| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SKVX_DEFINED |
| #define SKVX_DEFINED |
| |
| // skvx::Vec<N,T> are SIMD vectors of N T's, a v1.5 successor to SkNx<N,T>. |
| // |
| // This time we're leaning a bit less on platform-specific intrinsics and a bit |
| // more on Clang/GCC vector extensions, but still keeping the option open to |
| // drop in platform-specific intrinsics, actually more easily than before. |
| // |
| // We've also fixed a few of the caveats that used to make SkNx awkward to work |
| // with across translation units. skvx::Vec<N,T> always has N*sizeof(T) size |
| // and alignof(T) alignment and is safe to use across translation units freely. |
| |
| |
| // It'd be nice to not pull in any Skia headers here, in case we want to spin this file off. |
| #include <algorithm> // std::min, std::max |
| #include <cstdint> // intXX_t |
| #include <cstring> // memcpy() |
| #include <cmath> // std::ceil, std::floor, std::trunc, std::round, std::sqrt, etc. |
| #include <initializer_list> // std::initializer_list |
| |
| #if defined(__SSE__) |
| #include <immintrin.h> |
| #elif defined(__ARM_NEON) |
| #include <arm_neon.h> |
| #endif |
| |
| namespace skvx { |
| |
| // All Vec have the same simple memory layout, the same as `T vec[N]`. |
| // This gives Vec a consistent ABI, letting them pass between files compiled with |
| // different instruction sets (e.g. SSE2 and AVX2) without fear of ODR violation. |
| template <int N, typename T> |
| struct Vec { |
| static_assert((N & (N-1)) == 0, "N must be a power of 2."); |
| |
| Vec<N/2,T> lo, hi; |
| |
| // Methods belong here in the class declaration of Vec only if: |
| // - they must be here, like constructors or operator[]; |
| // - they'll definitely never want a specialized implementation. |
| // Other operations on Vec should be defined outside the type. |
| |
| Vec() = default; |
| Vec(T x) : lo(x), hi(x) {} |
| |
| Vec(std::initializer_list<T> xs) { |
| T vals[N] = {0}; |
| memcpy(vals, xs.begin(), std::min(xs.size(), (size_t)N)*sizeof(T)); |
| |
| lo = Vec<N/2,T>::Load(vals + 0); |
| hi = Vec<N/2,T>::Load(vals + N/2); |
| } |
| |
| T operator[](int i) const { return i < N/2 ? lo[i] : hi[i-N/2]; } |
| T& operator[](int i) { return i < N/2 ? lo[i] : hi[i-N/2]; } |
| |
| static Vec Load(const void* ptr) { |
| Vec v; |
| memcpy(&v, ptr, sizeof(Vec)); |
| return v; |
| } |
| void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| }; |
| |
| template <typename T> |
| struct Vec<1,T> { |
| T val; |
| |
| Vec() = default; |
| Vec(T x) : val(x) {} |
| |
| Vec(std::initializer_list<T> xs) : val(xs.size() ? *xs.begin() : 0) {} |
| |
| T operator[](int) const { return val; } |
| T& operator[](int) { return val; } |
| |
| static Vec Load(const void* ptr) { |
| Vec v; |
| memcpy(&v, ptr, sizeof(Vec)); |
| return v; |
| } |
| void store(void* ptr) const { |
| memcpy(ptr, this, sizeof(Vec)); |
| } |
| }; |
| |
| #if defined(__GNUC__) && !defined(__clang__) && defined(__SSE__) |
| // GCC warns about ABI changes when returning >= 32 byte vectors when -mavx is not enabled. |
| // This only happens for types like VExt whose ABI we don't care about, not for Vec itself. |
| #pragma GCC diagnostic ignored "-Wpsabi" |
| #endif |
| |
| template <typename D, typename S> |
| static inline D bit_pun(S s) { |
| static_assert(sizeof(D) == sizeof(S), ""); |
| D d; |
| memcpy(&d, &s, sizeof(D)); |
| return d; |
| } |
| |
| // Helps tamp down on the repetitive boilerplate. |
| #define SINT template <int N, typename T> static inline |
| #define SIT template <typename T> static inline |
| |
| // Translate from a value type T to its corresponding Mask, the result of a comparison. |
| template <typename T> struct Mask { using type = T; }; |
| template <> struct Mask<float > { using type = int32_t; }; |
| template <> struct Mask<double> { using type = int64_t; }; |
| template <typename T> using M = typename Mask<T>::type; |
| |
| // Join two Vec<N,T> into one Vec<2N,T>. |
| SINT Vec<2*N,T> join(Vec<N,T> lo, Vec<N,T> hi) { |
| Vec<2*N,T> v; |
| v.lo = lo; |
| v.hi = hi; |
| return v; |
| } |
| |
| // We have two default strategies for implementing most operations: |
| // 1) lean on Clang/GCC vector extensions when available; |
| // 2) recurse to scalar portable implementations when not. |
| // At the end we can drop in platform-specific implementations that override either default. |
| |
| #if !defined(SKNX_NO_SIMD) && (defined(__clang__) || defined(__GNUC__)) |
| |
| // VExt<N,T> types have the same size as Vec<N,T> and support most operations directly. |
| // N.B. VExt<N,T> alignment is N*alignof(T), stricter than Vec<N,T>'s alignof(T). |
| #if defined(__clang__) |
| template <int N, typename T> |
| using VExt = T __attribute__((ext_vector_type(N))); |
| |
| #elif defined(__GNUC__) |
| template <int N, typename T> |
| struct VExtHelper { |
| typedef T __attribute__((vector_size(N*sizeof(T)))) type; |
| }; |
| |
| template <int N, typename T> |
| using VExt = typename VExtHelper<N,T>::type; |
| |
| // For some reason some (new!) versions of GCC cannot seem to deduce N in the generic |
| // to_vec<N,T>() below for N=4 and T=float. This workaround seems to help... |
| static inline Vec<4,float> to_vec(VExt<4,float> v) { return bit_pun<Vec<4,float>>(v); } |
| #endif |
| |
| SINT VExt<N,T> to_vext(Vec<N,T> v) { return bit_pun<VExt<N,T>>(v); } |
| SINT Vec <N,T> to_vec(VExt<N,T> v) { return bit_pun<Vec <N,T>>(v); } |
| |
| SINT Vec<N,T> operator+(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) + to_vext(y)); } |
| SINT Vec<N,T> operator-(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) - to_vext(y)); } |
| SINT Vec<N,T> operator*(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) * to_vext(y)); } |
| SINT Vec<N,T> operator/(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) / to_vext(y)); } |
| |
| SINT Vec<N,T> operator^(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) ^ to_vext(y)); } |
| SINT Vec<N,T> operator&(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) & to_vext(y)); } |
| SINT Vec<N,T> operator|(Vec<N,T> x, Vec<N,T> y) { return to_vec(to_vext(x) | to_vext(y)); } |
| |
| SINT Vec<N,T> operator!(Vec<N,T> x) { return to_vec(!to_vext(x)); } |
| SINT Vec<N,T> operator-(Vec<N,T> x) { return to_vec(-to_vext(x)); } |
| SINT Vec<N,T> operator~(Vec<N,T> x) { return to_vec(~to_vext(x)); } |
| |
| SINT Vec<N,T> operator<<(Vec<N,T> x, int bits) { return to_vec(to_vext(x) << bits); } |
| SINT Vec<N,T> operator>>(Vec<N,T> x, int bits) { return to_vec(to_vext(x) >> bits); } |
| |
| SINT Vec<N,M<T>> operator==(Vec<N,T> x, Vec<N,T> y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) == to_vext(y)); } |
| SINT Vec<N,M<T>> operator!=(Vec<N,T> x, Vec<N,T> y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) != to_vext(y)); } |
| SINT Vec<N,M<T>> operator<=(Vec<N,T> x, Vec<N,T> y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) <= to_vext(y)); } |
| SINT Vec<N,M<T>> operator>=(Vec<N,T> x, Vec<N,T> y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) >= to_vext(y)); } |
| SINT Vec<N,M<T>> operator< (Vec<N,T> x, Vec<N,T> y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) < to_vext(y)); } |
| SINT Vec<N,M<T>> operator> (Vec<N,T> x, Vec<N,T> y) { return bit_pun<Vec<N,M<T>>>(to_vext(x) > to_vext(y)); } |
| |
| #else |
| |
| // Either SKNX_NO_SIMD is defined, or Clang/GCC vector extensions are not available. |
| // We'll implement things portably, in a way that should be easily autovectorizable. |
| |
| // N == 1 scalar implementations. |
| SIT Vec<1,T> operator+(Vec<1,T> x, Vec<1,T> y) { return x.val + y.val; } |
| SIT Vec<1,T> operator-(Vec<1,T> x, Vec<1,T> y) { return x.val - y.val; } |
| SIT Vec<1,T> operator*(Vec<1,T> x, Vec<1,T> y) { return x.val * y.val; } |
| SIT Vec<1,T> operator/(Vec<1,T> x, Vec<1,T> y) { return x.val / y.val; } |
| |
| SIT Vec<1,T> operator^(Vec<1,T> x, Vec<1,T> y) { return x.val ^ y.val; } |
| SIT Vec<1,T> operator&(Vec<1,T> x, Vec<1,T> y) { return x.val & y.val; } |
| SIT Vec<1,T> operator|(Vec<1,T> x, Vec<1,T> y) { return x.val | y.val; } |
| |
| SIT Vec<1,T> operator!(Vec<1,T> x) { return !x.val; } |
| SIT Vec<1,T> operator-(Vec<1,T> x) { return -x.val; } |
| SIT Vec<1,T> operator~(Vec<1,T> x) { return ~x.val; } |
| |
| SIT Vec<1,T> operator<<(Vec<1,T> x, int bits) { return x.val << bits; } |
| SIT Vec<1,T> operator>>(Vec<1,T> x, int bits) { return x.val >> bits; } |
| |
| SIT Vec<1,M<T>> operator==(Vec<1,T> x, Vec<1,T> y) { return x.val == y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator!=(Vec<1,T> x, Vec<1,T> y) { return x.val != y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator<=(Vec<1,T> x, Vec<1,T> y) { return x.val <= y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator>=(Vec<1,T> x, Vec<1,T> y) { return x.val >= y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator< (Vec<1,T> x, Vec<1,T> y) { return x.val < y.val ? ~0 : 0; } |
| SIT Vec<1,M<T>> operator> (Vec<1,T> x, Vec<1,T> y) { return x.val > y.val ? ~0 : 0; } |
| |
| // All default N != 1 implementations just recurse on lo and hi halves. |
| SINT Vec<N,T> operator+(Vec<N,T> x, Vec<N,T> y) { return join(x.lo + y.lo, x.hi + y.hi); } |
| SINT Vec<N,T> operator-(Vec<N,T> x, Vec<N,T> y) { return join(x.lo - y.lo, x.hi - y.hi); } |
| SINT Vec<N,T> operator*(Vec<N,T> x, Vec<N,T> y) { return join(x.lo * y.lo, x.hi * y.hi); } |
| SINT Vec<N,T> operator/(Vec<N,T> x, Vec<N,T> y) { return join(x.lo / y.lo, x.hi / y.hi); } |
| |
| SINT Vec<N,T> operator^(Vec<N,T> x, Vec<N,T> y) { return join(x.lo ^ y.lo, x.hi ^ y.hi); } |
| SINT Vec<N,T> operator&(Vec<N,T> x, Vec<N,T> y) { return join(x.lo & y.lo, x.hi & y.hi); } |
| SINT Vec<N,T> operator|(Vec<N,T> x, Vec<N,T> y) { return join(x.lo | y.lo, x.hi | y.hi); } |
| |
| SINT Vec<N,T> operator!(Vec<N,T> x) { return join(!x.lo, !x.hi); } |
| SINT Vec<N,T> operator-(Vec<N,T> x) { return join(-x.lo, -x.hi); } |
| SINT Vec<N,T> operator~(Vec<N,T> x) { return join(~x.lo, ~x.hi); } |
| |
| SINT Vec<N,T> operator<<(Vec<N,T> x, int bits) { return join(x.lo << bits, x.hi << bits); } |
| SINT Vec<N,T> operator>>(Vec<N,T> x, int bits) { return join(x.lo >> bits, x.hi >> bits); } |
| |
| SINT Vec<N,M<T>> operator==(Vec<N,T> x, Vec<N,T> y) { return join(x.lo == y.lo, x.hi == y.hi); } |
| SINT Vec<N,M<T>> operator!=(Vec<N,T> x, Vec<N,T> y) { return join(x.lo != y.lo, x.hi != y.hi); } |
| SINT Vec<N,M<T>> operator<=(Vec<N,T> x, Vec<N,T> y) { return join(x.lo <= y.lo, x.hi <= y.hi); } |
| SINT Vec<N,M<T>> operator>=(Vec<N,T> x, Vec<N,T> y) { return join(x.lo >= y.lo, x.hi >= y.hi); } |
| SINT Vec<N,M<T>> operator< (Vec<N,T> x, Vec<N,T> y) { return join(x.lo < y.lo, x.hi < y.hi); } |
| SINT Vec<N,M<T>> operator> (Vec<N,T> x, Vec<N,T> y) { return join(x.lo > y.lo, x.hi > y.hi); } |
| #endif |
| |
| // Some operations we want are not expressible with Clang/GCC vector |
| // extensions, so we implement them using the recursive approach. |
| |
| // N == 1 scalar implementations. |
| SIT Vec<1,T> if_then_else(Vec<1,M<T>> cond, Vec<1,T> t, Vec<1,T> e) { |
| auto t_bits = bit_pun<M<T>>(t), |
| e_bits = bit_pun<M<T>>(e); |
| return bit_pun<T>( (cond.val & t_bits) | (~cond.val & e_bits) ); |
| } |
| |
| SIT bool any(Vec<1,T> x) { return x.val != 0; } |
| SIT bool all(Vec<1,T> x) { return x.val != 0; } |
| |
| SIT T min(Vec<1,T> x) { return x.val; } |
| SIT T max(Vec<1,T> x) { return x.val; } |
| |
| SIT Vec<1,T> min(Vec<1,T> x, Vec<1,T> y) { return std::min(x.val, y.val); } |
| SIT Vec<1,T> max(Vec<1,T> x, Vec<1,T> y) { return std::max(x.val, y.val); } |
| |
| SIT Vec<1,T> ceil(Vec<1,T> x) { return std:: ceil(x.val); } |
| SIT Vec<1,T> floor(Vec<1,T> x) { return std::floor(x.val); } |
| SIT Vec<1,T> trunc(Vec<1,T> x) { return std::trunc(x.val); } |
| SIT Vec<1,T> round(Vec<1,T> x) { return std::round(x.val); } |
| SIT Vec<1,T> sqrt(Vec<1,T> x) { return std:: sqrt(x.val); } |
| SIT Vec<1,T> abs(Vec<1,T> x) { return std:: abs(x.val); } |
| |
| SIT Vec<1,T> rcp(Vec<1,T> x) { return 1 / x.val; } |
| SIT Vec<1,T> rsqrt(Vec<1,T> x) { return rcp(sqrt(x)); } |
| SIT Vec<1,T> mad(Vec<1,T> f, |
| Vec<1,T> m, |
| Vec<1,T> a) { return f*m+a; } |
| |
| // All default N != 1 implementations just recurse on lo and hi halves. |
| SINT Vec<N,T> if_then_else(Vec<N,M<T>> cond, Vec<N,T> t, Vec<N,T> e) { |
| return join(if_then_else(cond.lo, t.lo, e.lo), |
| if_then_else(cond.hi, t.hi, e.hi)); |
| } |
| |
| SINT bool any(Vec<N,T> x) { return any(x.lo) || any(x.hi); } |
| SINT bool all(Vec<N,T> x) { return all(x.lo) && all(x.hi); } |
| |
| SINT T min(Vec<N,T> x) { return std::min(min(x.lo), min(x.hi)); } |
| SINT T max(Vec<N,T> x) { return std::max(max(x.lo), max(x.hi)); } |
| |
| SINT Vec<N,T> min(Vec<N,T> x, Vec<N,T> y) { return join(min(x.lo, y.lo), min(x.hi, y.hi)); } |
| SINT Vec<N,T> max(Vec<N,T> x, Vec<N,T> y) { return join(max(x.lo, y.lo), max(x.hi, y.hi)); } |
| |
| SINT Vec<N,T> ceil(Vec<N,T> x) { return join( ceil(x.lo), ceil(x.hi)); } |
| SINT Vec<N,T> floor(Vec<N,T> x) { return join(floor(x.lo), floor(x.hi)); } |
| SINT Vec<N,T> trunc(Vec<N,T> x) { return join(trunc(x.lo), trunc(x.hi)); } |
| SINT Vec<N,T> round(Vec<N,T> x) { return join(round(x.lo), round(x.hi)); } |
| SINT Vec<N,T> sqrt(Vec<N,T> x) { return join( sqrt(x.lo), sqrt(x.hi)); } |
| SINT Vec<N,T> abs(Vec<N,T> x) { return join( abs(x.lo), abs(x.hi)); } |
| |
| SINT Vec<N,T> rcp(Vec<N,T> x) { return join( rcp(x.lo), rcp(x.hi)); } |
| SINT Vec<N,T> rsqrt(Vec<N,T> x) { return join(rsqrt(x.lo), rsqrt(x.hi)); } |
| SINT Vec<N,T> mad(Vec<N,T> f, |
| Vec<N,T> m, |
| Vec<N,T> a) { return join(mad(f.lo, m.lo, a.lo), mad(f.hi, m.hi, a.hi)); } |
| |
| |
| // Scalar/vector operations just splat the scalar to a vector... |
| SINT Vec<N,T> operator+ (T x, Vec<N,T> y) { return Vec<N,T>(x) + y; } |
| SINT Vec<N,T> operator- (T x, Vec<N,T> y) { return Vec<N,T>(x) - y; } |
| SINT Vec<N,T> operator* (T x, Vec<N,T> y) { return Vec<N,T>(x) * y; } |
| SINT Vec<N,T> operator/ (T x, Vec<N,T> y) { return Vec<N,T>(x) / y; } |
| SINT Vec<N,T> operator^ (T x, Vec<N,T> y) { return Vec<N,T>(x) ^ y; } |
| SINT Vec<N,T> operator& (T x, Vec<N,T> y) { return Vec<N,T>(x) & y; } |
| SINT Vec<N,T> operator| (T x, Vec<N,T> y) { return Vec<N,T>(x) | y; } |
| SINT Vec<N,M<T>> operator==(T x, Vec<N,T> y) { return Vec<N,T>(x) == y; } |
| SINT Vec<N,M<T>> operator!=(T x, Vec<N,T> y) { return Vec<N,T>(x) != y; } |
| SINT Vec<N,M<T>> operator<=(T x, Vec<N,T> y) { return Vec<N,T>(x) <= y; } |
| SINT Vec<N,M<T>> operator>=(T x, Vec<N,T> y) { return Vec<N,T>(x) >= y; } |
| SINT Vec<N,M<T>> operator< (T x, Vec<N,T> y) { return Vec<N,T>(x) < y; } |
| SINT Vec<N,M<T>> operator> (T x, Vec<N,T> y) { return Vec<N,T>(x) > y; } |
| SINT Vec<N,T> min(T x, Vec<N,T> y) { return min(Vec<N,T>(x), y); } |
| SINT Vec<N,T> max(T x, Vec<N,T> y) { return max(Vec<N,T>(x), y); } |
| |
| // ... and same deal for vector/scalar operations. |
| SINT Vec<N,T> operator+ (Vec<N,T> x, T y) { return x + Vec<N,T>(y); } |
| SINT Vec<N,T> operator- (Vec<N,T> x, T y) { return x - Vec<N,T>(y); } |
| SINT Vec<N,T> operator* (Vec<N,T> x, T y) { return x * Vec<N,T>(y); } |
| SINT Vec<N,T> operator/ (Vec<N,T> x, T y) { return x / Vec<N,T>(y); } |
| SINT Vec<N,T> operator^ (Vec<N,T> x, T y) { return x ^ Vec<N,T>(y); } |
| SINT Vec<N,T> operator& (Vec<N,T> x, T y) { return x & Vec<N,T>(y); } |
| SINT Vec<N,T> operator| (Vec<N,T> x, T y) { return x | Vec<N,T>(y); } |
| SINT Vec<N,M<T>> operator==(Vec<N,T> x, T y) { return x == Vec<N,T>(y); } |
| SINT Vec<N,M<T>> operator!=(Vec<N,T> x, T y) { return x != Vec<N,T>(y); } |
| SINT Vec<N,M<T>> operator<=(Vec<N,T> x, T y) { return x <= Vec<N,T>(y); } |
| SINT Vec<N,M<T>> operator>=(Vec<N,T> x, T y) { return x >= Vec<N,T>(y); } |
| SINT Vec<N,M<T>> operator< (Vec<N,T> x, T y) { return x < Vec<N,T>(y); } |
| SINT Vec<N,M<T>> operator> (Vec<N,T> x, T y) { return x > Vec<N,T>(y); } |
| SINT Vec<N,T> min(Vec<N,T> x, T y) { return min(x, Vec<N,T>(y)); } |
| SINT Vec<N,T> max(Vec<N,T> x, T y) { return max(x, Vec<N,T>(y)); } |
| |
| // All vector/scalar combinations for mad() with at least one vector. |
| SINT Vec<N,T> mad(T f, Vec<N,T> m, Vec<N,T> a) { return Vec<N,T>(f)*m + a; } |
| SINT Vec<N,T> mad(Vec<N,T> f, T m, Vec<N,T> a) { return f*Vec<N,T>(m) + a; } |
| SINT Vec<N,T> mad(Vec<N,T> f, Vec<N,T> m, T a) { return f*m + Vec<N,T>(a); } |
| SINT Vec<N,T> mad(Vec<N,T> f, T m, T a) { return f*Vec<N,T>(m) + Vec<N,T>(a); } |
| SINT Vec<N,T> mad(T f, Vec<N,T> m, T a) { return Vec<N,T>(f)*m + Vec<N,T>(a); } |
| SINT Vec<N,T> mad(T f, T m, Vec<N,T> a) { return Vec<N,T>(f)*Vec<N,T>(m) + a; } |
| |
| // The various op= operators, for vectors... |
| SINT Vec<N,T>& operator+=(Vec<N,T>& x, Vec<N,T> y) { return (x = x + y); } |
| SINT Vec<N,T>& operator-=(Vec<N,T>& x, Vec<N,T> y) { return (x = x - y); } |
| SINT Vec<N,T>& operator*=(Vec<N,T>& x, Vec<N,T> y) { return (x = x * y); } |
| SINT Vec<N,T>& operator/=(Vec<N,T>& x, Vec<N,T> y) { return (x = x / y); } |
| SINT Vec<N,T>& operator^=(Vec<N,T>& x, Vec<N,T> y) { return (x = x ^ y); } |
| SINT Vec<N,T>& operator&=(Vec<N,T>& x, Vec<N,T> y) { return (x = x & y); } |
| SINT Vec<N,T>& operator|=(Vec<N,T>& x, Vec<N,T> y) { return (x = x | y); } |
| |
| // ... for scalars... |
| SINT Vec<N,T>& operator+=(Vec<N,T>& x, T y) { return (x = x + Vec<N,T>(y)); } |
| SINT Vec<N,T>& operator-=(Vec<N,T>& x, T y) { return (x = x - Vec<N,T>(y)); } |
| SINT Vec<N,T>& operator*=(Vec<N,T>& x, T y) { return (x = x * Vec<N,T>(y)); } |
| SINT Vec<N,T>& operator/=(Vec<N,T>& x, T y) { return (x = x / Vec<N,T>(y)); } |
| SINT Vec<N,T>& operator^=(Vec<N,T>& x, T y) { return (x = x ^ Vec<N,T>(y)); } |
| SINT Vec<N,T>& operator&=(Vec<N,T>& x, T y) { return (x = x & Vec<N,T>(y)); } |
| SINT Vec<N,T>& operator|=(Vec<N,T>& x, T y) { return (x = x | Vec<N,T>(y)); } |
| |
| // ... and for shifts. |
| SINT Vec<N,T>& operator<<=(Vec<N,T>& x, int bits) { return (x = x << bits); } |
| SINT Vec<N,T>& operator>>=(Vec<N,T>& x, int bits) { return (x = x >> bits); } |
| |
| } // namespace skvx |
| |
| // These next few routines take extra template arguments that prevent |
| // argument-dependent lookup. They must live outside the skvx namespace, |
| // but since they operate only on skvx::Vec, that shouldn't be a big deal. |
| |
| // cast() Vec<N,S> to Vec<N,D>, as if applying a C-cast to each lane. |
| template <typename D, typename S> |
| static inline skvx::Vec<1,D> cast(skvx::Vec<1,S> src) { return (D)src.val; } |
| |
| template <typename D, int N, typename S> |
| static inline skvx::Vec<N,D> cast(skvx::Vec<N,S> src) { |
| #if !defined(SKNX_NO_SIMD) && defined(__clang__) |
| return skvx::to_vec(__builtin_convertvector(skvx::to_vext(src), skvx::VExt<N,D>)); |
| #else |
| return join(cast<D>(src.lo), cast<D>(src.hi)); |
| #endif |
| } |
| |
| // Shuffle values from a vector pretty arbitrarily: |
| // skvx::Vec<4,float> rgba = {R,G,B,A}; |
| // shuffle<2,1,0,3> (rgba) ~> {B,G,R,A} |
| // shuffle<2,1> (rgba) ~> {B,G} |
| // shuffle<2,1,2,1,2,1,2,1>(rgba) ~> {B,G,B,G,B,G,B,G} |
| // shuffle<3,3,3,3> (rgba) ~> {A,A,A,A} |
| // The only real restriction is that the output also be a legal N=power-of-two sknx::Vec. |
| template <int... Ix, int N, typename T> |
| static inline skvx::Vec<sizeof...(Ix),T> shuffle(skvx::Vec<N,T> x) { |
| return { x[Ix]... }; |
| } |
| |
| namespace skvx { |
| |
| // Platform-specific specializations and overloads can now drop in here. |
| |
| #if !defined(SKNX_NO_SIMD) && defined(__SSE__) |
| static Vec<2,float> sqrt(Vec<2,float> x) { return shuffle<0,1>( sqrt(shuffle<0,1,0,1>(x))); } |
| static Vec<2,float> rsqrt(Vec<2,float> x) { return shuffle<0,1>(rsqrt(shuffle<0,1,0,1>(x))); } |
| static Vec<2,float> rcp(Vec<2,float> x) { return shuffle<0,1>( rcp(shuffle<0,1,0,1>(x))); } |
| |
| static Vec<4,float> sqrt(Vec<4,float> x) { |
| return bit_pun<Vec<4,float>>(_mm_sqrt_ps(bit_pun<__m128>(x))); |
| } |
| static Vec<4,float> rsqrt(Vec<4,float> x) { |
| return bit_pun<Vec<4,float>>(_mm_rsqrt_ps(bit_pun<__m128>(x))); |
| } |
| static Vec<4,float> rcp(Vec<4,float> x) { |
| return bit_pun<Vec<4,float>>(_mm_rcp_ps(bit_pun<__m128>(x))); |
| } |
| #endif |
| |
| } // namespace skvx |
| |
| #undef SINT |
| #undef SIT |
| |
| #endif//SKVX_DEFINED |