blob: d8a4f826169a605ed2efc7994bd174c4bdd16642 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKSL_CFGGENERATOR
#define SKSL_CFGGENERATOR
#include "ir/SkSLExpression.h"
#include "ir/SkSLFunctionDefinition.h"
#include <set>
#include <stack>
namespace SkSL {
// index of a block within CFG.fBlocks
typedef size_t BlockId;
struct BasicBlock {
struct Node {
enum Kind {
kStatement_Kind,
kExpression_Kind
};
Node(Kind kind, bool constantPropagation, std::unique_ptr<Expression>* expression,
std::unique_ptr<Statement>* statement)
: fKind(kind)
, fConstantPropagation(constantPropagation)
, fExpression(expression)
, fStatement(statement) {}
std::unique_ptr<Expression>* expression() const {
SkASSERT(fKind == kExpression_Kind);
return fExpression;
}
void setExpression(std::unique_ptr<Expression> expr) {
SkASSERT(fKind == kExpression_Kind);
*fExpression = std::move(expr);
}
std::unique_ptr<Statement>* statement() const {
SkASSERT(fKind == kStatement_Kind);
return fStatement;
}
void setStatement(std::unique_ptr<Statement> stmt) {
SkASSERT(fKind == kStatement_Kind);
*fStatement = std::move(stmt);
}
String description() const {
if (fKind == kStatement_Kind) {
return (*fStatement)->description();
} else {
SkASSERT(fKind == kExpression_Kind);
return (*fExpression)->description();
}
}
Kind fKind;
// if false, this node should not be subject to constant propagation. This happens with
// compound assignment (i.e. x *= 2), in which the value x is used as an rvalue for
// multiplication by 2 and then as an lvalue for assignment purposes. Since there is only
// one "x" node, replacing it with a constant would break the assignment and we suppress
// it. Down the road, we should handle this more elegantly by substituting a regular
// assignment if the target is constant (i.e. x = 1; x *= 2; should become x = 1; x = 1 * 2;
// and then collapse down to a simple x = 2;).
bool fConstantPropagation;
private:
// we store pointers to the unique_ptrs so that we can replace expressions or statements
// during optimization without having to regenerate the entire tree
std::unique_ptr<Expression>* fExpression;
std::unique_ptr<Statement>* fStatement;
};
/**
* Attempts to remove the expression (and its subexpressions) pointed to by the iterator. If the
* expression can be cleanly removed, returns true and updates the iterator to point to the
* expression after the deleted expression. Otherwise returns false (and the CFG will need to be
* regenerated).
*/
bool tryRemoveExpression(std::vector<BasicBlock::Node>::iterator* iter);
/**
* Locates and attempts remove an expression occurring before the expression pointed to by iter.
* If the expression can be cleanly removed, returns true and resets iter to a valid iterator
* pointing to the same expression it did initially. Otherwise returns false (and the CFG will
* need to be regenerated).
*/
bool tryRemoveExpressionBefore(std::vector<BasicBlock::Node>::iterator* iter, Expression* e);
/**
* As tryRemoveExpressionBefore, but for lvalues. As lvalues are at most partially evaluated
* (for instance, x[i] = 0 evaluates i but not x) this will only look for the parts of the
* lvalue that are actually evaluated.
*/
bool tryRemoveLValueBefore(std::vector<BasicBlock::Node>::iterator* iter, Expression* lvalue);
/**
* Attempts to inserts a new expression before the node pointed to by iter. If the
* expression can be cleanly inserted, returns true and updates the iterator to point to the
* newly inserted expression. Otherwise returns false (and the CFG will need to be regenerated).
*/
bool tryInsertExpression(std::vector<BasicBlock::Node>::iterator* iter,
std::unique_ptr<Expression>* expr);
std::vector<Node> fNodes;
std::set<BlockId> fEntrances;
std::set<BlockId> fExits;
// variable definitions upon entering this basic block (null expression = undefined)
DefinitionMap fBefore;
};
struct CFG {
BlockId fStart;
BlockId fExit;
std::vector<BasicBlock> fBlocks;
void dump();
private:
BlockId fCurrent;
// Adds a new block, adds an exit* from the current block to the new block, then marks the new
// block as the current block
// *see note in addExit()
BlockId newBlock();
// Adds a new block, but does not mark it current or add an exit from the current block
BlockId newIsolatedBlock();
// Adds an exit from the 'from' block to the 'to' block
// Note that we skip adding the exit if the 'from' block is itself unreachable; this means that
// we don't actually have to trace the tree to see if a particular block is unreachable, we can
// just check to see if it has any entrances. This does require a bit of care in the order in
// which we set the CFG up.
void addExit(BlockId from, BlockId to);
friend class CFGGenerator;
};
/**
* Converts functions into control flow graphs.
*/
class CFGGenerator {
public:
CFGGenerator() {}
CFG getCFG(FunctionDefinition& f);
private:
void addStatement(CFG& cfg, std::unique_ptr<Statement>* s);
void addExpression(CFG& cfg, std::unique_ptr<Expression>* e, bool constantPropagate);
void addLValue(CFG& cfg, std::unique_ptr<Expression>* e);
std::stack<BlockId> fLoopContinues;
std::stack<BlockId> fLoopExits;
};
}
#endif