| /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "SkGeometry.h" | 
 | #include "Test.h" | 
 | #include "SkRandom.h" | 
 |  | 
 | static bool nearly_equal(const SkPoint& a, const SkPoint& b) { | 
 |     return SkScalarNearlyEqual(a.fX, b.fX) && SkScalarNearlyEqual(a.fY, b.fY); | 
 | } | 
 |  | 
 | static void testChopCubic(skiatest::Reporter* reporter) { | 
 |     /* | 
 |         Inspired by this test, which used to assert that the tValues had dups | 
 |  | 
 |         <path stroke="#202020" d="M0,0 C0,0 1,1 2190,5130 C2190,5070 2220,5010 2205,4980" /> | 
 |      */ | 
 |     const SkPoint src[] = { | 
 |         { SkIntToScalar(2190), SkIntToScalar(5130) }, | 
 |         { SkIntToScalar(2190), SkIntToScalar(5070) }, | 
 |         { SkIntToScalar(2220), SkIntToScalar(5010) }, | 
 |         { SkIntToScalar(2205), SkIntToScalar(4980) }, | 
 |     }; | 
 |     SkPoint dst[13]; | 
 |     SkScalar tValues[3]; | 
 |     // make sure we don't assert internally | 
 |     int count = SkChopCubicAtMaxCurvature(src, dst, tValues); | 
 |     if (false) { // avoid bit rot, suppress warning | 
 |         REPORTER_ASSERT(reporter, count); | 
 |     } | 
 | } | 
 |  | 
 | static void check_pairs(skiatest::Reporter* reporter, int index, SkScalar t, const char name[], | 
 |                         SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1) { | 
 |     bool eq = SkScalarNearlyEqual(x0, x1) && SkScalarNearlyEqual(y0, y1); | 
 |     if (!eq) { | 
 |         SkDebugf("%s [%d %g] p0 [%10.8f %10.8f] p1 [%10.8f %10.8f]\n", | 
 |                  name, index, t, x0, y0, x1, y1); | 
 |         REPORTER_ASSERT(reporter, eq); | 
 |     } | 
 | } | 
 |  | 
 | static void test_evalquadat(skiatest::Reporter* reporter) { | 
 |     SkRandom rand; | 
 |     for (int i = 0; i < 1000; ++i) { | 
 |         SkPoint pts[3]; | 
 |         for (int j = 0; j < 3; ++j) { | 
 |             pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); | 
 |         } | 
 |         const SkScalar dt = SK_Scalar1 / 128; | 
 |         SkScalar t = dt; | 
 |         for (int j = 1; j < 128; ++j) { | 
 |             SkPoint r0; | 
 |             SkEvalQuadAt(pts, t, &r0); | 
 |             SkPoint r1 = SkEvalQuadAt(pts, t); | 
 |             check_pairs(reporter, i, t, "quad-pos", r0.fX, r0.fY, r1.fX, r1.fY); | 
 |  | 
 |             SkVector v0; | 
 |             SkEvalQuadAt(pts, t, nullptr, &v0); | 
 |             SkVector v1 = SkEvalQuadTangentAt(pts, t); | 
 |             check_pairs(reporter, i, t, "quad-tan", v0.fX, v0.fY, v1.fX, v1.fY); | 
 |  | 
 |             t += dt; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void test_conic_eval_pos(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { | 
 |     SkPoint p0, p1; | 
 |     conic.evalAt(t, &p0, nullptr); | 
 |     p1 = conic.evalAt(t); | 
 |     check_pairs(reporter, 0, t, "conic-pos", p0.fX, p0.fY, p1.fX, p1.fY); | 
 | } | 
 |  | 
 | static void test_conic_eval_tan(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) { | 
 |     SkVector v0, v1; | 
 |     conic.evalAt(t, nullptr, &v0); | 
 |     v1 = conic.evalTangentAt(t); | 
 |     check_pairs(reporter, 0, t, "conic-tan", v0.fX, v0.fY, v1.fX, v1.fY); | 
 | } | 
 |  | 
 | static void test_conic(skiatest::Reporter* reporter) { | 
 |     SkRandom rand; | 
 |     for (int i = 0; i < 1000; ++i) { | 
 |         SkPoint pts[3]; | 
 |         for (int j = 0; j < 3; ++j) { | 
 |             pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100); | 
 |         } | 
 |         for (int k = 0; k < 10; ++k) { | 
 |             SkScalar w = rand.nextUScalar1() * 2; | 
 |             SkConic conic(pts, w); | 
 |  | 
 |             const SkScalar dt = SK_Scalar1 / 128; | 
 |             SkScalar t = dt; | 
 |             for (int j = 1; j < 128; ++j) { | 
 |                 test_conic_eval_pos(reporter, conic, t); | 
 |                 test_conic_eval_tan(reporter, conic, t); | 
 |                 t += dt; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void test_quad_tangents(skiatest::Reporter* reporter) { | 
 |     SkPoint pts[] = { | 
 |         {10, 20}, {10, 20}, {20, 30}, | 
 |         {10, 20}, {15, 25}, {20, 30}, | 
 |         {10, 20}, {20, 30}, {20, 30}, | 
 |     }; | 
 |     int count = (int) SK_ARRAY_COUNT(pts) / 3; | 
 |     for (int index = 0; index < count; ++index) { | 
 |         SkConic conic(&pts[index * 3], 0.707f); | 
 |         SkVector start = SkEvalQuadTangentAt(&pts[index * 3], 0); | 
 |         SkVector mid = SkEvalQuadTangentAt(&pts[index * 3], .5f); | 
 |         SkVector end = SkEvalQuadTangentAt(&pts[index * 3], 1); | 
 |         REPORTER_ASSERT(reporter, start.fX && start.fY); | 
 |         REPORTER_ASSERT(reporter, mid.fX && mid.fY); | 
 |         REPORTER_ASSERT(reporter, end.fX && end.fY); | 
 |         REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); | 
 |         REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); | 
 |     } | 
 | } | 
 |  | 
 | static void test_conic_tangents(skiatest::Reporter* reporter) { | 
 |     SkPoint pts[] = { | 
 |         { 10, 20}, {10, 20}, {20, 30}, | 
 |         { 10, 20}, {15, 25}, {20, 30}, | 
 |         { 10, 20}, {20, 30}, {20, 30} | 
 |     }; | 
 |     int count = (int) SK_ARRAY_COUNT(pts) / 3; | 
 |     for (int index = 0; index < count; ++index) { | 
 |         SkConic conic(&pts[index * 3], 0.707f); | 
 |         SkVector start = conic.evalTangentAt(0); | 
 |         SkVector mid = conic.evalTangentAt(.5f); | 
 |         SkVector end = conic.evalTangentAt(1); | 
 |         REPORTER_ASSERT(reporter, start.fX && start.fY); | 
 |         REPORTER_ASSERT(reporter, mid.fX && mid.fY); | 
 |         REPORTER_ASSERT(reporter, end.fX && end.fY); | 
 |         REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); | 
 |         REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); | 
 |     } | 
 | } | 
 |  | 
 | static void test_this_conic_to_quad(skiatest::Reporter* r, const SkPoint pts[3], SkScalar w) { | 
 |     SkAutoConicToQuads quadder; | 
 |     const SkPoint* qpts = quadder.computeQuads(pts, w, 0.25); | 
 |     const int qcount = quadder.countQuads(); | 
 |     const int pcount = qcount * 2 + 1; | 
 |  | 
 |     REPORTER_ASSERT(r, SkPointsAreFinite(qpts, pcount)); | 
 | } | 
 |  | 
 | /** | 
 |  *  We need to ensure that when a conic is approximated by quads, that we always return finite | 
 |  *  values in the quads. | 
 |  * | 
 |  *  Inspired by crbug_627414 | 
 |  */ | 
 | static void test_conic_to_quads(skiatest::Reporter* reporter) { | 
 |     const SkPoint triples[] = { | 
 |         { 0, 0 }, { 1, 0 }, { 1, 1 }, | 
 |         { 0, 0 }, { 3.58732e-43f, 2.72084f }, { 3.00392f, 3.00392f }, | 
 |         { 0, 0 }, { 100000, 0 }, { 100000, 100000 }, | 
 |         { 0, 0 }, { 1e30f, 0 }, { 1e30f, 1e30f }, | 
 |     }; | 
 |     const int N = sizeof(triples) / sizeof(SkPoint); | 
 |  | 
 |     for (int i = 0; i < N; i += 3) { | 
 |         const SkPoint* pts = &triples[i]; | 
 |  | 
 |         SkRect bounds; | 
 |         bounds.set(pts, 3); | 
 |  | 
 |         SkScalar w = 1e30f; | 
 |         do { | 
 |             w *= 2; | 
 |             test_this_conic_to_quad(reporter, pts, w); | 
 |         } while (SkScalarIsFinite(w)); | 
 |         test_this_conic_to_quad(reporter, pts, SK_ScalarNaN); | 
 |     } | 
 | } | 
 |  | 
 | static void test_cubic_tangents(skiatest::Reporter* reporter) { | 
 |     SkPoint pts[] = { | 
 |         { 10, 20}, {10, 20}, {20, 30}, {30, 40}, | 
 |         { 10, 20}, {15, 25}, {20, 30}, {30, 40}, | 
 |         { 10, 20}, {20, 30}, {30, 40}, {30, 40}, | 
 |     }; | 
 |     int count = (int) SK_ARRAY_COUNT(pts) / 4; | 
 |     for (int index = 0; index < count; ++index) { | 
 |         SkConic conic(&pts[index * 3], 0.707f); | 
 |         SkVector start, mid, end; | 
 |         SkEvalCubicAt(&pts[index * 4], 0, nullptr, &start, nullptr); | 
 |         SkEvalCubicAt(&pts[index * 4], .5f, nullptr, &mid, nullptr); | 
 |         SkEvalCubicAt(&pts[index * 4], 1, nullptr, &end, nullptr); | 
 |         REPORTER_ASSERT(reporter, start.fX && start.fY); | 
 |         REPORTER_ASSERT(reporter, mid.fX && mid.fY); | 
 |         REPORTER_ASSERT(reporter, end.fX && end.fY); | 
 |         REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid))); | 
 |         REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end))); | 
 |     } | 
 | } | 
 |  | 
 | DEF_TEST(Geometry, reporter) { | 
 |     SkPoint pts[3], dst[5]; | 
 |  | 
 |     pts[0].set(0, 0); | 
 |     pts[1].set(100, 50); | 
 |     pts[2].set(0, 100); | 
 |  | 
 |     int count = SkChopQuadAtMaxCurvature(pts, dst); | 
 |     REPORTER_ASSERT(reporter, count == 1 || count == 2); | 
 |  | 
 |     pts[0].set(0, 0); | 
 |     pts[1].set(3, 0); | 
 |     pts[2].set(3, 3); | 
 |     SkConvertQuadToCubic(pts, dst); | 
 |     const SkPoint cubic[] = { | 
 |         { 0, 0, }, { 2, 0, }, { 3, 1, }, { 3, 3 }, | 
 |     }; | 
 |     for (int i = 0; i < 4; ++i) { | 
 |         REPORTER_ASSERT(reporter, nearly_equal(cubic[i], dst[i])); | 
 |     } | 
 |  | 
 |     testChopCubic(reporter); | 
 |     test_evalquadat(reporter); | 
 |     test_conic(reporter); | 
 |     test_cubic_tangents(reporter); | 
 |     test_quad_tangents(reporter); | 
 |     test_conic_tangents(reporter); | 
 |     test_conic_to_quads(reporter); | 
 | } |