memory. |
| // skbug.com/4360 |
| if ((useCodec || FLAGS_pngBuildTileIndex) && (path.endsWith("png") || path.endsWith("PNG"))) { |
| return true; |
| } |
| |
| if (!useCodec && (path.endsWith("webp") || path.endsWith("WEBP"))) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Returns true if set up for a subset decode succeeds, false otherwise |
| * If the set-up succeeds, the width and height parameters will be set |
| */ |
| static bool valid_subset_bench(const SkString& path, SkColorType colorType, bool useCodec, |
| int* width, int* height) { |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str())); |
| SkAutoTDelete<SkMemoryStream> stream(new SkMemoryStream(encoded)); |
| |
| // Check that we can create a codec or image decoder. |
| if (useCodec) { |
| SkAutoTDelete<SkCodec> codec(SkCodec::NewFromStream(stream.detach())); |
| if (nullptr == codec) { |
| SkDebugf("Could not create codec for %s. Skipping bench.\n", path.c_str()); |
| return false; |
| } |
| |
| // These will be initialized by SkCodec if the color type is kIndex8 and |
| // unused otherwise. |
| SkPMColor colors[256]; |
| int colorCount; |
| const SkImageInfo info = codec->getInfo().makeColorType(colorType); |
| if (codec->startScanlineDecode(info, nullptr, colors, &colorCount) != SkCodec::kSuccess) |
| { |
| SkDebugf("Could not create scanline decoder for %s with color type %s. " |
| "Skipping bench.\n", path.c_str(), color_type_to_str(colorType)); |
| return false; |
| } |
| *width = info.width(); |
| *height = info.height(); |
| } else { |
| SkAutoTDelete<SkImageDecoder> decoder(SkImageDecoder::Factory(stream)); |
| if (nullptr == decoder) { |
| SkDebugf("Could not create decoder for %s. Skipping bench.\n", path.c_str()); |
| return false; |
| } |
| //FIXME: See skbug.com/3921 |
| if (kIndex_8_SkColorType == colorType || kGray_8_SkColorType == colorType) { |
| SkDebugf("Cannot use image subset decoder for %s with color type %s. " |
| "Skipping bench.\n", path.c_str(), color_type_to_str(colorType)); |
| return false; |
| } |
| if (!decoder->buildTileIndex(stream.detach(), width, height)) { |
| SkDebugf("Could not build tile index for %s. Skipping bench.\n", path.c_str()); |
| return false; |
| } |
| } |
| |
| // Check if the image is large enough for a meaningful subset benchmark. |
| if (*width <= 512 && *height <= 512) { |
| // This should not print a message since it is not an error. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool valid_brd_bench(SkData* encoded, SkBitmapRegionDecoderInterface::Strategy strategy, |
| SkColorType colorType, uint32_t sampleSize, uint32_t minOutputSize, int* width, |
| int* height) { |
| SkAutoTDelete<SkBitmapRegionDecoderInterface> brd( |
| SkBitmapRegionDecoderInterface::CreateBitmapRegionDecoder(encoded, strategy)); |
| if (nullptr == brd.get()) { |
| // This is indicates that subset decoding is not supported for a particular image format. |
| return false; |
| } |
| |
| SkBitmap bitmap; |
| if (!brd->decodeRegion(&bitmap, nullptr, SkIRect::MakeXYWH(0, 0, brd->width(), brd->height()), |
| 1, colorType, false)) { |
| return false; |
| } |
| if (colorType != bitmap.colorType()) { |
| // This indicates that conversion to the requested color type is not supported for the |
| // particular image. |
| return false; |
| } |
| |
| if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize > |
| (uint32_t) brd->height()) { |
| // This indicates that the image is not large enough to decode a |
| // minOutputSize x minOutputSize subset at the given sampleSize. |
| return false; |
| } |
| |
| // Set the image width and height. The calling code will use this to choose subsets to decode. |
| *width = brd->width(); |
| *height = brd->height(); |
| return true; |
| } |
| |
| static void cleanup_run(Target* target) { |
| delete target; |
| #if SK_SUPPORT_GPU |
| if (FLAGS_abandonGpuContext) { |
| gGrFactory->abandonContexts(); |
| } |
| if (FLAGS_resetGpuContext || FLAGS_abandonGpuContext) { |
| gGrFactory->destroyContexts(); |
| } |
| #endif |
| } |
| |
| class BenchmarkStream { |
| public: |
| BenchmarkStream() : fBenches(BenchRegistry::Head()) |
| , fGMs(skiagm::GMRegistry::Head()) |
| , fCurrentRecording(0) |
| , fCurrentScale(0) |
| , fCurrentSKP(0) |
| , fCurrentUseMPD(0) |
| , fCurrentCodec(0) |
| , fCurrentImage(0) |
| , fCurrentSubsetImage(0) |
| , fCurrentBRDImage(0) |
| , fCurrentColorType(0) |
| , fCurrentSubsetType(0) |
| , fUseCodec(0) |
| , fCurrentBRDStrategy(0) |
| , fCurrentBRDSampleSize(0) |
| , fCurrentAnimSKP(0) { |
| for (int i = 0; i < FLAGS_skps.count(); i++) { |
| if (SkStrEndsWith(FLAGS_skps[i], ".skp")) { |
| fSKPs.push_back() = FLAGS_skps[i]; |
| } else { |
| SkOSFile::Iter it(FLAGS_skps[i], ".skp"); |
| SkString path; |
| while (it.next(&path)) { |
| fSKPs.push_back() = SkOSPath::Join(FLAGS_skps[0], path.c_str()); |
| } |
| } |
| } |
| |
| if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d", |
| &fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) { |
| SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]); |
| exit(1); |
| } |
| |
| for (int i = 0; i < FLAGS_scales.count(); i++) { |
| if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) { |
| SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]); |
| exit(1); |
| } |
| } |
| |
| if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) { |
| SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]); |
| exit(1); |
| } |
| |
| if (FLAGS_mpd) { |
| fUseMPDs.push_back() = true; |
| } |
| fUseMPDs.push_back() = false; |
| |
| // Prepare the images for decoding |
| for (int i = 0; i < FLAGS_images.count(); i++) { |
| const char* flag = FLAGS_images[i]; |
| if (sk_isdir(flag)) { |
| // If the value passed in is a directory, add all the images |
| SkOSFile::Iter it(flag); |
| SkString file; |
| while (it.next(&file)) { |
| fImages.push_back() = SkOSPath::Join(flag, file.c_str()); |
| } |
| } else if (sk_exists(flag)) { |
| // Also add the value if it is a single image |
| fImages.push_back() = flag; |
| } |
| } |
| |
| // Choose the candidate color types for image decoding |
| const SkColorType colorTypes[] = |
| { kN32_SkColorType, |
| kRGB_565_SkColorType, |
| kAlpha_8_SkColorType, |
| kIndex_8_SkColorType, |
| kGray_8_SkColorType }; |
| fColorTypes.reset(colorTypes, SK_ARRAY_COUNT(colorTypes)); |
| } |
| |
| static bool ReadPicture(const char* path, SkAutoTUnref<SkPicture>* pic) { |
| // Not strictly necessary, as it will be checked again later, |
| // but helps to avoid a lot of pointless work if we're going to skip it. |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, path)) { |
| return false; |
| } |
| |
| SkAutoTDelete<SkStream> stream(SkStream::NewFromFile(path)); |
| if (stream.get() == nullptr) { |
| SkDebugf("Could not read %s.\n", path); |
| return false; |
| } |
| |
| pic->reset(SkPicture::CreateFromStream(stream.get())); |
| if (pic->get() == nullptr) { |
| SkDebugf("Could not read %s as an SkPicture.\n", path); |
| return false; |
| } |
| return true; |
| } |
| |
| Benchmark* next() { |
| if (fBenches) { |
| Benchmark* bench = fBenches->factory()(nullptr); |
| fBenches = fBenches->next(); |
| fSourceType = "bench"; |
| fBenchType = "micro"; |
| return bench; |
| } |
| |
| while (fGMs) { |
| SkAutoTDelete<skiagm::GM> gm(fGMs->factory()(nullptr)); |
| fGMs = fGMs->next(); |
| if (gm->runAsBench()) { |
| fSourceType = "gm"; |
| fBenchType = "micro"; |
| return new GMBench(gm.detach()); |
| } |
| } |
| |
| // First add all .skps as RecordingBenches. |
| while (fCurrentRecording < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentRecording++]; |
| SkAutoTUnref<SkPicture> pic; |
| if (!ReadPicture(path.c_str(), &pic)) { |
| continue; |
| } |
| SkString name = SkOSPath::Basename(path.c_str()); |
| fSourceType = "skp"; |
| fBenchType = "recording"; |
| fSKPBytes = static_cast<double>(SkPictureUtils::ApproximateBytesUsed(pic)); |
| fSKPOps = pic->approximateOpCount(); |
| return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh); |
| } |
| |
| // Then once each for each scale as SKPBenches (playback). |
| while (fCurrentScale < fScales.count()) { |
| while (fCurrentSKP < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentSKP]; |
| SkAutoTUnref<SkPicture> pic; |
| if (!ReadPicture(path.c_str(), &pic)) { |
| fCurrentSKP++; |
| continue; |
| } |
| |
| while (fCurrentUseMPD < fUseMPDs.count()) { |
| if (FLAGS_bbh) { |
| // The SKP we read off disk doesn't have a BBH. Re-record so it grows one. |
| SkRTreeFactory factory; |
| SkPictureRecorder recorder; |
| static const int kFlags = SkPictureRecorder::kComputeSaveLayerInfo_RecordFlag; |
| pic->playback(recorder.beginRecording(pic->cullRect().width(), |
| pic->cullRect().height(), |
| &factory, |
| fUseMPDs[fCurrentUseMPD] ? kFlags : 0)); |
| pic.reset(recorder.endRecording()); |
| } |
| SkString name = SkOSPath::Basename(path.c_str()); |
| fSourceType = "skp"; |
| fBenchType = "playback"; |
| return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale], |
| fUseMPDs[fCurrentUseMPD++], FLAGS_loopSKP); |
| } |
| fCurrentUseMPD = 0; |
| fCurrentSKP++; |
| } |
| fCurrentSKP = 0; |
| fCurrentScale++; |
| } |
| |
| // Now loop over each skp again if we have an animation |
| if (fZoomMax != 1.0f && fZoomPeriodMs > 0) { |
| while (fCurrentAnimSKP < fSKPs.count()) { |
| const SkString& path = fSKPs[fCurrentAnimSKP]; |
| SkAutoTUnref<SkPicture> pic; |
| if (!ReadPicture(path.c_str(), &pic)) { |
| fCurrentAnimSKP++; |
| continue; |
| } |
| |
| fCurrentAnimSKP++; |
| SkString name = SkOSPath::Basename(path.c_str()); |
| SkAutoTUnref<SKPAnimationBench::Animation> animation( |
| SKPAnimationBench::CreateZoomAnimation(fZoomMax, fZoomPeriodMs)); |
| return new SKPAnimationBench(name.c_str(), pic.get(), fClip, animation, |
| FLAGS_loopSKP); |
| } |
| } |
| |
| for (; fCurrentCodec < fImages.count(); fCurrentCodec++) { |
| fSourceType = "image"; |
| fBenchType = "skcodec"; |
| const SkString& path = fImages[fCurrentCodec]; |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str())); |
| SkAutoTDelete<SkCodec> codec(SkCodec::NewFromData(encoded)); |
| if (!codec) { |
| // Nothing to time. |
| SkDebugf("Cannot find codec for %s\n", path.c_str()); |
| continue; |
| } |
| |
| while (fCurrentColorType < fColorTypes.count()) { |
| const SkColorType colorType = fColorTypes[fCurrentColorType]; |
| fCurrentColorType++; |
| |
| // Make sure we can decode to this color type. |
| SkImageInfo info = codec->getInfo().makeColorType(colorType); |
| SkAlphaType alphaType; |
| if (!SkColorTypeValidateAlphaType(colorType, info.alphaType(), |
| &alphaType)) { |
| continue; |
| } |
| if (alphaType != info.alphaType()) { |
| info = info.makeAlphaType(alphaType); |
| } |
| |
| const size_t rowBytes = info.minRowBytes(); |
| SkAutoMalloc storage(info.getSafeSize(rowBytes)); |
| |
| // Used if fCurrentColorType is kIndex_8_SkColorType |
| int colorCount = 256; |
| SkPMColor colors[256]; |
| |
| const SkCodec::Result result = codec->getPixels( |
| info, storage.get(), rowBytes, nullptr, colors, |
| &colorCount); |
| switch (result) { |
| case SkCodec::kSuccess: |
| case SkCodec::kIncompleteInput: |
| return new CodecBench(SkOSPath::Basename(path.c_str()), |
| encoded, colorType); |
| case SkCodec::kInvalidConversion: |
| // This is okay. Not all conversions are valid. |
| break; |
| default: |
| // This represents some sort of failure. |
| SkASSERT(false); |
| break; |
| } |
| } |
| fCurrentColorType = 0; |
| } |
| |
| // Run the DecodingBenches |
| while (fCurrentImage < fImages.count()) { |
| fSourceType = "image"; |
| fBenchType = "skimagedecoder"; |
| while (fCurrentColorType < fColorTypes.count()) { |
| const SkString& path = fImages[fCurrentImage]; |
| SkColorType colorType = fColorTypes[fCurrentColorType]; |
| fCurrentColorType++; |
| // Check if the image decodes to the right color type |
| // before creating the benchmark |
| SkBitmap bitmap; |
| if (SkImageDecoder::DecodeFile(path.c_str(), &bitmap, |
| colorType, SkImageDecoder::kDecodePixels_Mode) |
| && bitmap.colorType() == colorType) { |
| return new DecodingBench(path, colorType); |
| } |
| } |
| fCurrentColorType = 0; |
| fCurrentImage++; |
| } |
| |
| // Run the SubsetBenches |
| bool useCodecOpts[] = { true, false }; |
| while (fUseCodec < 2) { |
| bool useCodec = useCodecOpts[fUseCodec]; |
| fSourceType = "image"; |
| fBenchType = useCodec ? "skcodec" : "skimagedecoder"; |
| while (fCurrentSubsetImage < fImages.count()) { |
| const SkString& path = fImages[fCurrentSubsetImage]; |
| if (!run_subset_bench(path, useCodec)) { |
| fCurrentSubsetImage++; |
| continue; |
| } |
| while (fCurrentColorType < fColorTypes.count()) { |
| SkColorType colorType = fColorTypes[fCurrentColorType]; |
| while (fCurrentSubsetType <= kLast_SubsetType) { |
| int width = 0; |
| int height = 0; |
| int currentSubsetType = fCurrentSubsetType++; |
| if (valid_subset_bench(path, colorType, useCodec, &width, &height)) { |
| switch (currentSubsetType) { |
| case kTopLeft_SubsetType: |
| return new SubsetSingleBench(path, colorType, width/3, |
| height/3, 0, 0, useCodec); |
| case kTopRight_SubsetType: |
| return new SubsetSingleBench(path, colorType, width/3, |
| height/3, 2*width/3, 0, useCodec); |
| case kMiddle_SubsetType: |
| return new SubsetSingleBench(path, colorType, width/3, |
| height/3, width/3, height/3, useCodec); |
| case kBottomLeft_SubsetType: |
| return new SubsetSingleBench(path, colorType, width/3, |
| height/3, 0, 2*height/3, useCodec); |
| case kBottomRight_SubsetType: |
| return new SubsetSingleBench(path, colorType, width/3, |
| height/3, 2*width/3, 2*height/3, useCodec); |
| case kTranslate_SubsetType: |
| return new SubsetTranslateBench(path, colorType, 512, 512, |
| useCodec); |
| case kZoom_SubsetType: |
| return new SubsetZoomBench(path, colorType, 512, 512, |
| useCodec); |
| } |
| } else { |
| break; |
| } |
| } |
| fCurrentSubsetType = 0; |
| fCurrentColorType++; |
| } |
| fCurrentColorType = 0; |
| fCurrentSubsetImage++; |
| } |
| fCurrentSubsetImage = 0; |
| fUseCodec++; |
| } |
| |
| // Run the BRDBenches |
| // We will benchmark multiple BRD strategies. |
| static const struct { |
| SkBitmapRegionDecoderInterface::Strategy fStrategy; |
| const char* fName; |
| } strategies[] = { |
| { SkBitmapRegionDecoderInterface::kOriginal_Strategy, "BRD" }, |
| { SkBitmapRegionDecoderInterface::kCanvas_Strategy, "BRD_canvas" }, |
| { SkBitmapRegionDecoderInterface::kAndroidCodec_Strategy, "BRD_android_codec" }, |
| }; |
| |
| // We intend to create benchmarks that model the use cases in |
| // android/libraries/social/tiledimage. In this library, an image is decoded in 512x512 |
| // tiles. The image can be translated freely, so the location of a tile may be anywhere in |
| // the image. For that reason, we will benchmark decodes in five representative locations |
| // in the image. Additionally, this use case utilizes power of two scaling, so we will |
| // test on power of two sample sizes. The output tile is always 512x512, so, when a |
| // sampleSize is used, the size of the subset that is decoded is always |
| // (sampleSize*512)x(sampleSize*512). |
| // There are a few good reasons to only test on power of two sample sizes at this time: |
| // JPEG decodes using kOriginal_Strategy are broken for non-powers of two. |
| // skbug.com/4319 |
| // All use cases we are aware of only scale by powers of two. |
| // PNG decodes use the indicated sampling strategy regardless of the sample size, so |
| // these tests are sufficient to provide good coverage of our scaling options. |
| const uint32_t sampleSizes[] = { 1, 2, 4, 8, 16 }; |
| const uint32_t minOutputSize = 512; |
| while (fCurrentBRDImage < fImages.count()) { |
| while (fCurrentBRDStrategy < (int) SK_ARRAY_COUNT(strategies)) { |
| fSourceType = "image"; |
| fBenchType = strategies[fCurrentBRDStrategy].fName; |
| |
| const SkString& path = fImages[fCurrentBRDImage]; |
| const SkBitmapRegionDecoderInterface::Strategy strategy = |
| strategies[fCurrentBRDStrategy].fStrategy; |
| |
| if (SkBitmapRegionDecoderInterface::kOriginal_Strategy == strategy) { |
| // Disable png and jpeg for SkImageDecoder: |
| if (!FLAGS_jpgBuildTileIndex) { |
| if (path.endsWith("JPEG") || path.endsWith("JPG") || |
| path.endsWith("jpeg") || path.endsWith("jpg")) |
| { |
| fCurrentBRDStrategy++; |
| continue; |
| } |
| } |
| if (!FLAGS_pngBuildTileIndex) { |
| if (path.endsWith("PNG") || path.endsWith("png")) { |
| fCurrentBRDStrategy++; |
| continue; |
| } |
| } |
| } |
| |
| while (fCurrentColorType < fColorTypes.count()) { |
| while (fCurrentBRDSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) { |
| while (fCurrentSubsetType <= kLastSingle_SubsetType) { |
| |
| |
| SkAutoTUnref<SkData> encoded(SkData::NewFromFileName(path.c_str())); |
| const SkColorType colorType = fColorTypes[fCurrentColorType]; |
| uint32_t sampleSize = sampleSizes[fCurrentBRDSampleSize]; |
| int currentSubsetType = fCurrentSubsetType++; |
| |
| int width = 0; |
| int height = 0; |
| if (!valid_brd_bench(encoded.get(), strategy, colorType, sampleSize, |
| minOutputSize, &width, &height)) { |
| break; |
| } |
| |
| SkString basename = SkOSPath::Basename(path.c_str()); |
| SkIRect subset; |
| const uint32_t subsetSize = sampleSize * minOutputSize; |
| switch (currentSubsetType) { |
| case kTopLeft_SubsetType: |
| basename.append("_TopLeft"); |
| subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize); |
| break; |
| case kTopRight_SubsetType: |
| basename.append("_TopRight"); |
| subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize, |
| subsetSize); |
| break; |
| case kMiddle_SubsetType: |
| basename.append("_Middle"); |
| subset = SkIRect::MakeXYWH((width - subsetSize) / 2, |
| (height - subsetSize) / 2, subsetSize, subsetSize); |
| break; |
| case kBottomLeft_SubsetType: |
| basename.append("_BottomLeft"); |
| subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize, |
| subsetSize); |
| break; |
| case kBottomRight_SubsetType: |
| basename.append("_BottomRight"); |
| subset = SkIRect::MakeXYWH(width - subsetSize, |
| height - subsetSize, subsetSize, subsetSize); |
| break; |
| default: |
| SkASSERT(false); |
| } |
| |
| return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(), |
| strategy, colorType, sampleSize, subset); |
| } |
| fCurrentSubsetType = 0; |
| fCurrentBRDSampleSize++; |
| } |
| fCurrentBRDSampleSize = 0; |
| fCurrentColorType++; |
| } |
| fCurrentColorType = 0; |
| fCurrentBRDStrategy++; |
| } |
| fCurrentBRDStrategy = 0; |
| fCurrentBRDImage++; |
| } |
| |
| return nullptr; |
| } |
| |
| void fillCurrentOptions(ResultsWriter* log) const { |
| log->configOption("source_type", fSourceType); |
| log->configOption("bench_type", fBenchType); |
| if (0 == strcmp(fSourceType, "skp")) { |
| log->configOption("clip", |
| SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop, |
| fClip.fRight, fClip.fBottom).c_str()); |
| SK_ALWAYSBREAK(fCurrentScale < fScales.count()); // debugging paranoia |
| log->configOption("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str()); |
| if (fCurrentUseMPD > 0) { |
| SkASSERT(1 == fCurrentUseMPD || 2 == fCurrentUseMPD); |
| log->configOption("multi_picture_draw", fUseMPDs[fCurrentUseMPD-1] ? "true" : "false"); |
| } |
| } |
| if (0 == strcmp(fBenchType, "recording")) { |
| log->metric("bytes", fSKPBytes); |
| log->metric("ops", fSKPOps); |
| } |
| } |
| |
| private: |
| enum SubsetType { |
| kTopLeft_SubsetType = 0, |
| kTopRight_SubsetType = 1, |
| kMiddle_SubsetType = 2, |
| kBottomLeft_SubsetType = 3, |
| kBottomRight_SubsetType = 4, |
| kTranslate_SubsetType = 5, |
| kZoom_SubsetType = 6, |
| kLast_SubsetType = kZoom_SubsetType, |
| kLastSingle_SubsetType = kBottomRight_SubsetType, |
| }; |
| |
| const BenchRegistry* fBenches; |
| const skiagm::GMRegistry* fGMs; |
| SkIRect fClip; |
| SkTArray<SkScalar> fScales; |
| SkTArray<SkString> fSKPs; |
| SkTArray<bool> fUseMPDs; |
| SkTArray<SkString> fImages; |
| SkTArray<SkColorType, true> fColorTypes; |
| SkScalar fZoomMax; |
| double fZoomPeriodMs; |
| |
| double fSKPBytes, fSKPOps; |
| |
| const char* fSourceType; // What we're benching: bench, GM, SKP, ... |
| const char* fBenchType; // How we bench it: micro, recording, playback, ... |
| int fCurrentRecording; |
| int fCurrentScale; |
| int fCurrentSKP; |
| int fCurrentUseMPD; |
| int fCurrentCodec; |
| int fCurrentImage; |
| int fCurrentSubsetImage; |
| int fCurrentBRDImage; |
| int fCurrentColorType; |
| int fCurrentSubsetType; |
| int fUseCodec; |
| int fCurrentBRDStrategy; |
| int fCurrentBRDSampleSize; |
| int fCurrentAnimSKP; |
| }; |
| |
| int nanobench_main(); |
| int nanobench_main() { |
| SetupCrashHandler(); |
| SkAutoGraphics ag; |
| SkTaskGroup::Enabler enabled(FLAGS_threads); |
| |
| #if SK_SUPPORT_GPU |
| GrContextOptions grContextOpts; |
| grContextOpts.fDrawPathToCompressedTexture = FLAGS_gpuCompressAlphaMasks; |
| gGrFactory.reset(new GrContextFactory(grContextOpts)); |
| #endif |
| |
| if (FLAGS_veryVerbose) { |
| FLAGS_verbose = true; |
| } |
| |
| double samplingTimeMs = 0; |
| if (0 != strcmp("0", FLAGS_samplingTime[0])) { |
| SkSTArray<8, char> timeUnit; |
| timeUnit.push_back_n(static_cast<int>(strlen(FLAGS_samplingTime[0])) + 1); |
| if (2 != sscanf(FLAGS_samplingTime[0], "%lf%s", &samplingTimeMs, timeUnit.begin()) || |
| (0 != strcmp("s", timeUnit.begin()) && 0 != strcmp("ms", timeUnit.begin()))) { |
| SkDebugf("Invalid --samplingTime \"%s\". Must be \"0\", \"%%lfs\", or \"%%lfms\"\n", |
| FLAGS_samplingTime[0]); |
| exit(0); |
| } |
| if (0 == strcmp("s", timeUnit.begin())) { |
| samplingTimeMs *= 1000; |
| } |
| if (samplingTimeMs) { |
| FLAGS_samples = kTimedSampling; |
| } |
| } |
| |
| if (kAutoTuneLoops != FLAGS_loops) { |
| FLAGS_samples = 1; |
| FLAGS_gpuFrameLag = 0; |
| } |
| |
| if (!FLAGS_writePath.isEmpty()) { |
| SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]); |
| if (!sk_mkdir(FLAGS_writePath[0])) { |
| SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]); |
| FLAGS_writePath.set(0, nullptr); |
| } |
| } |
| |
| SkAutoTDelete<ResultsWriter> log(new ResultsWriter); |
| if (!FLAGS_outResultsFile.isEmpty()) { |
| log.reset(new NanoJSONResultsWriter(FLAGS_outResultsFile[0])); |
| } |
| |
| if (1 == FLAGS_properties.count() % 2) { |
| SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n"); |
| return 1; |
| } |
| for (int i = 1; i < FLAGS_properties.count(); i += 2) { |
| log->property(FLAGS_properties[i-1], FLAGS_properties[i]); |
| } |
| |
| if (1 == FLAGS_key.count() % 2) { |
| SkDebugf("ERROR: --key must be passed with an even number of arguments.\n"); |
| return 1; |
| } |
| for (int i = 1; i < FLAGS_key.count(); i += 2) { |
| log->key(FLAGS_key[i-1], FLAGS_key[i]); |
| } |
| |
| const double overhead = estimate_timer_overhead(); |
| SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead)); |
| |
| SkTArray<double> samples; |
| |
| if (kAutoTuneLoops != FLAGS_loops) { |
| SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n"); |
| } else if (FLAGS_quiet) { |
| SkDebugf("median\tbench\tconfig\n"); |
| } else if (kTimedSampling == FLAGS_samples) { |
| SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n"); |
| } else { |
| SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n", |
| FLAGS_samples, "samples"); |
| } |
| |
| SkTDArray<Config> configs; |
| create_configs(&configs); |
| |
| int runs = 0; |
| BenchmarkStream benchStream; |
| while (Benchmark* b = benchStream.next()) { |
| SkAutoTDelete<Benchmark> bench(b); |
| if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) { |
| continue; |
| } |
| |
| if (!configs.isEmpty()) { |
| log->bench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY); |
| bench->delayedSetup(); |
| } |
| for (int i = 0; i < configs.count(); ++i) { |
| Target* target = is_enabled(b, configs[i]); |
| if (!target) { |
| continue; |
| } |
| |
| // During HWUI output this canvas may be nullptr. |
| SkCanvas* canvas = target->getCanvas(); |
| const char* config = target->config.name; |
| |
| target->setup(); |
| bench->perCanvasPreDraw(canvas); |
| |
| int maxFrameLag; |
| int loops = target->needsFrameTiming(&maxFrameLag) |
| ? setup_gpu_bench(target, bench.get(), maxFrameLag) |
| : setup_cpu_bench(overhead, target, bench.get()); |
| |
| if (kTimedSampling != FLAGS_samples) { |
| samples.reset(FLAGS_samples); |
| for (int s = 0; s < FLAGS_samples; s++) { |
| samples[s] = time(loops, bench, target) / loops; |
| } |
| } else if (samplingTimeMs) { |
| samples.reset(); |
| if (FLAGS_verbose) { |
| SkDebugf("Begin sampling %s for %ims\n", |
| bench->getUniqueName(), static_cast<int>(samplingTimeMs)); |
| } |
| WallTimer timer; |
| timer.start(); |
| do { |
| samples.push_back(time(loops, bench, target) / loops); |
| timer.end(); |
| } while (timer.fWall < samplingTimeMs); |
| } |
| |
| bench->perCanvasPostDraw(canvas); |
| |
| if (Benchmark::kNonRendering_Backend != target->config.backend && |
| !FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) { |
| SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config); |
| pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName()); |
| pngFilename.append(".png"); |
| write_canvas_png(target, pngFilename); |
| } |
| |
| if (kFailedLoops == loops) { |
| // Can't be timed. A warning note has already been printed. |
| cleanup_run(target); |
| continue; |
| } |
| |
| Stats stats(samples); |
| log->config(config); |
| log->configOption("name", bench->getName()); |
| benchStream.fillCurrentOptions(log.get()); |
| target->fillOptions(log.get()); |
| log->metric("min_ms", stats.min); |
| if (runs++ % FLAGS_flushEvery == 0) { |
| log->flush(); |
| } |
| |
| if (kAutoTuneLoops != FLAGS_loops) { |
| if (configs.count() == 1) { |
| config = ""; // Only print the config if we run the same bench on more than one. |
| } |
| SkDebugf("%4d/%-4dMB\t%s\t%s\n" |
| , sk_tools::getCurrResidentSetSizeMB() |
| , sk_tools::getMaxResidentSetSizeMB() |
| , bench->getUniqueName() |
| , config); |
| } else if (FLAGS_quiet) { |
| if (configs.count() == 1) { |
| config = ""; // Only print the config if we run the same bench on more than one. |
| } |
| SkDebugf("%s\t%s\t%s\n", HUMANIZE(stats.median), bench->getUniqueName(), config); |
| } else { |
| const double stddev_percent = 100 * sqrt(stats.var) / stats.mean; |
| SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n" |
| , sk_tools::getCurrResidentSetSizeMB() |
| , sk_tools::getMaxResidentSetSizeMB() |
| , loops |
| , HUMANIZE(stats.min) |
| , HUMANIZE(stats.median) |
| , HUMANIZE(stats.mean) |
| , HUMANIZE(stats.max) |
| , stddev_percent |
| , kTimedSampling != FLAGS_samples ? stats.plot.c_str() |
| : to_string(samples.count()).c_str() |
| , config |
| , bench->getUniqueName() |
| ); |
| } |
| #if SK_SUPPORT_GPU |
| if (FLAGS_gpuStats && |
| Benchmark::kGPU_Backend == configs[i].backend) { |
| gGrFactory->get(configs[i].ctxType)->printCacheStats(); |
| gGrFactory->get(configs[i].ctxType)->printGpuStats(); |
| } |
| #endif |
| if (FLAGS_verbose) { |
| SkDebugf("Samples: "); |
| for (int i = 0; i < samples.count(); i++) { |
| SkDebugf("%s ", HUMANIZE(samples[i])); |
| } |
| SkDebugf("%s\n", bench->getUniqueName()); |
| } |
| cleanup_run(target); |
| } |
| } |
| |
| log->bench("memory_usage", 0,0); |
| log->config("meta"); |
| log->metric("max_rss_mb", sk_tools::getMaxResidentSetSizeMB()); |
| |
| #if SK_SUPPORT_GPU |
| // Make sure we clean up the global GrContextFactory here, otherwise we might race with the |
| // SkEventTracer destructor |
| gGrFactory.reset(nullptr); |
| #endif |
| |
| return 0; |
| } |
| |
| #if !defined SK_BUILD_FOR_IOS |
| int main(int argc, char** argv) { |
| SkCommandLineFlags::Parse(argc, argv); |
| return nanobench_main(); |
| } |
| #endif |