blob: 9f28e3fac34da9abee3a298d1571aa413d7b8162 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgramBuilder.h"
#include "GrAutoLocaleSetter.h"
#include "GrCoordTransform.h"
#include "GrGLProgramBuilder.h"
#include "GrTexture.h"
#include "SkRTConf.h"
#include "SkTraceEvent.h"
#include "gl/GrGLGpu.h"
#include "gl/GrGLProgram.h"
#include "gl/GrGLSLPrettyPrint.h"
#include "gl/builders/GrGLShaderStringBuilder.h"
#include "glsl/GrGLSLCaps.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLTextureSampler.h"
#include "glsl/GrGLSLXferProcessor.h"
#define GL_CALL(X) GR_GL_CALL(this->gpu()->glInterface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(this->gpu()->glInterface(), R, X)
GrGLProgram* GrGLProgramBuilder::CreateProgram(const DrawArgs& args, GrGLGpu* gpu) {
GrAutoLocaleSetter als("C");
// create a builder. This will be handed off to effects so they can use it to add
// uniforms, varyings, textures, etc
SkAutoTDelete<GrGLProgramBuilder> builder(new GrGLProgramBuilder(gpu, args));
GrGLProgramBuilder* pb = builder.get();
// TODO: Once all stages can handle taking a float or vec4 and correctly handling them we can
// seed correctly here
GrGLSLExpr4 inputColor;
GrGLSLExpr4 inputCoverage;
if (!pb->emitAndInstallProcs(&inputColor, &inputCoverage)) {
return nullptr;
}
return pb->finalize();
}
/////////////////////////////////////////////////////////////////////////////
GrGLProgramBuilder::GrGLProgramBuilder(GrGLGpu* gpu, const DrawArgs& args)
: INHERITED(args)
, fGeometryProcessor(nullptr)
, fXferProcessor(nullptr)
, fGpu(gpu)
, fUniforms(kVarsPerBlock)
, fSamplerUniforms(4)
, fSeparableVaryingInfos(kVarsPerBlock) {
}
void GrGLProgramBuilder::addVarying(const char* name,
GrGLSLVarying* varying,
GrSLPrecision precision) {
SkASSERT(varying);
if (varying->vsVarying()) {
fVS.addVarying(name, precision, varying);
}
if (this->primitiveProcessor().willUseGeoShader()) {
fGS.addVarying(name, precision, varying);
}
if (varying->fsVarying()) {
fFS.addVarying(varying, precision);
}
}
void GrGLProgramBuilder::addPassThroughAttribute(const GrPrimitiveProcessor::Attribute* input,
const char* output) {
GrSLType type = GrVertexAttribTypeToSLType(input->fType);
GrGLSLVertToFrag v(type);
this->addVarying(input->fName, &v);
fVS.codeAppendf("%s = %s;", v.vsOut(), input->fName);
fFS.codeAppendf("%s = %s;", output, v.fsIn());
}
GrGLProgramBuilder::SeparableVaryingHandle GrGLProgramBuilder::addSeparableVarying(
const char* name,
GrGLSLVertToFrag* v,
GrSLPrecision fsPrecision) {
// This call is not used for non-NVPR backends.
SkASSERT(fGpu->glCaps().shaderCaps()->pathRenderingSupport() &&
fArgs.fPrimitiveProcessor->isPathRendering() &&
!fArgs.fPrimitiveProcessor->willUseGeoShader() &&
fArgs.fPrimitiveProcessor->numAttribs() == 0);
this->addVarying(name, v, fsPrecision);
SeparableVaryingInfo& varyingInfo = fSeparableVaryingInfos.push_back();
varyingInfo.fVariable = this->getFragmentShaderBuilder()->fInputs.back();
varyingInfo.fLocation = fSeparableVaryingInfos.count() - 1;
return SeparableVaryingHandle(varyingInfo.fLocation);
}
GrGLSLProgramDataManager::UniformHandle GrGLProgramBuilder::internalAddUniformArray(
uint32_t visibility,
GrSLType type,
GrSLPrecision precision,
const char* name,
bool mangleName,
int count,
const char** outName) {
SkASSERT(name && strlen(name));
SkDEBUGCODE(static const uint32_t kVisibilityMask = kVertex_Visibility | kFragment_Visibility);
SkASSERT(0 == (~kVisibilityMask & visibility));
SkASSERT(0 != visibility);
SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type));
UniformInfo& uni = fUniforms.push_back();
uni.fVariable.setType(type);
uni.fVariable.setTypeModifier(GrGLSLShaderVar::kUniform_TypeModifier);
// TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use
// the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
// exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then
// the names will mismatch. I think the correct solution is to have all GPs which need the
// uniform view matrix, they should upload the view matrix in their setData along with regular
// uniforms.
char prefix = 'u';
if ('u' == name[0]) {
prefix = '\0';
}
this->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
uni.fVariable.setArrayCount(count);
uni.fVisibility = visibility;
uni.fVariable.setPrecision(precision);
if (outName) {
*outName = uni.fVariable.c_str();
}
return GrGLSLProgramDataManager::UniformHandle(fUniforms.count() - 1);
}
void GrGLProgramBuilder::onAppendUniformDecls(ShaderVisibility visibility, SkString* out) const {
for (int i = 0; i < fUniforms.count(); ++i) {
if (fUniforms[i].fVisibility & visibility) {
fUniforms[i].fVariable.appendDecl(this->glslCaps(), out);
out->append(";\n");
}
}
}
const GrGLSLCaps* GrGLProgramBuilder::glslCaps() const {
return this->fGpu->ctxInfo().caps()->glslCaps();
}
bool GrGLProgramBuilder::emitAndInstallProcs(GrGLSLExpr4* inputColor, GrGLSLExpr4* inputCoverage) {
// First we loop over all of the installed processors and collect coord transforms. These will
// be sent to the GrGLSLPrimitiveProcessor in its emitCode function
const GrPrimitiveProcessor& primProc = this->primitiveProcessor();
int totalTextures = primProc.numTextures();
const int maxTextureUnits = fGpu->glCaps().maxFragmentTextureUnits();
for (int i = 0; i < this->pipeline().numFragmentProcessors(); i++) {
const GrFragmentProcessor& processor = this->pipeline().getFragmentProcessor(i);
if (!primProc.hasTransformedLocalCoords()) {
SkTArray<const GrCoordTransform*, true>& procCoords = fCoordTransforms.push_back();
processor.gatherCoordTransforms(&procCoords);
}
totalTextures += processor.numTextures();
if (totalTextures >= maxTextureUnits) {
GrCapsDebugf(fGpu->caps(), "Program would use too many texture units\n");
return false;
}
}
this->emitAndInstallProc(primProc, inputColor, inputCoverage);
fFragmentProcessors.reset(new GrGLInstalledFragProcs);
int numProcs = this->pipeline().numFragmentProcessors();
this->emitAndInstallFragProcs(0, this->pipeline().numColorFragmentProcessors(), inputColor);
this->emitAndInstallFragProcs(this->pipeline().numColorFragmentProcessors(), numProcs,
inputCoverage);
this->emitAndInstallXferProc(*this->pipeline().getXferProcessor(), *inputColor, *inputCoverage);
return true;
}
void GrGLProgramBuilder::emitAndInstallFragProcs(int procOffset,
int numProcs,
GrGLSLExpr4* inOut) {
for (int i = procOffset; i < numProcs; ++i) {
GrGLSLExpr4 output;
const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
this->emitAndInstallProc(fp, i, *inOut, &output);
*inOut = output;
}
}
void GrGLProgramBuilder::nameExpression(GrGLSLExpr4* output, const char* baseName) {
// create var to hold stage result. If we already have a valid output name, just use that
// otherwise create a new mangled one. This name is only valid if we are reordering stages
// and have to tell stage exactly where to put its output.
SkString outName;
if (output->isValid()) {
outName = output->c_str();
} else {
this->nameVariable(&outName, '\0', baseName);
}
fFS.codeAppendf("vec4 %s;", outName.c_str());
*output = outName;
}
// TODO Processors cannot output zeros because an empty string is all 1s
// the fix is to allow effects to take the GrGLSLExpr4 directly
void GrGLProgramBuilder::emitAndInstallProc(const GrFragmentProcessor& fp,
int index,
const GrGLSLExpr4& input,
GrGLSLExpr4* output) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(output, "output");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name());
fFS.codeAppend(openBrace.c_str());
this->emitAndInstallProc(fp, index, output->c_str(), input.isOnes() ? nullptr : input.c_str());
fFS.codeAppend("}");
}
void GrGLProgramBuilder::emitAndInstallProc(const GrPrimitiveProcessor& proc,
GrGLSLExpr4* outputColor,
GrGLSLExpr4* outputCoverage) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(outputColor, "outputColor");
this->nameExpression(outputCoverage, "outputCoverage");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name());
fFS.codeAppend(openBrace.c_str());
fVS.codeAppendf("// Primitive Processor %s\n", proc.name());
this->emitAndInstallProc(proc, outputColor->c_str(), outputCoverage->c_str());
fFS.codeAppend("}");
}
void GrGLProgramBuilder::emitAndInstallProc(const GrFragmentProcessor& fp,
int index,
const char* outColor,
const char* inColor) {
GrGLInstalledFragProc* ifp = new GrGLInstalledFragProc;
ifp->fGLProc.reset(fp.createGLSLInstance());
SkSTArray<4, GrGLSLTextureSampler> samplers(fp.numTextures());
this->emitSamplers(fp, &samplers, ifp);
GrGLSLFragmentProcessor::EmitArgs args(this,
fp,
outColor,
inColor,
fOutCoords[index],
samplers);
ifp->fGLProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(fp);
fFragmentProcessors->fProcs.push_back(ifp);
}
void GrGLProgramBuilder::emitAndInstallProc(const GrPrimitiveProcessor& gp,
const char* outColor,
const char* outCoverage) {
SkASSERT(!fGeometryProcessor);
fGeometryProcessor = new GrGLInstalledGeoProc;
fGeometryProcessor->fGLProc.reset(gp.createGLSLInstance(*fGpu->glCaps().glslCaps()));
SkSTArray<4, GrGLSLTextureSampler> samplers(gp.numTextures());
this->emitSamplers(gp, &samplers, fGeometryProcessor);
GrGLSLGeometryProcessor::EmitArgs args(this, gp, outColor, outCoverage, samplers,
fCoordTransforms, &fOutCoords);
fGeometryProcessor->fGLProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(gp);
}
void GrGLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp,
const GrGLSLExpr4& colorIn,
const GrGLSLExpr4& coverageIn) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
SkASSERT(!fXferProcessor);
fXferProcessor = new GrGLInstalledXferProc;
fXferProcessor->fGLProc.reset(xp.createGLSLInstance());
// Enable dual source secondary output if we have one
if (xp.hasSecondaryOutput()) {
fFS.enableSecondaryOutput();
}
if (this->glslCaps()->mustDeclareFragmentShaderOutput()) {
fFS.enableCustomOutput();
}
SkString openBrace;
openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
fFS.codeAppend(openBrace.c_str());
SkSTArray<4, GrGLSLTextureSampler> samplers(xp.numTextures());
this->emitSamplers(xp, &samplers, fXferProcessor);
GrGLSLXferProcessor::EmitArgs args(this, xp, colorIn.c_str(), coverageIn.c_str(),
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(), samplers);
fXferProcessor->fGLProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(xp);
fFS.codeAppend("}");
}
void GrGLProgramBuilder::verify(const GrPrimitiveProcessor& gp) {
SkASSERT(fFS.hasReadFragmentPosition() == gp.willReadFragmentPosition());
}
void GrGLProgramBuilder::verify(const GrXferProcessor& xp) {
SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor());
}
void GrGLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(fFS.hasReadFragmentPosition() == fp.willReadFragmentPosition());
}
template <class Proc>
void GrGLProgramBuilder::emitSamplers(const GrProcessor& processor,
GrGLSLTextureSampler::TextureSamplerArray* outSamplers,
GrGLInstalledProc<Proc>* ip) {
SkDEBUGCODE(ip->fSamplersIdx = fSamplerUniforms.count();)
int numTextures = processor.numTextures();
UniformHandle* localSamplerUniforms = fSamplerUniforms.push_back_n(numTextures);
SkString name;
for (int t = 0; t < numTextures; ++t) {
name.printf("Sampler%d", t);
localSamplerUniforms[t] = this->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kSampler2D_GrSLType, kDefault_GrSLPrecision,
name.c_str());
SkNEW_APPEND_TO_TARRAY(outSamplers, GrGLSLTextureSampler,
(localSamplerUniforms[t], processor.textureAccess(t)));
}
}
bool GrGLProgramBuilder::compileAndAttachShaders(GrGLSLShaderBuilder& shader,
GrGLuint programId,
GrGLenum type,
SkTDArray<GrGLuint>* shaderIds) {
GrGLGpu* gpu = this->gpu();
GrGLuint shaderId = GrGLCompileAndAttachShader(gpu->glContext(),
programId,
type,
shader.fCompilerStrings.begin(),
shader.fCompilerStringLengths.begin(),
shader.fCompilerStrings.count(),
gpu->stats());
if (!shaderId) {
return false;
}
*shaderIds->append() = shaderId;
return true;
}
GrGLProgram* GrGLProgramBuilder::finalize() {
// verify we can get a program id
GrGLuint programID;
GL_CALL_RET(programID, CreateProgram());
if (0 == programID) {
return nullptr;
}
// compile shaders and bind attributes / uniforms
SkTDArray<GrGLuint> shadersToDelete;
fVS.finalize(kVertex_Visibility);
if (!this->compileAndAttachShaders(fVS, programID, GR_GL_VERTEX_SHADER, &shadersToDelete)) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
// NVPR actually requires a vertex shader to compile
bool useNvpr = primitiveProcessor().isPathRendering();
if (!useNvpr) {
const GrPrimitiveProcessor& primProc = this->primitiveProcessor();
int vaCount = primProc.numAttribs();
for (int i = 0; i < vaCount; i++) {
GL_CALL(BindAttribLocation(programID, i, primProc.getAttrib(i).fName));
}
}
fFS.finalize(kFragment_Visibility);
if (!this->compileAndAttachShaders(fFS, programID, GR_GL_FRAGMENT_SHADER, &shadersToDelete)) {
this->cleanupProgram(programID, shadersToDelete);
return nullptr;
}
this->bindProgramResourceLocations(programID);
GL_CALL(LinkProgram(programID));
// Calling GetProgramiv is expensive in Chromium. Assume success in release builds.
bool checkLinked = kChromium_GrGLDriver != fGpu->ctxInfo().driver();
#ifdef SK_DEBUG
checkLinked = true;
#endif
if (checkLinked) {
checkLinkStatus(programID);
}
this->resolveProgramResourceLocations(programID);
this->cleanupShaders(shadersToDelete);
return this->createProgram(programID);
}
void GrGLProgramBuilder::bindProgramResourceLocations(GrGLuint programID) {
if (fGpu->glCaps().bindUniformLocationSupport()) {
int count = fUniforms.count();
for (int i = 0; i < count; ++i) {
GL_CALL(BindUniformLocation(programID, i, fUniforms[i].fVariable.c_str()));
fUniforms[i].fLocation = i;
}
}
const GrGLCaps& caps = this->gpu()->glCaps();
if (fFS.hasCustomColorOutput() && caps.bindFragDataLocationSupport()) {
GL_CALL(BindFragDataLocation(programID, 0,
GrGLSLFragmentShaderBuilder::DeclaredColorOutputName()));
}
if (fFS.hasSecondaryOutput() && caps.glslCaps()->mustDeclareFragmentShaderOutput()) {
GL_CALL(BindFragDataLocationIndexed(programID, 0, 1,
GrGLSLFragmentShaderBuilder::DeclaredSecondaryColorOutputName()));
}
// handle NVPR separable varyings
if (!fGpu->glCaps().shaderCaps()->pathRenderingSupport() ||
!fGpu->glPathRendering()->shouldBindFragmentInputs()) {
return;
}
int count = fSeparableVaryingInfos.count();
for (int i = 0; i < count; ++i) {
GL_CALL(BindFragmentInputLocation(programID,
i,
fSeparableVaryingInfos[i].fVariable.c_str()));
fSeparableVaryingInfos[i].fLocation = i;
}
}
bool GrGLProgramBuilder::checkLinkStatus(GrGLuint programID) {
GrGLint linked = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(programID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GL_CALL(GetProgramiv(programID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GL_CALL(GetProgramInfoLog(programID,
infoLen+1,
&length,
(char*)log.get()));
SkDebugf("%s", (char*)log.get());
}
SkDEBUGFAIL("Error linking program");
GL_CALL(DeleteProgram(programID));
programID = 0;
}
return SkToBool(linked);
}
void GrGLProgramBuilder::resolveProgramResourceLocations(GrGLuint programID) {
if (!fGpu->glCaps().bindUniformLocationSupport()) {
int count = fUniforms.count();
for (int i = 0; i < count; ++i) {
GrGLint location;
GL_CALL_RET(location, GetUniformLocation(programID, fUniforms[i].fVariable.c_str()));
fUniforms[i].fLocation = location;
}
}
// handle NVPR separable varyings
if (!fGpu->glCaps().shaderCaps()->pathRenderingSupport() ||
!fGpu->glPathRendering()->shouldBindFragmentInputs()) {
return;
}
int count = fSeparableVaryingInfos.count();
for (int i = 0; i < count; ++i) {
GrGLint location;
GL_CALL_RET(location,
GetProgramResourceLocation(programID,
GR_GL_FRAGMENT_INPUT,
fSeparableVaryingInfos[i].fVariable.c_str()));
fSeparableVaryingInfos[i].fLocation = location;
}
}
void GrGLProgramBuilder::cleanupProgram(GrGLuint programID, const SkTDArray<GrGLuint>& shaderIDs) {
GL_CALL(DeleteProgram(programID));
cleanupShaders(shaderIDs);
}
void GrGLProgramBuilder::cleanupShaders(const SkTDArray<GrGLuint>& shaderIDs) {
for (int i = 0; i < shaderIDs.count(); ++i) {
GL_CALL(DeleteShader(shaderIDs[i]));
}
}
GrGLProgram* GrGLProgramBuilder::createProgram(GrGLuint programID) {
return new GrGLProgram(fGpu, this->desc(), fUniformHandles, programID, fUniforms,
fSeparableVaryingInfos,
fGeometryProcessor, fXferProcessor, fFragmentProcessors.get(),
&fSamplerUniforms);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
GrGLInstalledFragProcs::~GrGLInstalledFragProcs() {
int numProcs = fProcs.count();
for (int i = 0; i < numProcs; ++i) {
delete fProcs[i];
}
}