blob: e26de49e363f3b7f2adc6d0c8ac553b75273764e [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGr.h"
#include "GrBitmapTextureMaker.h"
#include "GrCaps.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGpuResourcePriv.h"
#include "GrRenderTargetContext.h"
#include "GrResourceProvider.h"
#include "GrTextureProxy.h"
#include "GrTypes.h"
#include "GrXferProcessor.h"
#include "SkAutoMalloc.h"
#include "SkBlendModePriv.h"
#include "SkCanvas.h"
#include "SkColorFilter.h"
#include "SkConvertPixels.h"
#include "SkData.h"
#include "SkImageInfoPriv.h"
#include "SkMaskFilter.h"
#include "SkMessageBus.h"
#include "SkMipMap.h"
#include "SkPM4fPriv.h"
#include "SkPaintPriv.h"
#include "SkPixelRef.h"
#include "SkResourceCache.h"
#include "SkShaderBase.h"
#include "SkTemplates.h"
#include "SkTraceEvent.h"
#include "effects/GrBicubicEffect.h"
#include "effects/GrConstColorProcessor.h"
#include "effects/GrDitherEffect.h"
#include "effects/GrPorterDuffXferProcessor.h"
#include "effects/GrXfermodeFragmentProcessor.h"
GrSurfaceDesc GrImageInfoToSurfaceDesc(const SkImageInfo& info, const GrCaps& caps) {
GrSurfaceDesc desc;
desc.fFlags = kNone_GrSurfaceFlags;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
desc.fWidth = info.width();
desc.fHeight = info.height();
desc.fConfig = SkImageInfo2GrPixelConfig(info, caps);
desc.fSampleCnt = 0;
return desc;
}
void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) {
SkASSERT(key);
SkASSERT(imageID);
SkASSERT(!imageBounds.isEmpty());
static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kImageIDDomain, 5);
builder[0] = imageID;
builder[1] = imageBounds.fLeft;
builder[2] = imageBounds.fTop;
builder[3] = imageBounds.fRight;
builder[4] = imageBounds.fBottom;
}
//////////////////////////////////////////////////////////////////////////////
sk_sp<GrTextureProxy> GrUploadBitmapToTextureProxy(GrResourceProvider* resourceProvider,
const SkBitmap& bitmap,
SkColorSpace* dstColorSpace) {
if (!bitmap.readyToDraw()) {
return nullptr;
}
SkPixmap pixmap;
if (!bitmap.peekPixels(&pixmap)) {
return nullptr;
}
return GrUploadPixmapToTextureProxy(resourceProvider, pixmap, SkBudgeted::kYes, dstColorSpace);
}
static const SkPixmap* compute_desc(const GrCaps& caps, const SkPixmap& pixmap,
GrSurfaceDesc* desc,
SkBitmap* tmpBitmap, SkPixmap* tmpPixmap) {
const SkPixmap* pmap = &pixmap;
*desc = GrImageInfoToSurfaceDesc(pixmap.info(), caps);
// TODO: We're checking for srgbSupport, but we can then end up picking sBGRA as our pixel
// config (which may not be supported). We need better fallback management here.
SkColorSpace* colorSpace = pixmap.colorSpace();
if (caps.srgbSupport() &&
colorSpace && colorSpace->gammaCloseToSRGB() && !GrPixelConfigIsSRGB(desc->fConfig)) {
// We were supplied an sRGB-like color space, but we don't have a suitable pixel config.
// Convert to 8888 sRGB so we can handle the data correctly. The raster backend doesn't
// handle sRGB Index8 -> sRGB 8888 correctly (yet), so lie about both the source and
// destination (claim they're linear):
SkImageInfo linSrcInfo = SkImageInfo::Make(pixmap.width(), pixmap.height(),
pixmap.colorType(), pixmap.alphaType());
SkPixmap linSrcPixmap(linSrcInfo, pixmap.addr(), pixmap.rowBytes());
SkImageInfo dstInfo = SkImageInfo::Make(pixmap.width(), pixmap.height(),
kN32_SkColorType, kPremul_SkAlphaType,
pixmap.info().refColorSpace());
tmpBitmap->allocPixels(dstInfo);
SkImageInfo linDstInfo = SkImageInfo::MakeN32Premul(pixmap.width(), pixmap.height());
if (!linSrcPixmap.readPixels(linDstInfo, tmpBitmap->getPixels(), tmpBitmap->rowBytes())) {
return nullptr;
}
if (!tmpBitmap->peekPixels(tmpPixmap)) {
return nullptr;
}
pmap = tmpPixmap;
// must rebuild desc, since we've forced the info to be N32
*desc = GrImageInfoToSurfaceDesc(pmap->info(), caps);
}
return pmap;
}
sk_sp<GrTextureProxy> GrUploadPixmapToTextureProxy(GrResourceProvider* resourceProvider,
const SkPixmap& pixmap,
SkBudgeted budgeted,
SkColorSpace* dstColorSpace) {
SkDestinationSurfaceColorMode colorMode = dstColorSpace
? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware
: SkDestinationSurfaceColorMode::kLegacy;
if (!SkImageInfoIsValid(pixmap.info(), colorMode)) {
return nullptr;
}
SkBitmap tmpBitmap;
SkPixmap tmpPixmap;
GrSurfaceDesc desc;
ATRACE_ANDROID_FRAMEWORK("Upload Texture [%ux%u]", pixmap.width(), pixmap.height());
if (const SkPixmap* pmap = compute_desc(*resourceProvider->caps(), pixmap, &desc,
&tmpBitmap, &tmpPixmap)) {
return GrSurfaceProxy::MakeDeferred(resourceProvider, desc,
budgeted, pmap->addr(), pmap->rowBytes());
}
return nullptr;
}
////////////////////////////////////////////////////////////////////////////////
void GrInstallBitmapUniqueKeyInvalidator(const GrUniqueKey& key, SkPixelRef* pixelRef) {
class Invalidator : public SkPixelRef::GenIDChangeListener {
public:
explicit Invalidator(const GrUniqueKey& key) : fMsg(key) {}
private:
GrUniqueKeyInvalidatedMessage fMsg;
void onChange() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); }
};
pixelRef->addGenIDChangeListener(new Invalidator(key));
}
sk_sp<GrTextureProxy> GrGenerateMipMapsAndUploadToTextureProxy(GrContext* ctx,
const SkBitmap& bitmap,
SkColorSpace* dstColorSpace) {
SkDestinationSurfaceColorMode colorMode = dstColorSpace
? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware
: SkDestinationSurfaceColorMode::kLegacy;
if (!SkImageInfoIsValid(bitmap.info(), colorMode)) {
return nullptr;
}
SkPixmap pixmap;
if (!bitmap.peekPixels(&pixmap)) {
return nullptr;
}
SkBitmap tmpBitmap;
SkPixmap tmpPixmap;
GrSurfaceDesc desc;
const SkPixmap* pmap = compute_desc(*ctx->resourceProvider()->caps(), pixmap, &desc,
&tmpBitmap, &tmpPixmap);
if (!pmap) {
return nullptr;
}
ATRACE_ANDROID_FRAMEWORK("Upload MipMap Texture [%ux%u]", pmap->width(), pmap->height());
std::unique_ptr<SkMipMap> mipmaps(SkMipMap::Build(*pmap, colorMode, nullptr));
if (!mipmaps) {
return nullptr;
}
const int mipLevelCount = mipmaps->countLevels() + 1;
if (mipLevelCount < 1) {
return nullptr;
}
std::unique_ptr<GrMipLevel[]> texels(new GrMipLevel[mipLevelCount]);
texels[0].fPixels = pmap->addr();
texels[0].fRowBytes = pmap->rowBytes();
for (int i = 1; i < mipLevelCount; ++i) {
SkMipMap::Level generatedMipLevel;
mipmaps->getLevel(i - 1, &generatedMipLevel);
texels[i].fPixels = generatedMipLevel.fPixmap.addr();
texels[i].fRowBytes = generatedMipLevel.fPixmap.rowBytes();
}
return GrSurfaceProxy::MakeDeferredMipMap(ctx->resourceProvider(),
desc,
SkBudgeted::kYes,
texels.get(),
mipLevelCount,
colorMode);
}
sk_sp<GrTextureProxy> GrCopyBaseMipMapToTextureProxy(GrContext* ctx,
GrTextureProxy* baseProxy,
SkColorSpace* dstColorSpace) {
SkASSERT(baseProxy);
SkDestinationSurfaceColorMode colorMode = dstColorSpace
? SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware
: SkDestinationSurfaceColorMode::kLegacy;
// SkMipMap doesn't include the base level in the level count so we have to add 1
int mipLevelCount = SkMipMap::ComputeLevelCount(baseProxy->width(), baseProxy->height()) + 1;
std::unique_ptr<GrMipLevel[]> texels(new GrMipLevel[mipLevelCount]);
// We don't want to upload any texel data
for (int i = 0; i < mipLevelCount; i++) {
texels[i].fPixels = nullptr;
texels[i].fRowBytes = 0;
}
GrSurfaceDesc desc;
desc.fFlags = kNone_GrSurfaceFlags;
desc.fOrigin = baseProxy->origin();
desc.fWidth = baseProxy->width();
desc.fHeight = baseProxy->height();
desc.fConfig = baseProxy->config();
desc.fSampleCnt = 0;
sk_sp<GrTextureProxy> proxy = GrSurfaceProxy::MakeDeferredMipMap(ctx->resourceProvider(),
desc,
SkBudgeted::kYes, texels.get(),
mipLevelCount, colorMode);
if (!proxy) {
return nullptr;
}
// Copy the base layer to our proxy
sk_sp<GrSurfaceContext> sContext = ctx->contextPriv().makeWrappedSurfaceContext(proxy, nullptr);
SkASSERT(sContext);
SkAssertResult(sContext->copy(baseProxy));
return proxy;
}
sk_sp<GrTextureProxy> GrUploadMipMapToTextureProxy(GrContext* ctx, const SkImageInfo& info,
const GrMipLevel texels[],
int mipLevelCount,
SkDestinationSurfaceColorMode colorMode) {
if (!SkImageInfoIsValid(info, colorMode)) {
return nullptr;
}
return GrSurfaceProxy::MakeDeferredMipMap(ctx->resourceProvider(),
GrImageInfoToSurfaceDesc(info, *ctx->caps()),
SkBudgeted::kYes, texels,
mipLevelCount, colorMode);
}
sk_sp<GrTextureProxy> GrRefCachedBitmapTextureProxy(GrContext* ctx,
const SkBitmap& bitmap,
const GrSamplerState& params,
SkScalar scaleAdjust[2]) {
// Caller doesn't care about the texture's color space (they can always get it from the bitmap)
return GrBitmapTextureMaker(ctx, bitmap).refTextureProxyForParams(params, nullptr,
nullptr, scaleAdjust);
}
sk_sp<GrTextureProxy> GrMakeCachedBitmapProxy(GrResourceProvider* resourceProvider,
const SkBitmap& bitmap) {
GrUniqueKey originalKey;
if (!bitmap.isVolatile()) {
SkIPoint origin = bitmap.pixelRefOrigin();
SkIRect subset = SkIRect::MakeXYWH(origin.fX, origin.fY, bitmap.width(), bitmap.height());
GrMakeKeyFromImageID(&originalKey, bitmap.pixelRef()->getGenerationID(), subset);
}
sk_sp<GrTextureProxy> proxy;
if (originalKey.isValid()) {
proxy = resourceProvider->findOrCreateProxyByUniqueKey(originalKey,
kTopLeft_GrSurfaceOrigin);
}
if (!proxy) {
// Pass nullptr for |dstColorSpace|. This is lenient - we allow a wider range of
// color spaces in legacy mode. Unfortunately, we have to be lenient here, since
// we can't necessarily know the |dstColorSpace| at this time.
proxy = GrUploadBitmapToTextureProxy(resourceProvider, bitmap, nullptr);
if (proxy && originalKey.isValid()) {
SkASSERT(proxy->origin() == kTopLeft_GrSurfaceOrigin);
resourceProvider->assignUniqueKeyToProxy(originalKey, proxy.get());
GrInstallBitmapUniqueKeyInvalidator(originalKey, bitmap.pixelRef());
}
}
return proxy;
}
///////////////////////////////////////////////////////////////////////////////
GrColor4f SkColorToPremulGrColor4f(SkColor c, SkColorSpace* dstColorSpace) {
// We want to premultiply after linearizing, so this is easy:
return SkColorToUnpremulGrColor4f(c, dstColorSpace).premul();
}
GrColor4f SkColorToUnpremulGrColor4f(SkColor c, SkColorSpace* dstColorSpace) {
if (dstColorSpace) {
auto srgbColorSpace = SkColorSpace::MakeSRGB();
auto gamutXform = GrColorSpaceXform::Make(srgbColorSpace.get(), dstColorSpace);
return SkColorToUnpremulGrColor4f(c, dstColorSpace, gamutXform.get());
} else {
return SkColorToUnpremulGrColor4f(c, nullptr, nullptr);
}
}
GrColor4f SkColorToPremulGrColor4f(SkColor c, SkColorSpace* dstColorSpace,
GrColorSpaceXform* gamutXform) {
// We want to premultiply after linearizing, so this is easy:
return SkColorToUnpremulGrColor4f(c, dstColorSpace, gamutXform).premul();
}
GrColor4f SkColorToUnpremulGrColor4f(SkColor c, SkColorSpace* dstColorSpace,
GrColorSpaceXform* gamutXform) {
// You can't be color-space aware in legacy mode
SkASSERT(dstColorSpace || !gamutXform);
GrColor4f color;
if (dstColorSpace) {
// SkColor4f::FromColor does sRGB -> Linear
color = GrColor4f::FromSkColor4f(SkColor4f::FromColor(c));
} else {
// GrColor4f::FromGrColor just multiplies by 1/255
color = GrColor4f::FromGrColor(SkColorToUnpremulGrColor(c));
}
if (gamutXform) {
color = gamutXform->apply(color);
}
return color;
}
///////////////////////////////////////////////////////////////////////////////
GrPixelConfig SkImageInfo2GrPixelConfig(const SkColorType type, SkColorSpace* cs,
const GrCaps& caps) {
// We intentionally ignore profile type for non-8888 formats. Anything we can't support
// in hardware will be expanded to sRGB 8888 in GrUploadPixmapToTexture.
switch (type) {
case kUnknown_SkColorType:
return kUnknown_GrPixelConfig;
case kAlpha_8_SkColorType:
return kAlpha_8_GrPixelConfig;
case kRGB_565_SkColorType:
return kRGB_565_GrPixelConfig;
case kARGB_4444_SkColorType:
return kRGBA_4444_GrPixelConfig;
case kRGBA_8888_SkColorType:
return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB())
? kSRGBA_8888_GrPixelConfig : kRGBA_8888_GrPixelConfig;
case kBGRA_8888_SkColorType:
return (caps.srgbSupport() && cs && cs->gammaCloseToSRGB())
? kSBGRA_8888_GrPixelConfig : kBGRA_8888_GrPixelConfig;
case kGray_8_SkColorType:
return kGray_8_GrPixelConfig;
case kRGBA_F16_SkColorType:
return kRGBA_half_GrPixelConfig;
}
SkASSERT(0); // shouldn't get here
return kUnknown_GrPixelConfig;
}
GrPixelConfig SkImageInfo2GrPixelConfig(const SkImageInfo& info, const GrCaps& caps) {
return SkImageInfo2GrPixelConfig(info.colorType(), info.colorSpace(), caps);
}
bool GrPixelConfigToColorType(GrPixelConfig config, SkColorType* ctOut) {
SkColorType ct;
switch (config) {
case kAlpha_8_GrPixelConfig:
ct = kAlpha_8_SkColorType;
break;
case kGray_8_GrPixelConfig:
ct = kGray_8_SkColorType;
break;
case kRGB_565_GrPixelConfig:
ct = kRGB_565_SkColorType;
break;
case kRGBA_4444_GrPixelConfig:
ct = kARGB_4444_SkColorType;
break;
case kRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
case kSRGBA_8888_GrPixelConfig:
ct = kRGBA_8888_SkColorType;
break;
case kSBGRA_8888_GrPixelConfig:
ct = kBGRA_8888_SkColorType;
break;
case kRGBA_half_GrPixelConfig:
ct = kRGBA_F16_SkColorType;
break;
default:
return false;
}
if (ctOut) {
*ctOut = ct;
}
return true;
}
GrPixelConfig GrRenderableConfigForColorSpace(const SkColorSpace* colorSpace) {
if (!colorSpace) {
return kRGBA_8888_GrPixelConfig;
} else if (colorSpace->gammaIsLinear()) {
return kRGBA_half_GrPixelConfig;
} else if (colorSpace->gammaCloseToSRGB()) {
return kSRGBA_8888_GrPixelConfig;
} else {
SkDEBUGFAIL("No renderable config exists for color space with strange gamma");
return kUnknown_GrPixelConfig;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
static inline bool blend_requires_shader(const SkBlendMode mode) {
return SkBlendMode::kDst != mode;
}
static inline bool skpaint_to_grpaint_impl(GrContext* context,
GrRenderTargetContext* rtc,
const SkPaint& skPaint,
const SkMatrix& viewM,
std::unique_ptr<GrFragmentProcessor>* shaderProcessor,
SkBlendMode* primColorMode,
GrPaint* grPaint) {
grPaint->setAllowSRGBInputs(rtc->isGammaCorrect());
// Convert SkPaint color to 4f format, including optional linearizing and gamut conversion.
GrColor4f origColor = SkColorToUnpremulGrColor4f(skPaint.getColor(), rtc->getColorSpace(),
rtc->getColorXformFromSRGB());
// Setup the initial color considering the shader, the SkPaint color, and the presence or not
// of per-vertex colors.
std::unique_ptr<GrFragmentProcessor> shaderFP;
if (!primColorMode || blend_requires_shader(*primColorMode)) {
if (shaderProcessor) {
shaderFP = std::move(*shaderProcessor);
} else if (const auto* shader = as_SB(skPaint.getShader())) {
shaderFP = shader->asFragmentProcessor(
SkShaderBase::AsFPArgs(context, &viewM, nullptr, skPaint.getFilterQuality(),
rtc->getColorSpace()));
if (!shaderFP) {
return false;
}
}
}
// Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is
// a known constant value. In that case we can simply apply a color filter during this
// conversion without converting the color filter to a GrFragmentProcessor.
bool applyColorFilterToPaintColor = false;
if (shaderFP) {
if (primColorMode) {
// There is a blend between the primitive color and the shader color. The shader sees
// the opaque paint color. The shader's output is blended using the provided mode by
// the primitive color. The blended color is then modulated by the paint's alpha.
// The geometry processor will insert the primitive color to start the color chain, so
// the GrPaint color will be ignored.
GrColor4f shaderInput = origColor.opaque();
shaderFP = GrFragmentProcessor::OverrideInput(std::move(shaderFP), shaderInput);
shaderFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(shaderFP),
*primColorMode);
// The above may return null if compose results in a pass through of the prim color.
if (shaderFP) {
grPaint->addColorFragmentProcessor(std::move(shaderFP));
}
// We can ignore origColor here - alpha is unchanged by gamma
GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor());
if (GrColor_WHITE != paintAlpha) {
// No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all
// color channels. It's value should be treated as the same in ANY color space.
grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make(
GrColor4f::FromGrColor(paintAlpha),
GrConstColorProcessor::kModulateRGBA_InputMode));
}
} else {
// The shader's FP sees the paint unpremul color
grPaint->setColor4f(origColor);
grPaint->addColorFragmentProcessor(std::move(shaderFP));
}
} else {
if (primColorMode) {
// There is a blend between the primitive color and the paint color. The blend considers
// the opaque paint color. The paint's alpha is applied to the post-blended color.
auto processor = GrConstColorProcessor::Make(origColor.opaque(),
GrConstColorProcessor::kIgnore_InputMode);
processor = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(processor),
*primColorMode);
if (processor) {
grPaint->addColorFragmentProcessor(std::move(processor));
}
grPaint->setColor4f(origColor.opaque());
// We can ignore origColor here - alpha is unchanged by gamma
GrColor paintAlpha = SkColorAlphaToGrColor(skPaint.getColor());
if (GrColor_WHITE != paintAlpha) {
// No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all
// color channels. It's value should be treated as the same in ANY color space.
grPaint->addColorFragmentProcessor(GrConstColorProcessor::Make(
GrColor4f::FromGrColor(paintAlpha),
GrConstColorProcessor::kModulateRGBA_InputMode));
}
} else {
// No shader, no primitive color.
grPaint->setColor4f(origColor.premul());
applyColorFilterToPaintColor = true;
}
}
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
if (applyColorFilterToPaintColor) {
// If we're in legacy mode, we *must* avoid using the 4f version of the color filter,
// because that will combine with the linearized version of the stored color.
if (rtc->isGammaCorrect()) {
grPaint->setColor4f(GrColor4f::FromSkColor4f(
colorFilter->filterColor4f(origColor.toSkColor4f())).premul());
} else {
grPaint->setColor4f(SkColorToPremulGrColor4f(
colorFilter->filterColor(skPaint.getColor()), nullptr, nullptr));
}
} else {
auto cfFP = colorFilter->asFragmentProcessor(context, rtc->getColorSpace());
if (cfFP) {
grPaint->addColorFragmentProcessor(std::move(cfFP));
} else {
return false;
}
}
}
SkMaskFilter* maskFilter = skPaint.getMaskFilter();
if (maskFilter) {
GrFragmentProcessor* mfFP;
if (maskFilter->asFragmentProcessor(&mfFP)) {
grPaint->addCoverageFragmentProcessor(std::unique_ptr<GrFragmentProcessor>(mfFP));
}
}
// When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on
// the GrPaint to also be null (also kSrcOver).
SkASSERT(!grPaint->getXPFactory());
if (!skPaint.isSrcOver()) {
grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode()));
}
#ifndef SK_IGNORE_GPU_DITHER
// Conservative default, in case GrPixelConfigToColorType() fails.
SkColorType ct = SkColorType::kRGB_565_SkColorType;
GrPixelConfigToColorType(rtc->config(), &ct);
if (SkPaintPriv::ShouldDither(skPaint, ct) && grPaint->numColorFragmentProcessors() > 0
&& !rtc->isGammaCorrect()) {
auto ditherFP = GrDitherEffect::Make(rtc->config());
if (ditherFP) {
grPaint->addColorFragmentProcessor(std::move(ditherFP));
}
}
#endif
return true;
}
bool SkPaintToGrPaint(GrContext* context, GrRenderTargetContext* rtc, const SkPaint& skPaint,
const SkMatrix& viewM, GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, rtc, skPaint, viewM, nullptr, nullptr, grPaint);
}
/** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */
bool SkPaintToGrPaintReplaceShader(GrContext* context,
GrRenderTargetContext* rtc,
const SkPaint& skPaint,
std::unique_ptr<GrFragmentProcessor> shaderFP,
GrPaint* grPaint) {
if (!shaderFP) {
return false;
}
return skpaint_to_grpaint_impl(context, rtc, skPaint, SkMatrix::I(), &shaderFP, nullptr,
grPaint);
}
/** Ignores the SkShader (if any) on skPaint. */
bool SkPaintToGrPaintNoShader(GrContext* context,
GrRenderTargetContext* rtc,
const SkPaint& skPaint,
GrPaint* grPaint) {
// Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced.
static std::unique_ptr<GrFragmentProcessor> kNullShaderFP(nullptr);
static std::unique_ptr<GrFragmentProcessor>* kIgnoreShader = &kNullShaderFP;
return skpaint_to_grpaint_impl(context, rtc, skPaint, SkMatrix::I(), kIgnoreShader, nullptr,
grPaint);
}
/** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must
be setup as a vertex attribute using the specified SkBlendMode. */
bool SkPaintToGrPaintWithXfermode(GrContext* context,
GrRenderTargetContext* rtc,
const SkPaint& skPaint,
const SkMatrix& viewM,
SkBlendMode primColorMode,
GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, rtc, skPaint, viewM, nullptr, &primColorMode,
grPaint);
}
bool SkPaintToGrPaintWithTexture(GrContext* context,
GrRenderTargetContext* rtc,
const SkPaint& paint,
const SkMatrix& viewM,
std::unique_ptr<GrFragmentProcessor> fp,
bool textureIsAlphaOnly,
GrPaint* grPaint) {
std::unique_ptr<GrFragmentProcessor> shaderFP;
if (textureIsAlphaOnly) {
if (const auto* shader = as_SB(paint.getShader())) {
shaderFP = shader->asFragmentProcessor(
SkShaderBase::AsFPArgs(context, &viewM, nullptr, paint.getFilterQuality(),
rtc->getColorSpace()));
if (!shaderFP) {
return false;
}
std::unique_ptr<GrFragmentProcessor> fpSeries[] = { std::move(shaderFP), std::move(fp) };
shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2);
} else {
shaderFP = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp));
}
} else {
shaderFP = GrFragmentProcessor::MulOutputByInputAlpha(std::move(fp));
}
return SkPaintToGrPaintReplaceShader(context, rtc, paint, std::move(shaderFP), grPaint);
}
////////////////////////////////////////////////////////////////////////////////////////////////
GrSamplerState::Filter GrSkFilterQualityToGrFilterMode(SkFilterQuality paintFilterQuality,
const SkMatrix& viewM,
const SkMatrix& localM,
bool* doBicubic) {
*doBicubic = false;
GrSamplerState::Filter textureFilterMode;
switch (paintFilterQuality) {
case kNone_SkFilterQuality:
textureFilterMode = GrSamplerState::Filter::kNearest;
break;
case kLow_SkFilterQuality:
textureFilterMode = GrSamplerState::Filter::kBilerp;
break;
case kMedium_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
if (matrix.getMinScale() < SK_Scalar1) {
textureFilterMode = GrSamplerState::Filter::kMipMap;
} else {
// Don't trigger MIP level generation unnecessarily.
textureFilterMode = GrSamplerState::Filter::kBilerp;
}
break;
}
case kHigh_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
*doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode);
break;
}
default:
// Should be unreachable. If not, fall back to mipmaps.
textureFilterMode = GrSamplerState::Filter::kMipMap;
break;
}
return textureFilterMode;
}