blob: 3429e0696a34b2571db09139967cc8e1b9cd329e [file] [log] [blame]
/*
* Copyright 2019 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkSurface.h"
#include "include/core/SkSurfaceCharacterization.h"
#include "include/gpu/GrContext.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/gpu/GrContextPriv.h"
#include "src/image/SkImage_Base.h"
#include "tests/Test.h"
#ifdef SK_GL
#include "src/gpu/gl/GrGLGpu.h"
#include "src/gpu/gl/GrGLUtil.h"
#endif
// Test wrapping of GrBackendObjects in SkSurfaces and SkImages
void test_wrapping(GrContext* context, skiatest::Reporter* reporter,
std::function<GrBackendTexture (GrContext*,
GrMipMapped,
GrRenderable)> create,
SkColorType colorType, GrMipMapped mipMapped, GrRenderable renderable) {
GrResourceCache* cache = context->priv().getResourceCache();
const int initialCount = cache->getResourceCount();
GrBackendTexture backendTex = create(context, mipMapped, renderable);
if (!backendTex.isValid()) {
ERRORF(reporter, "Couldn't create backendTexture for colorType %d renderable %s\n",
colorType,
GrRenderable::kYes == renderable ? "yes" : "no");
return;
}
// Skia proper should know nothing about the new backend object
REPORTER_ASSERT(reporter, initialCount == cache->getResourceCount());
if (kUnknown_SkColorType == colorType) {
context->deleteBackendTexture(backendTex);
return;
}
if (GrRenderable::kYes == renderable) {
sk_sp<SkSurface> surf = SkSurface::MakeFromBackendTexture(context,
backendTex,
kTopLeft_GrSurfaceOrigin,
0,
colorType,
nullptr, nullptr);
if (!surf) {
ERRORF(reporter, "Couldn't make surface from backendTexture for colorType %d\n",
colorType);
} else {
REPORTER_ASSERT(reporter, initialCount+1 == cache->getResourceCount());
}
}
{
sk_sp<SkImage> img = SkImage::MakeFromTexture(context,
backendTex,
kTopLeft_GrSurfaceOrigin,
colorType,
kPremul_SkAlphaType,
nullptr);
if (!img) {
ERRORF(reporter, "Couldn't make image from backendTexture for colorType %d\n",
colorType);
} else {
SkImage_Base* ib = as_IB(img);
GrTextureProxy* proxy = ib->peekProxy();
REPORTER_ASSERT(reporter, proxy);
REPORTER_ASSERT(reporter, mipMapped == proxy->proxyMipMapped());
REPORTER_ASSERT(reporter, proxy->isInstantiated());
REPORTER_ASSERT(reporter, mipMapped == proxy->mipMapped());
REPORTER_ASSERT(reporter, initialCount+1 == cache->getResourceCount());
}
}
REPORTER_ASSERT(reporter, initialCount == cache->getResourceCount());
context->deleteBackendTexture(backendTex);
}
static bool colors_eq(SkColor colA, SkColor colB, int tol) {
int maxDiff = 0;
for (int i = 0; i < 4; ++i) {
int diff = SkTAbs<int>((0xFF & (colA >> i*8)) - (0xFF & (colB >> i*8)));
if (maxDiff < diff) {
maxDiff = diff;
}
}
return maxDiff <= tol;
}
static void compare_pixmaps(const SkPixmap& expected, const SkPixmap& actual,
SkColorType colorType, skiatest::Reporter* reporter) {
SkASSERT(expected.info() == actual.info());
for (int y = 0; y < expected.height(); ++y) {
for (int x = 0; x < expected.width(); ++x) {
SkColor expectedCol = expected.getColor(x, y);
SkColor actualCol = actual.getColor(x, y);
// GPU and raster differ a bit on kGray_8_SkColorType and kRGBA_1010102_SkColorType
if (colors_eq(actualCol, expectedCol, 12)) {
continue;
}
ERRORF(reporter,
"Mismatched pixels at %d %d ct: %d expected: 0x%x actual: 0x%x\n",
x, y, colorType, expectedCol, actualCol);
return;
}
}
}
// Test initialization of GrBackendObjects to a specific color
void test_color_init(GrContext* context, skiatest::Reporter* reporter,
std::function<GrBackendTexture (GrContext*,
const SkColor4f&,
GrMipMapped,
GrRenderable)> create,
SkColorType colorType, const SkColor4f& color,
GrMipMapped mipMapped, GrRenderable renderable) {
GrBackendTexture backendTex = create(context, color, mipMapped, renderable);
if (!backendTex.isValid()) {
// errors here should be reported by the test_wrapping test
return;
}
if (kUnknown_SkColorType == colorType) {
// TODO: burrow in and scrappily check that data was uploaded!
context->deleteBackendTexture(backendTex);
return;
}
SkAlphaType at = SkColorTypeIsAlwaysOpaque(colorType) ? kOpaque_SkAlphaType
: kPremul_SkAlphaType;
SkImageInfo ii = SkImageInfo::Make(32, 32, colorType, at);
SkColor4f rasterColor = color;
if (kGray_8_SkColorType == colorType) {
// For the GPU backends, gray implies a single channel which is opaque.
rasterColor.fR = color.fA;
rasterColor.fG = color.fA;
rasterColor.fB = color.fA;
rasterColor.fA = 1.0f;
} else if (kAlpha_8_SkColorType == colorType) {
// For the GPU backends, alpha implies a single alpha channel.
rasterColor.fR = 0;
rasterColor.fG = 0;
rasterColor.fB = 0;
rasterColor.fA = color.fA;
}
SkAutoPixmapStorage expected;
SkAssertResult(expected.tryAlloc(ii));
expected.erase(rasterColor);
SkAutoPixmapStorage actual;
SkAssertResult(actual.tryAlloc(ii));
actual.erase(SkColors::kTransparent);
if (GrRenderable::kYes == renderable) {
sk_sp<SkSurface> surf = SkSurface::MakeFromBackendTexture(context,
backendTex,
kTopLeft_GrSurfaceOrigin,
0,
colorType,
nullptr, nullptr);
if (surf) {
bool result = surf->readPixels(actual, 0, 0);
REPORTER_ASSERT(reporter, result);
compare_pixmaps(expected, actual, colorType, reporter);
actual.erase(SkColors::kTransparent);
}
}
{
sk_sp<SkImage> img = SkImage::MakeFromTexture(context,
backendTex,
kTopLeft_GrSurfaceOrigin,
colorType,
at,
nullptr);
if (img) {
// If possible, read back the pixels and check that they're correct
{
bool result = img->readPixels(actual, 0, 0);
if (!result) {
// TODO: we need a better way to tell a priori if readPixels will work for an
// arbitrary colorType
#if 0
ERRORF(reporter, "Couldn't readback from SkImage for colorType: %d\n",
colorType);
#endif
} else {
compare_pixmaps(expected, actual, colorType, reporter);
}
}
// Draw the wrapped image into an RGBA surface attempting to access all the
// mipMap levels.
{
#ifdef SK_GL
// skbug.com/9141 (RGBA_F32 mipmaps appear to be broken on some Mali devices)
if (GrBackendApi::kOpenGL == context->backend()) {
GrGLGpu* glGPU = static_cast<GrGLGpu*>(context->priv().getGpu());
if (kRGBA_F32_SkColorType == colorType && GrMipMapped::kYes == mipMapped &&
kGLES_GrGLStandard == glGPU->ctxInfo().standard()) {
context->deleteBackendTexture(backendTex);
return;
}
}
#endif
SkImageInfo newII = SkImageInfo::Make(32, 32, kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
SkAutoPixmapStorage actual2;
SkAssertResult(actual2.tryAlloc(newII));
actual2.erase(SkColors::kTransparent);
sk_sp<SkSurface> surf = SkSurface::MakeRenderTarget(context,
SkBudgeted::kNo,
newII, 1,
kTopLeft_GrSurfaceOrigin,
nullptr);
if (!surf) {
context->deleteBackendTexture(backendTex);
return;
}
SkCanvas* canvas = surf->getCanvas();
SkPaint p;
p.setFilterQuality(kHigh_SkFilterQuality);
int numMipLevels = (GrMipMapped::kYes == mipMapped) ? 6 : 1;
for (int i = 0, rectSize = 32; i < numMipLevels; ++i, rectSize /= 2) {
SkASSERT(rectSize >= 1);
SkRect r = SkRect::MakeWH(rectSize, rectSize);
canvas->clear(SK_ColorTRANSPARENT);
canvas->drawImageRect(img, r, &p);
bool result = surf->readPixels(actual2, 0, 0);
REPORTER_ASSERT(reporter, result);
SkColor actualColor = actual2.getColor(0, 0);
if (!colors_eq(actualColor, rasterColor.toSkColor(), 1)) {
ERRORF(reporter, "Pixel mismatch colorType %d: level: %d e: 0x%x a: 0x%x\n",
colorType, i, rasterColor.toSkColor(), actualColor);
}
}
}
}
}
context->deleteBackendTexture(backendTex);
}
enum class VkLayout {
kUndefined,
kReadOnlyOptimal,
kColorAttachmentOptimal
};
void check_vk_layout(const GrBackendTexture& backendTex, VkLayout layout) {
#if defined(SK_VULKAN) && defined(SK_DEBUG)
VkImageLayout expected;
switch (layout) {
case VkLayout::kUndefined:
expected = VK_IMAGE_LAYOUT_UNDEFINED;
break;
case VkLayout::kReadOnlyOptimal:
expected = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
break;
case VkLayout::kColorAttachmentOptimal:
expected = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
break;
default:
SkUNREACHABLE;
}
GrVkImageInfo vkII;
if (backendTex.getVkImageInfo(&vkII)) {
SkASSERT(expected == vkII.fImageLayout);
SkASSERT(VK_IMAGE_TILING_OPTIMAL == vkII.fImageTiling);
}
#endif
}
///////////////////////////////////////////////////////////////////////////////
// This test is a bit different from the others in this file. It is mainly checking that, for any
// SkSurface we can create in Ganesh, we can also create a backend texture that is compatible with
// its characterization and then create a new surface that wraps that backend texture.
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(CharacterizationBackendAllocationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
for (int ct = 0; ct <= kLastEnum_SkColorType; ++ct) {
SkColorType colorType = static_cast<SkColorType>(ct);
SkImageInfo ii = SkImageInfo::Make(32, 32, colorType, kPremul_SkAlphaType);
for (auto origin : { kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin } ) {
for (bool mipMaps : { true, false } ) {
for (int sampleCount : {1, 2}) {
SkSurfaceCharacterization c;
// Get a characterization, if possible
{
sk_sp<SkSurface> s = SkSurface::MakeRenderTarget(context, SkBudgeted::kNo,
ii, sampleCount,
origin, nullptr, mipMaps);
if (!s) {
continue;
}
if (!s->characterize(&c)) {
continue;
}
REPORTER_ASSERT(reporter, s->isCompatible(c));
}
// Test out uninitialized path
{
GrBackendTexture backendTex = context->createBackendTexture(c);
check_vk_layout(backendTex, VkLayout::kUndefined);
REPORTER_ASSERT(reporter, backendTex.isValid());
REPORTER_ASSERT(reporter, c.isCompatible(backendTex));
sk_sp<SkSurface> s2 = SkSurface::MakeFromBackendTexture(context, c,
backendTex);
REPORTER_ASSERT(reporter, s2);
REPORTER_ASSERT(reporter, s2->isCompatible(c));
s2 = nullptr;
context->deleteBackendTexture(backendTex);
}
// Test out color-initialized path
{
GrBackendTexture backendTex = context->createBackendTexture(c,
SkColors::kRed);
check_vk_layout(backendTex, VkLayout::kColorAttachmentOptimal);
REPORTER_ASSERT(reporter, backendTex.isValid());
REPORTER_ASSERT(reporter, c.isCompatible(backendTex));
sk_sp<SkSurface> s2 = SkSurface::MakeFromBackendTexture(context, c,
backendTex);
REPORTER_ASSERT(reporter, s2);
REPORTER_ASSERT(reporter, s2->isCompatible(c));
s2 = nullptr;
context->deleteBackendTexture(backendTex);
}
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ColorTypeBackendAllocationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
const GrCaps* caps = context->priv().caps();
constexpr SkColor4f kTransCol { 0, 0.25f, 0.75f, 0.5f };
constexpr SkColor4f kGrayCol { 0.75f, 0.75f, 0.75f, 0.75f };
struct {
SkColorType fColorType;
GrPixelConfig fConfig;
SkColor4f fColor;
} combinations[] = {
{ kAlpha_8_SkColorType, kAlpha_8_GrPixelConfig, kTransCol },
{ kRGB_565_SkColorType, kRGB_565_GrPixelConfig, SkColors::kRed },
{ kARGB_4444_SkColorType, kRGBA_4444_GrPixelConfig, SkColors::kGreen },
{ kRGBA_8888_SkColorType, kRGBA_8888_GrPixelConfig, SkColors::kBlue },
{ kRGB_888x_SkColorType, kRGB_888_GrPixelConfig, SkColors::kCyan },
// TODO: readback is busted when alpha = 0.5f (perhaps premul vs. unpremul)
{ kBGRA_8888_SkColorType, kBGRA_8888_GrPixelConfig, { 1, 0, 0, 1.0f } },
// TODO: readback is busted when alpha = 0.5f (perhaps premul vs. unpremul)
{ kRGBA_1010102_SkColorType, kRGBA_1010102_GrPixelConfig, { 0.5f, 0, 0, 1.0f }},
// The kRGB_101010x_SkColorType has no Ganesh correlate
{ kRGB_101010x_SkColorType, kUnknown_GrPixelConfig, { 0, 0.5f, 0, 0.5f }},
{ kGray_8_SkColorType, kGray_8_GrPixelConfig, kGrayCol },
{ kRGBA_F16Norm_SkColorType, kRGBA_half_Clamped_GrPixelConfig, SkColors::kLtGray },
{ kRGBA_F16_SkColorType, kRGBA_half_GrPixelConfig, SkColors::kYellow },
{ kRGBA_F32_SkColorType, kRGBA_float_GrPixelConfig, SkColors::kGray },
};
SkASSERT(kLastEnum_SkColorType == SK_ARRAY_COUNT(combinations));
for (auto combo : combinations) {
SkColorType colorType = combo.fColorType;
if (!caps->isConfigTexturable(combo.fConfig)) {
continue;
}
if (GrBackendApi::kMetal == context->backend()) {
// skbug.com/9086 (Metal caps may not be handling RGBA32 correctly)
if (kRGBA_F32_SkColorType == combo.fColorType) {
continue;
}
}
for (auto mipMapped : { GrMipMapped::kNo, GrMipMapped::kYes }) {
if (GrMipMapped::kYes == mipMapped && !caps->mipMapSupport()) {
continue;
}
for (auto renderable : { GrRenderable::kNo, GrRenderable::kYes }) {
if (GrRenderable::kYes == renderable) {
if (kRGB_888x_SkColorType == combo.fColorType) {
// Ganesh can't perform the blends correctly when rendering this format
continue;
}
if (!caps->isConfigRenderable(combo.fConfig)) {
continue;
}
}
{
auto uninitCreateMtd = [colorType](GrContext* context,
GrMipMapped mipMapped,
GrRenderable renderable) {
auto result = context->createBackendTexture(32, 32, colorType,
mipMapped, renderable,
GrProtected::kNo);
check_vk_layout(result, VkLayout::kUndefined);
return result;
};
test_wrapping(context, reporter, uninitCreateMtd,
colorType, mipMapped, renderable);
}
{
// GL has difficulties reading back from these combinations. In particular,
// reading back kGray_8 is a mess.
if (GrBackendApi::kOpenGL == context->backend()) {
if (kAlpha_8_SkColorType == combo.fColorType ||
kGray_8_SkColorType == combo.fColorType) {
continue;
}
} else if (GrBackendApi::kMetal == context->backend()) {
// Not yet implemented for Metal
continue;
}
auto createWithColorMtd = [colorType](GrContext* context,
const SkColor4f& color,
GrMipMapped mipMapped,
GrRenderable renderable) {
auto result = context->createBackendTexture(32, 32, colorType, color,
mipMapped, renderable,
GrProtected::kNo);
check_vk_layout(result, GrRenderable::kYes == renderable
? VkLayout::kColorAttachmentOptimal
: VkLayout::kReadOnlyOptimal);
return result;
};
test_color_init(context, reporter, createWithColorMtd,
colorType, combo.fColor, mipMapped, renderable);
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_GL
#include "src/gpu/gl/GrGLCaps.h"
#include "src/gpu/gl/GrGLDefines.h"
DEF_GPUTEST_FOR_ALL_GL_CONTEXTS(GLBackendAllocationTest, reporter, ctxInfo) {
sk_gpu_test::GLTestContext* glCtx = ctxInfo.glContext();
GrGLStandard standard = glCtx->gl()->fStandard;
GrContext* context = ctxInfo.grContext();
const GrGLCaps* glCaps = static_cast<const GrGLCaps*>(context->priv().caps());
constexpr SkColor4f kTransCol { 0, 0.25f, 0.75f, 0.5f };
constexpr SkColor4f kGrayCol { 0.75f, 0.75f, 0.75f, 0.75f };
struct {
SkColorType fColorType;
GrGLenum fFormat;
// TODO: remove 'fConfig' and directly use 'fFormat' in GrGLCaps::isFormatTexturable
GrPixelConfig fConfig;
SkColor4f fColor;
} combinations[] = {
{ kRGBA_8888_SkColorType, GR_GL_RGBA8,
kRGBA_8888_GrPixelConfig, SkColors::kRed },
{ kRGBA_8888_SkColorType, GR_GL_SRGB8_ALPHA8,
kSRGBA_8888_GrPixelConfig, SkColors::kRed },
{ kRGB_888x_SkColorType, GR_GL_RGBA8,
kRGBA_8888_GrPixelConfig, SkColors::kYellow },
{ kRGB_888x_SkColorType, GR_GL_RGB8,
kRGB_888_GrPixelConfig, SkColors::kCyan },
{ kBGRA_8888_SkColorType, GR_GL_RGBA8,
kRGBA_8888_GrPixelConfig, SkColors::kBlue },
{ kBGRA_8888_SkColorType, GR_GL_BGRA8,
kBGRA_8888_GrPixelConfig, SkColors::kBlue },
{ kRGBA_1010102_SkColorType, GR_GL_RGB10_A2,
// TODO: readback is busted when alpha = 0.5f (perhaps premul vs. unpremul)
kRGBA_1010102_GrPixelConfig, { 0.5f, 0, 0, 1.0f }},
{ kRGB_565_SkColorType, GR_GL_RGB565,
kRGB_565_GrPixelConfig, SkColors::kRed },
{ kARGB_4444_SkColorType, GR_GL_RGBA4,
kRGBA_4444_GrPixelConfig, SkColors::kGreen },
{ kAlpha_8_SkColorType, GR_GL_ALPHA8,
kAlpha_8_as_Alpha_GrPixelConfig, kTransCol },
{ kAlpha_8_SkColorType, GR_GL_R8,
kAlpha_8_as_Red_GrPixelConfig, kTransCol },
{ kGray_8_SkColorType, GR_GL_LUMINANCE8,
kGray_8_as_Lum_GrPixelConfig, kGrayCol },
{ kGray_8_SkColorType, GR_GL_R8,
kGray_8_as_Red_GrPixelConfig, kGrayCol },
{ kRGBA_F32_SkColorType, GR_GL_RGBA32F,
kRGBA_float_GrPixelConfig, SkColors::kRed },
{ kRGBA_F16Norm_SkColorType, GR_GL_RGBA16F,
kRGBA_half_Clamped_GrPixelConfig, SkColors::kLtGray },
{ kRGBA_F16_SkColorType, GR_GL_RGBA16F,
kRGBA_half_GrPixelConfig, SkColors::kYellow },
// These backend formats don't have SkColorType equivalents
{ kUnknown_SkColorType, GR_GL_RG8,
kRG_88_GrPixelConfig, { 0.5f, 0.5f, 0, 0 }},
{ kUnknown_SkColorType, GR_GL_R16F,
kAlpha_half_as_Red_GrPixelConfig, { 1.0f, 0, 0, 0.5f }},
{ kUnknown_SkColorType, GR_GL_LUMINANCE16F,
kAlpha_half_as_Lum_GrPixelConfig, kGrayCol },
{ kUnknown_SkColorType, GR_GL_COMPRESSED_RGB8_ETC2,
kRGB_ETC1_GrPixelConfig, SkColors::kRed },
{ kUnknown_SkColorType, GR_GL_COMPRESSED_ETC1_RGB8,
kRGB_ETC1_GrPixelConfig, SkColors::kRed },
{ kUnknown_SkColorType, GR_GL_R16,
kR_16_GrPixelConfig, SkColors::kRed },
{ kUnknown_SkColorType, GR_GL_RG16,
kRG_1616_GrPixelConfig, SkColors::kYellow },
// Experimental (for Y416 and mutant P016/P010)
{ kUnknown_SkColorType, GR_GL_RGBA16,
kRGBA_16161616_GrPixelConfig, SkColors::kLtGray },
{ kUnknown_SkColorType, GR_GL_RG16F,
kRG_half_GrPixelConfig, SkColors::kYellow },
};
for (auto combo : combinations) {
if (kRGB_ETC1_GrPixelConfig == combo.fConfig) {
// RGB8_ETC2/ETC1_RGB8 is an either/or situation
GrGLenum supportedETC1Format = glCaps->configSizedInternalFormat(combo.fConfig);
if (supportedETC1Format != combo.fFormat) {
continue;
}
}
GrBackendFormat format = GrBackendFormat::MakeGL(combo.fFormat, GR_GL_TEXTURE_2D);
if (GR_GL_COMPRESSED_RGB8_ETC2 == combo.fFormat ||
GR_GL_COMPRESSED_ETC1_RGB8 == combo.fFormat) {
// We current disallow uninitialized ETC1 textures in the GL backend
continue;
}
GrColorType grCT = SkColorTypeAndFormatToGrColorType(glCaps, combo.fColorType, format);
if (GrColorType::kUnknown == grCT) {
continue;
}
if (!glCaps->isFormatTexturable(grCT, format)) {
continue;
}
if (kBGRA_8888_SkColorType == combo.fColorType) {
if (GR_GL_RGBA8 == combo.fFormat && kGL_GrGLStandard != standard) {
continue;
}
if (GR_GL_BGRA8 == combo.fFormat && kGL_GrGLStandard == standard) {
continue;
}
}
for (auto mipMapped : { GrMipMapped::kNo, GrMipMapped::kYes }) {
if (GrMipMapped::kYes == mipMapped && !glCaps->mipMapSupport()) {
continue;
}
for (auto renderable : { GrRenderable::kNo, GrRenderable::kYes }) {
if (GrRenderable::kYes == renderable) {
if (kRGB_888x_SkColorType == combo.fColorType) {
// Ganesh can't perform the blends correctly when rendering this format
continue;
}
if (!glCaps->isConfigRenderable(combo.fConfig)) {
continue;
}
}
{
auto uninitCreateMtd = [format](GrContext* context,
GrMipMapped mipMapped,
GrRenderable renderable) {
return context->createBackendTexture(32, 32, format,
mipMapped, renderable,
GrProtected::kNo);
};
test_wrapping(context, reporter, uninitCreateMtd,
combo.fColorType, mipMapped, renderable);
}
{
// GL has difficulties reading back from these combinations
if (kAlpha_8_SkColorType == combo.fColorType) {
continue;
}
if (GrRenderable::kYes != renderable) {
continue;
}
auto createWithColorMtd = [format](GrContext* context,
const SkColor4f& color,
GrMipMapped mipMapped,
GrRenderable renderable) {
return context->createBackendTexture(32, 32, format, color,
mipMapped, renderable,
GrProtected::kNo);
};
test_color_init(context, reporter, createWithColorMtd,
combo.fColorType, combo.fColor, mipMapped, renderable);
}
}
}
}
}
#endif
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_VULKAN
#include "src/gpu/vk/GrVkCaps.h"
DEF_GPUTEST_FOR_VULKAN_CONTEXT(VkBackendAllocationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
const GrVkCaps* vkCaps = static_cast<const GrVkCaps*>(context->priv().caps());
constexpr SkColor4f kTransCol { 0, 0.25f, 0.75f, 0.5f };
constexpr SkColor4f kGrayCol { 0.75f, 0.75f, 0.75f, 0.75f };
struct {
SkColorType fColorType;
VkFormat fFormat;
SkColor4f fColor;
} combinations[] = {
{ kRGBA_8888_SkColorType, VK_FORMAT_R8G8B8A8_UNORM, SkColors::kRed },
{ kRGBA_8888_SkColorType, VK_FORMAT_R8G8B8A8_SRGB, SkColors::kRed },
// In this configuration (i.e., an RGB_888x colortype with an RGBA8 backing format),
// there is nothing to tell Skia to make the provided color opaque. Clients will need
// to provide an opaque initialization color in this case.
{ kRGB_888x_SkColorType, VK_FORMAT_R8G8B8A8_UNORM, SkColors::kYellow },
{ kRGB_888x_SkColorType, VK_FORMAT_R8G8B8_UNORM, SkColors::kCyan },
{ kBGRA_8888_SkColorType, VK_FORMAT_B8G8R8A8_UNORM, SkColors::kBlue },
{ kRGBA_1010102_SkColorType, VK_FORMAT_A2B10G10R10_UNORM_PACK32, { 0.5f, 0, 0, 1.0f } },
{ kRGB_565_SkColorType, VK_FORMAT_R5G6B5_UNORM_PACK16, SkColors::kRed },
{ kARGB_4444_SkColorType, VK_FORMAT_R4G4B4A4_UNORM_PACK16, SkColors::kCyan },
{ kARGB_4444_SkColorType, VK_FORMAT_B4G4R4A4_UNORM_PACK16, SkColors::kYellow },
{ kAlpha_8_SkColorType, VK_FORMAT_R8_UNORM, kTransCol },
// In this config (i.e., a Gray8 color type with an R8 backing format), there is nothing
// to tell Skia this isn't an Alpha8 color type (so it will initialize the texture with
// the alpha channel of the color). Clients should, in general, fill all the channels
// of the provided color with the same value in such cases.
{ kGray_8_SkColorType, VK_FORMAT_R8_UNORM, kGrayCol },
{ kRGBA_F32_SkColorType, VK_FORMAT_R32G32B32A32_SFLOAT, SkColors::kRed },
{ kRGBA_F16Norm_SkColorType, VK_FORMAT_R16G16B16A16_SFLOAT, SkColors::kLtGray },
{ kRGBA_F16_SkColorType, VK_FORMAT_R16G16B16A16_SFLOAT, SkColors::kYellow },
// These backend formats don't have SkColorType equivalents
{ kUnknown_SkColorType, VK_FORMAT_R8G8_UNORM, { 0.5f, 0.5f, 0, 0 } },
{ kUnknown_SkColorType, VK_FORMAT_R16_SFLOAT, { 1.0f, 0, 0, 0.5f } },
{ kUnknown_SkColorType, VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, SkColors::kRed },
{ kUnknown_SkColorType, VK_FORMAT_R16_UNORM, SkColors::kRed },
{ kUnknown_SkColorType, VK_FORMAT_R16G16_UNORM, SkColors::kYellow },
// Experimental (for Y416 and mutant P016/P010)
{ kUnknown_SkColorType, VK_FORMAT_R16G16B16A16_UNORM, SkColors::kLtGray },
{ kUnknown_SkColorType, VK_FORMAT_R16G16_SFLOAT, SkColors::kYellow },
};
for (auto combo : combinations) {
if (!vkCaps->isVkFormatTexturable(combo.fFormat)) {
continue;
}
GrBackendFormat format = GrBackendFormat::MakeVk(combo.fFormat);
for (auto mipMapped : { GrMipMapped::kNo, GrMipMapped::kYes }) {
if (GrMipMapped::kYes == mipMapped && !vkCaps->mipMapSupport()) {
continue;
}
for (auto renderable : { GrRenderable::kNo, GrRenderable::kYes }) {
if (GrRenderable::kYes == renderable) {
if (kRGB_888x_SkColorType == combo.fColorType) {
// Ganesh can't perform the blends correctly when rendering this format
continue;
}
if (!vkCaps->isFormatRenderable(combo.fFormat)) {
continue;
}
}
{
auto uninitCreateMtd = [format](GrContext* context,
GrMipMapped mipMapped,
GrRenderable renderable) {
GrBackendTexture beTex = context->createBackendTexture(32, 32, format,
mipMapped,
renderable,
GrProtected::kNo);
check_vk_layout(beTex, VkLayout::kUndefined);
return beTex;
};
test_wrapping(context, reporter, uninitCreateMtd,
combo.fColorType, mipMapped, renderable);
}
{
// We're creating backend textures without specifying a color type "view" of
// them at the public API level. Therefore, Ganesh will not apply any swizzles
// before writing the color to the texture. However, our validation code does
// rely on interpreting the texture contents via a SkColorType and therefore
// swizzles may be applied during the read step.
// Ideally we'd update our validation code to use a "raw" read that doesn't
// impose a color type but for now we just munge the data we upload to match the
// expectation.
GrSwizzle swizzle;
switch (combo.fColorType) {
case kAlpha_8_SkColorType:
SkASSERT(combo.fFormat == VK_FORMAT_R8_UNORM);
swizzle = GrSwizzle("aaaa");
break;
case kARGB_4444_SkColorType:
if (combo.fFormat == VK_FORMAT_B4G4R4A4_UNORM_PACK16) {
swizzle = GrSwizzle("bgra");
}
break;
default:
swizzle = GrSwizzle("rgba");
break;
}
auto createWithColorMtd = [format, swizzle](GrContext* context,
const SkColor4f& color,
GrMipMapped mipMapped,
GrRenderable renderable) {
auto swizzledColor = swizzle.applyTo(color);
GrBackendTexture beTex = context->createBackendTexture(32, 32, format,
swizzledColor,
mipMapped,
renderable,
GrProtected::kNo);
check_vk_layout(beTex, GrRenderable::kYes == renderable
? VkLayout::kColorAttachmentOptimal
: VkLayout::kReadOnlyOptimal);
return beTex;
};
test_color_init(context, reporter, createWithColorMtd,
combo.fColorType, combo.fColor, mipMapped, renderable);
}
}
}
}
}
#endif