blob: bb9a3daaee337a6ea9ebfecc506834f209e93853 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrGpuResource.h"
#include "GrPipelineBuilder.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "ops/GrNonAAFillRectOp.h"
#include "ops/GrTestMeshDrawOp.h"
namespace {
class TestOp : public GrTestMeshDrawOp {
public:
DEFINE_OP_CLASS_ID
const char* name() const override { return "TestOp"; }
static std::unique_ptr<GrDrawOp> Make() { return std::unique_ptr<GrDrawOp>(new TestOp); }
private:
TestOp() : INHERITED(ClassID(), SkRect::MakeWH(100, 100), 0xFFFFFFFF) {}
void onPrepareDraws(Target* target) const override { return; }
typedef GrTestMeshDrawOp INHERITED;
};
/**
* FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts
* of resources owned by child FPs.
*/
class TestFP : public GrFragmentProcessor {
public:
struct Image {
Image(sk_sp<GrTexture> texture, GrIOType ioType) : fTexture(texture), fIOType(ioType) {}
sk_sp<GrTexture> fTexture;
GrIOType fIOType;
};
static sk_sp<GrFragmentProcessor> Make(sk_sp<GrFragmentProcessor> child) {
return sk_sp<GrFragmentProcessor>(new TestFP(std::move(child)));
}
static sk_sp<GrFragmentProcessor> Make(GrContext* context,
const SkTArray<sk_sp<GrTextureProxy>>& proxies,
const SkTArray<sk_sp<GrBuffer>>& buffers,
const SkTArray<Image>& images) {
return sk_sp<GrFragmentProcessor>(new TestFP(context, proxies, buffers, images));
}
const char* name() const override { return "test"; }
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
// We don't really care about reusing these.
static int32_t gKey = 0;
b->add32(sk_atomic_inc(&gKey));
}
private:
TestFP(GrContext* context,
const SkTArray<sk_sp<GrTextureProxy>>& proxies,
const SkTArray<sk_sp<GrBuffer>>& buffers,
const SkTArray<Image>& images)
: INHERITED(kNone_OptimizationFlags), fSamplers(4), fBuffers(4), fImages(4) {
for (const auto& proxy : proxies) {
this->addTextureSampler(&fSamplers.emplace_back(context->textureProvider(), proxy));
}
for (const auto& buffer : buffers) {
this->addBufferAccess(&fBuffers.emplace_back(kRGBA_8888_GrPixelConfig, buffer.get()));
}
for (const Image& image : images) {
this->addImageStorageAccess(&fImages.emplace_back(
image.fTexture, image.fIOType, GrSLMemoryModel::kNone, GrSLRestrict::kNo));
}
}
TestFP(sk_sp<GrFragmentProcessor> child)
: INHERITED(kNone_OptimizationFlags), fSamplers(4), fBuffers(4), fImages(4) {
this->registerChildProcessor(std::move(child));
}
virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class TestGLSLFP : public GrGLSLFragmentProcessor {
public:
TestGLSLFP() {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
}
private:
};
return new TestGLSLFP();
}
bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
GrTAllocator<TextureSampler> fSamplers;
GrTAllocator<BufferAccess> fBuffers;
GrTAllocator<ImageStorageAccess> fImages;
typedef GrFragmentProcessor INHERITED;
};
}
template <typename T>
inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) {
*refCnt = resource->fRefCnt;
*readCnt = resource->fPendingReads;
*writeCnt = resource->fPendingWrites;
}
void testingOnly_getIORefCnts(GrSurfaceProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) {
*refCnt = proxy->getBackingRefCnt_TestOnly();
*readCnt = proxy->getPendingReadCnt_TestOnly();
*writeCnt = proxy->getPendingWriteCnt_TestOnly();
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrTextureDesc desc;
desc.fConfig = kRGBA_8888_GrPixelConfig;
desc.fWidth = 10;
desc.fHeight = 10;
for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
sk_sp<GrRenderTargetContext> renderTargetContext(context->makeRenderTargetContext(
SkBackingFit::kApprox, 1, 1, kRGBA_8888_GrPixelConfig, nullptr));
{
bool texelBufferSupport = context->caps()->shaderCaps()->texelBufferSupport();
bool imageLoadStoreSupport = context->caps()->shaderCaps()->imageLoadStoreSupport();
sk_sp<GrSurfaceProxy> proxy1(GrSurfaceProxy::MakeDeferred(*context->caps(), desc,
SkBackingFit::kExact,
SkBudgeted::kYes));
sk_sp<GrTexture> texture2(
context->resourceProvider()->createTexture(desc, SkBudgeted::kYes));
sk_sp<GrTexture> texture3(
context->resourceProvider()->createTexture(desc, SkBudgeted::kYes));
sk_sp<GrTexture> texture4(
context->resourceProvider()->createTexture(desc, SkBudgeted::kYes));
sk_sp<GrBuffer> buffer(texelBufferSupport
? context->resourceProvider()->createBuffer(
1024, GrBufferType::kTexel_GrBufferType,
GrAccessPattern::kStatic_GrAccessPattern, 0)
: nullptr);
{
SkTArray<sk_sp<GrTextureProxy>> proxies;
SkTArray<sk_sp<GrBuffer>> buffers;
SkTArray<TestFP::Image> images;
proxies.push_back(sk_ref_sp(proxy1->asTextureProxy()));
if (texelBufferSupport) {
buffers.push_back(buffer);
}
if (imageLoadStoreSupport) {
images.emplace_back(texture2, GrIOType::kRead_GrIOType);
images.emplace_back(texture3, GrIOType::kWrite_GrIOType);
images.emplace_back(texture4, GrIOType::kRW_GrIOType);
}
std::unique_ptr<GrDrawOp> op(TestOp::Make());
GrPaint paint;
auto fp = TestFP::Make(context,
std::move(proxies), std::move(buffers), std::move(images));
for (int i = 0; i < parentCnt; ++i) {
fp = TestFP::Make(std::move(fp));
}
paint.addColorFragmentProcessor(std::move(fp));
renderTargetContext->priv().testingOnly_addDrawOp(std::move(paint), GrAAType::kNone,
std::move(op));
}
int refCnt, readCnt, writeCnt;
testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 1 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
if (texelBufferSupport) {
testingOnly_getIORefCnts(buffer.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 1 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
}
if (imageLoadStoreSupport) {
testingOnly_getIORefCnts(texture2.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 1 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
testingOnly_getIORefCnts(texture3.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 0 == readCnt);
REPORTER_ASSERT(reporter, 1 == writeCnt);
testingOnly_getIORefCnts(texture4.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 1 == readCnt);
REPORTER_ASSERT(reporter, 1 == writeCnt);
}
context->flush();
testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 0 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
if (texelBufferSupport) {
testingOnly_getIORefCnts(buffer.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 0 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
}
if (texelBufferSupport) {
testingOnly_getIORefCnts(texture2.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 0 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
testingOnly_getIORefCnts(texture3.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 0 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
testingOnly_getIORefCnts(texture4.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, 0 == readCnt);
REPORTER_ASSERT(reporter, 0 == writeCnt);
}
}
}
}
// This test uses the random GrFragmentProcessor test factory, which relies on static initializers.
#if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
static GrColor texel_color(int i, int j) {
SkASSERT((unsigned)i < 256 && (unsigned)j < 256);
GrColor color = GrColorPackRGBA(j, (uint8_t)(i + j), (uint8_t)(2 * j - i), i);
return GrPremulColor(color);
}
static GrColor4f texel_color4f(int i, int j) { return GrColor4f::FromGrColor(texel_color(i, j)); }
void test_draw_op(GrContext* context, GrRenderTargetContext* rtc, sk_sp<GrFragmentProcessor> fp,
sk_sp<GrTextureProxy> inputDataProxy) {
GrPaint paint;
paint.addColorTextureProcessor(context, std::move(inputDataProxy), nullptr, SkMatrix::I());
paint.addColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
GrPipelineBuilder pb(std::move(paint), GrAAType::kNone);
auto op =
GrNonAAFillRectOp::Make(GrColor_WHITE, SkMatrix::I(),
SkRect::MakeWH(rtc->width(), rtc->height()), nullptr, nullptr);
rtc->addDrawOp(pb, GrNoClip(), std::move(op));
}
#if GR_TEST_UTILS
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
using FPFactory = GrProcessorTestFactory<GrFragmentProcessor>;
SkRandom random;
sk_sp<GrRenderTargetContext> rtc = context->makeRenderTargetContext(
SkBackingFit::kExact, 256, 256, kRGBA_8888_GrPixelConfig, nullptr);
GrSurfaceDesc desc;
desc.fWidth = 256;
desc.fHeight = 256;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fConfig = kRGBA_8888_GrPixelConfig;
// Put premul data into the RGBA texture that the test FPs can optionally use.
std::unique_ptr<GrColor[]> rgbaData(new GrColor[256 * 256]);
for (int y = 0; y < 256; ++y) {
for (int x = 0; x < 256; ++x) {
rgbaData.get()[256 * y + x] =
texel_color(random.nextULessThan(256), random.nextULessThan(256));
}
}
sk_sp<GrTexture> tex0(context->textureProvider()->createTexture(
desc, SkBudgeted::kYes, rgbaData.get(), 256 * sizeof(GrColor)));
// Put random values into the alpha texture that the test FPs can optionally use.
desc.fConfig = kAlpha_8_GrPixelConfig;
std::unique_ptr<uint8_t[]> alphaData(new uint8_t[256 * 256]);
for (int y = 0; y < 256; ++y) {
for (int x = 0; x < 256; ++x) {
alphaData.get()[256 * y + x] = random.nextULessThan(256);
}
}
sk_sp<GrTexture> tex1(context->textureProvider()->createTexture(desc, SkBudgeted::kYes,
alphaData.get(), 256));
GrTexture* textures[] = {tex0.get(), tex1.get()};
GrProcessorTestData testData(&random, context, rtc.get(), textures);
// Use a different array of premul colors for the output of the fragment processor that preceeds
// the fragment processor under test.
for (int y = 0; y < 256; ++y) {
for (int x = 0; x < 256; ++x) {
rgbaData.get()[256 * y + x] = texel_color(x, y);
}
}
desc.fConfig = kRGBA_8888_GrPixelConfig;
sk_sp<GrSurfaceProxy> dataProxy = GrSurfaceProxy::MakeDeferred(*context->caps(),
context->textureProvider(),
desc, SkBudgeted::kYes,
rgbaData.get(),
256 * sizeof(GrColor));
// Because processors factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < FPFactory::Count(); ++i) {
int timesToInvokeFactory = 5;
// Increase the number of attempts if the FP has child FPs since optimizations likely depend
// on child optimizations being present.
sk_sp<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData);
for (int j = 0; j < fp->numChildProcessors(); ++j) {
// This value made a reasonable trade off between time and coverage when this test was
// written.
timesToInvokeFactory *= FPFactory::Count() / 2;
}
for (int j = 0; j < timesToInvokeFactory; ++j) {
fp = FPFactory::MakeIdx(i, &testData);
if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
!fp->compatibleWithCoverageAsAlpha()) {
continue;
}
test_draw_op(context, rtc.get(), fp, sk_ref_sp(dataProxy->asTextureProxy()));
memset(rgbaData.get(), 0x0, sizeof(GrColor) * 256 * 256);
rtc->readPixels(
SkImageInfo::Make(256, 256, kRGBA_8888_SkColorType, kPremul_SkAlphaType),
rgbaData.get(), 0, 0, 0);
bool passing = true;
if (0) { // Useful to see what FPs are being tested.
SkString children;
for (int c = 0; c < fp->numChildProcessors(); ++c) {
if (!c) {
children.append("(");
}
children.append(fp->childProcessor(c).name());
children.append(c == fp->numChildProcessors() - 1 ? ")" : ", ");
}
SkDebugf("%s %s\n", fp->name(), children.c_str());
}
for (int y = 0; y < 256 && passing; ++y) {
for (int x = 0; x < 256 && passing; ++x) {
GrColor input = texel_color(x, y);
GrColor output = rgbaData.get()[y * 256 + x];
if (fp->compatibleWithCoverageAsAlpha()) {
// A modulating processor is allowed to modulate either the input color or
// just the input alpha.
bool legalColorModulation =
GrColorUnpackA(output) <= GrColorUnpackA(input) &&
GrColorUnpackR(output) <= GrColorUnpackR(input) &&
GrColorUnpackG(output) <= GrColorUnpackG(input) &&
GrColorUnpackB(output) <= GrColorUnpackB(input);
bool legalAlphaModulation =
GrColorUnpackA(output) <= GrColorUnpackA(input) &&
GrColorUnpackR(output) <= GrColorUnpackA(input) &&
GrColorUnpackG(output) <= GrColorUnpackA(input) &&
GrColorUnpackB(output) <= GrColorUnpackA(input);
if (!legalColorModulation && !legalAlphaModulation) {
ERRORF(reporter,
"\"Modulating\" processor %s made color/alpha value larger. "
"Input: 0x%0x8, Output: 0x%08x.",
fp->name(), input, output);
passing = false;
}
}
GrColor4f input4f = texel_color4f(x, y);
GrColor4f output4f = GrColor4f::FromGrColor(output);
GrColor4f expected4f;
if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
float rDiff = fabsf(output4f.fRGBA[0] - expected4f.fRGBA[0]);
float gDiff = fabsf(output4f.fRGBA[1] - expected4f.fRGBA[1]);
float bDiff = fabsf(output4f.fRGBA[2] - expected4f.fRGBA[2]);
float aDiff = fabsf(output4f.fRGBA[3] - expected4f.fRGBA[3]);
static constexpr float kTol = 4 / 255.f;
if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
ERRORF(reporter,
"Processor %s claimed output for const input doesn't match "
"actual output. Error: %f, Tolerance: %f, input: (%f, %f, %f, "
"%f), actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f)",
fp->name(), SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))),
kTol, input4f.fRGBA[0], input4f.fRGBA[1], input4f.fRGBA[2],
input4f.fRGBA[3], output4f.fRGBA[0], output4f.fRGBA[1],
output4f.fRGBA[2], output4f.fRGBA[3], expected4f.fRGBA[0],
expected4f.fRGBA[1], expected4f.fRGBA[2], expected4f.fRGBA[3]);
passing = false;
}
}
if (GrColorIsOpaque(input) && fp->preservesOpaqueInput() &&
!GrColorIsOpaque(output)) {
ERRORF(reporter,
"Processor %s claimed opaqueness is preserved but it is not. Input: "
"0x%0x8, Output: 0x%08x.",
fp->name(), input, output);
passing = false;
}
}
}
}
}
}
#endif // GR_TEST_UTILS
#endif // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
#endif // SK_SUPPORT_GPU