| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkAddIntersections.h" |
| #include "SkOpEdgeBuilder.h" |
| #include "SkPathOpsCommon.h" |
| #include "SkPathWriter.h" |
| #include "SkTSort.h" |
| |
| static void alignMultiples(SkTArray<SkOpContour*, true>* contourList, |
| SkTDArray<SkOpSegment::AlignedSpan>* aligned) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| if (contour->hasMultiples()) { |
| contour->alignMultiples(aligned); |
| } |
| } |
| } |
| |
| static void alignCoincidence(SkTArray<SkOpContour*, true>* contourList, |
| const SkTDArray<SkOpSegment::AlignedSpan>& aligned) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| int count = aligned.count(); |
| for (int index = 0; index < count; ++index) { |
| contour->alignCoincidence(aligned[index]); |
| } |
| } |
| } |
| |
| static int contourRangeCheckY(const SkTArray<SkOpContour*, true>& contourList, SkOpSegment** currentPtr, |
| int* indexPtr, int* endIndexPtr, double* bestHit, SkScalar* bestDx, |
| bool* tryAgain, double* midPtr, bool opp) { |
| const int index = *indexPtr; |
| const int endIndex = *endIndexPtr; |
| const double mid = *midPtr; |
| const SkOpSegment* current = *currentPtr; |
| double tAtMid = current->tAtMid(index, endIndex, mid); |
| SkPoint basePt = current->ptAtT(tAtMid); |
| int contourCount = contourList.count(); |
| SkScalar bestY = SK_ScalarMin; |
| SkOpSegment* bestSeg = NULL; |
| int bestTIndex = 0; |
| bool bestOpp; |
| bool hitSomething = false; |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = contourList[cTest]; |
| bool testOpp = contour->operand() ^ current->operand() ^ opp; |
| if (basePt.fY < contour->bounds().fTop) { |
| continue; |
| } |
| if (bestY > contour->bounds().fBottom) { |
| continue; |
| } |
| int segmentCount = contour->segments().count(); |
| for (int test = 0; test < segmentCount; ++test) { |
| SkOpSegment* testSeg = &contour->segments()[test]; |
| SkScalar testY = bestY; |
| double testHit; |
| int testTIndex = testSeg->crossedSpanY(basePt, &testY, &testHit, &hitSomething, tAtMid, |
| testOpp, testSeg == current); |
| if (testTIndex < 0) { |
| if (testTIndex == SK_MinS32) { |
| hitSomething = true; |
| bestSeg = NULL; |
| goto abortContours; // vertical encountered, return and try different point |
| } |
| continue; |
| } |
| if (testSeg == current && current->betweenTs(index, testHit, endIndex)) { |
| double baseT = current->t(index); |
| double endT = current->t(endIndex); |
| double newMid = (testHit - baseT) / (endT - baseT); |
| #if DEBUG_WINDING |
| double midT = current->tAtMid(index, endIndex, mid); |
| SkPoint midXY = current->xyAtT(midT); |
| double newMidT = current->tAtMid(index, endIndex, newMid); |
| SkPoint newXY = current->xyAtT(newMidT); |
| SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)" |
| " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, |
| current->debugID(), mid, newMid, |
| baseT, current->xAtT(index), current->yAtT(index), |
| baseT + mid * (endT - baseT), midXY.fX, midXY.fY, |
| baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, |
| endT, current->xAtT(endIndex), current->yAtT(endIndex)); |
| #endif |
| *midPtr = newMid * 2; // calling loop with divide by 2 before continuing |
| return SK_MinS32; |
| } |
| bestSeg = testSeg; |
| *bestHit = testHit; |
| bestOpp = testOpp; |
| bestTIndex = testTIndex; |
| bestY = testY; |
| } |
| } |
| abortContours: |
| int result; |
| if (!bestSeg) { |
| result = hitSomething ? SK_MinS32 : 0; |
| } else { |
| if (bestSeg->windSum(bestTIndex) == SK_MinS32) { |
| *currentPtr = bestSeg; |
| *indexPtr = bestTIndex; |
| *endIndexPtr = bestSeg->nextSpan(bestTIndex, 1); |
| SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0); |
| *tryAgain = true; |
| return 0; |
| } |
| result = bestSeg->windingAtT(*bestHit, bestTIndex, bestOpp, bestDx); |
| SkASSERT(result == SK_MinS32 || *bestDx); |
| } |
| double baseT = current->t(index); |
| double endT = current->t(endIndex); |
| *bestHit = baseT + mid * (endT - baseT); |
| return result; |
| } |
| |
| SkOpSegment* FindUndone(SkTArray<SkOpContour*, true>& contourList, int* start, int* end) { |
| int contourCount = contourList.count(); |
| SkOpSegment* result; |
| for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
| SkOpContour* contour = contourList[cIndex]; |
| result = contour->undoneSegment(start, end); |
| if (result) { |
| return result; |
| } |
| } |
| return NULL; |
| } |
| |
| SkOpSegment* FindChase(SkTDArray<SkOpSpan*>* chase, int* tIndex, int* endIndex) { |
| while (chase->count()) { |
| SkOpSpan* span; |
| chase->pop(&span); |
| const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex); |
| SkOpSegment* segment = backPtr.fOther; |
| *tIndex = backPtr.fOtherIndex; |
| bool sortable = true; |
| bool done = true; |
| *endIndex = -1; |
| if (const SkOpAngle* last = segment->activeAngle(*tIndex, tIndex, endIndex, &done, |
| &sortable)) { |
| *tIndex = last->start(); |
| *endIndex = last->end(); |
| #if TRY_ROTATE |
| *chase->insert(0) = span; |
| #else |
| *chase->append() = span; |
| #endif |
| return last->segment(); |
| } |
| if (done) { |
| continue; |
| } |
| if (!sortable) { |
| continue; |
| } |
| // find first angle, initialize winding to computed wind sum |
| const SkOpAngle* angle = segment->spanToAngle(*tIndex, *endIndex); |
| const SkOpAngle* firstAngle; |
| SkDEBUGCODE(firstAngle = angle); |
| SkDEBUGCODE(bool loop = false); |
| int winding; |
| do { |
| angle = angle->next(); |
| SkASSERT(angle != firstAngle || !loop); |
| SkDEBUGCODE(loop |= angle == firstAngle); |
| segment = angle->segment(); |
| winding = segment->windSum(angle); |
| } while (winding == SK_MinS32); |
| int spanWinding = segment->spanSign(angle->start(), angle->end()); |
| #if DEBUG_WINDING |
| SkDebugf("%s winding=%d spanWinding=%d\n", __FUNCTION__, winding, spanWinding); |
| #endif |
| // turn span winding into contour winding |
| if (spanWinding * winding < 0) { |
| winding += spanWinding; |
| } |
| // we care about first sign and whether wind sum indicates this |
| // edge is inside or outside. Maybe need to pass span winding |
| // or first winding or something into this function? |
| // advance to first undone angle, then return it and winding |
| // (to set whether edges are active or not) |
| firstAngle = angle; |
| winding -= firstAngle->segment()->spanSign(firstAngle); |
| while ((angle = angle->next()) != firstAngle) { |
| segment = angle->segment(); |
| int maxWinding = winding; |
| winding -= segment->spanSign(angle); |
| #if DEBUG_SORT |
| SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__, |
| segment->debugID(), maxWinding, winding, angle->sign()); |
| #endif |
| *tIndex = angle->start(); |
| *endIndex = angle->end(); |
| int lesser = SkMin32(*tIndex, *endIndex); |
| const SkOpSpan& nextSpan = segment->span(lesser); |
| if (!nextSpan.fDone) { |
| // FIXME: this be wrong? assign startWinding if edge is in |
| // same direction. If the direction is opposite, winding to |
| // assign is flipped sign or +/- 1? |
| if (SkOpSegment::UseInnerWinding(maxWinding, winding)) { |
| maxWinding = winding; |
| } |
| // allowed to do nothing |
| (void) segment->markAndChaseWinding(angle, maxWinding, 0, NULL); |
| break; |
| } |
| } |
| *chase->insert(0) = span; |
| return segment; |
| } |
| return NULL; |
| } |
| |
| #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY |
| void DebugShowActiveSpans(SkTArray<SkOpContour*, true>& contourList) { |
| int index; |
| for (index = 0; index < contourList.count(); ++ index) { |
| contourList[index]->debugShowActiveSpans(); |
| } |
| } |
| #endif |
| |
| static SkOpSegment* findTopSegment(const SkTArray<SkOpContour*, true>& contourList, int* index, |
| int* endIndex, SkPoint* topLeft, bool* unsortable, bool* done, bool firstPass) { |
| SkOpSegment* result; |
| const SkOpSegment* lastTopStart = NULL; |
| int lastIndex = -1, lastEndIndex = -1; |
| do { |
| SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; |
| int contourCount = contourList.count(); |
| SkOpSegment* topStart = NULL; |
| *done = true; |
| for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
| SkOpContour* contour = contourList[cIndex]; |
| if (contour->done()) { |
| continue; |
| } |
| const SkPathOpsBounds& bounds = contour->bounds(); |
| if (bounds.fBottom < topLeft->fY) { |
| *done = false; |
| continue; |
| } |
| if (bounds.fBottom == topLeft->fY && bounds.fRight < topLeft->fX) { |
| *done = false; |
| continue; |
| } |
| contour->topSortableSegment(*topLeft, &bestXY, &topStart); |
| if (!contour->done()) { |
| *done = false; |
| } |
| } |
| if (!topStart) { |
| return NULL; |
| } |
| *topLeft = bestXY; |
| result = topStart->findTop(index, endIndex, unsortable, firstPass); |
| if (!result) { |
| if (lastTopStart == topStart && lastIndex == *index && lastEndIndex == *endIndex) { |
| *done = true; |
| return NULL; |
| } |
| lastTopStart = topStart; |
| lastIndex = *index; |
| lastEndIndex = *endIndex; |
| } |
| } while (!result); |
| return result; |
| } |
| |
| static int rightAngleWinding(const SkTArray<SkOpContour*, true>& contourList, |
| SkOpSegment** currentPtr, int* indexPtr, int* endIndexPtr, double* tHit, |
| SkScalar* hitDx, bool* tryAgain, bool* onlyVertical, bool opp) { |
| double test = 0.9; |
| int contourWinding; |
| do { |
| contourWinding = contourRangeCheckY(contourList, currentPtr, indexPtr, endIndexPtr, |
| tHit, hitDx, tryAgain, &test, opp); |
| if (contourWinding != SK_MinS32 || *tryAgain) { |
| return contourWinding; |
| } |
| if (*currentPtr && (*currentPtr)->isVertical()) { |
| *onlyVertical = true; |
| return contourWinding; |
| } |
| test /= 2; |
| } while (!approximately_negative(test)); |
| SkASSERT(0); // FIXME: incomplete functionality |
| return contourWinding; |
| } |
| |
| static void skipVertical(const SkTArray<SkOpContour*, true>& contourList, |
| SkOpSegment** current, int* index, int* endIndex) { |
| if (!(*current)->isVertical(*index, *endIndex)) { |
| return; |
| } |
| int contourCount = contourList.count(); |
| for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
| SkOpContour* contour = contourList[cIndex]; |
| if (contour->done()) { |
| continue; |
| } |
| SkOpSegment* nonVertical = contour->nonVerticalSegment(index, endIndex); |
| if (nonVertical) { |
| *current = nonVertical; |
| return; |
| } |
| } |
| return; |
| } |
| |
| struct SortableTop { // error if local in pre-C++11 |
| SkOpSegment* fSegment; |
| int fIndex; |
| int fEndIndex; |
| }; |
| |
| SkOpSegment* FindSortableTop(const SkTArray<SkOpContour*, true>& contourList, |
| SkOpAngle::IncludeType angleIncludeType, bool* firstContour, int* indexPtr, |
| int* endIndexPtr, SkPoint* topLeft, bool* unsortable, bool* done, bool* onlyVertical, |
| bool firstPass) { |
| SkOpSegment* current = findTopSegment(contourList, indexPtr, endIndexPtr, topLeft, unsortable, |
| done, firstPass); |
| if (!current) { |
| return NULL; |
| } |
| const int startIndex = *indexPtr; |
| const int endIndex = *endIndexPtr; |
| if (*firstContour) { |
| current->initWinding(startIndex, endIndex, angleIncludeType); |
| *firstContour = false; |
| return current; |
| } |
| int minIndex = SkMin32(startIndex, endIndex); |
| int sumWinding = current->windSum(minIndex); |
| if (sumWinding == SK_MinS32) { |
| int index = endIndex; |
| int oIndex = startIndex; |
| do { |
| const SkOpSpan& span = current->span(index); |
| if ((oIndex < index ? span.fFromAngle : span.fToAngle) == NULL) { |
| current->addSimpleAngle(index); |
| } |
| sumWinding = current->computeSum(oIndex, index, angleIncludeType); |
| SkTSwap(index, oIndex); |
| } while (sumWinding == SK_MinS32 && index == startIndex); |
| } |
| if (sumWinding != SK_MinS32 && sumWinding != SK_NaN32) { |
| return current; |
| } |
| int contourWinding; |
| int oppContourWinding = 0; |
| // the simple upward projection of the unresolved points hit unsortable angles |
| // shoot rays at right angles to the segment to find its winding, ignoring angle cases |
| bool tryAgain; |
| double tHit; |
| SkScalar hitDx = 0; |
| SkScalar hitOppDx = 0; |
| // keep track of subsequent returns to detect infinite loops |
| SkTDArray<SortableTop> sortableTops; |
| do { |
| // if current is vertical, find another candidate which is not |
| // if only remaining candidates are vertical, then they can be marked done |
| SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0); |
| skipVertical(contourList, ¤t, indexPtr, endIndexPtr); |
| SkASSERT(current); // FIXME: if null, all remaining are vertical |
| SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0); |
| tryAgain = false; |
| contourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit, |
| &hitDx, &tryAgain, onlyVertical, false); |
| if (tryAgain) { |
| bool giveUp = false; |
| int count = sortableTops.count(); |
| for (int index = 0; index < count; ++index) { |
| const SortableTop& prev = sortableTops[index]; |
| if (giveUp) { |
| prev.fSegment->markDoneFinal(prev.fIndex); |
| } else if (prev.fSegment == current |
| && (prev.fIndex == *indexPtr || prev.fEndIndex == *endIndexPtr)) { |
| // remaining edges are non-vertical and cannot have their winding computed |
| // mark them as done and return, and hope that assembly can fill the holes |
| giveUp = true; |
| index = -1; |
| } |
| } |
| if (giveUp) { |
| *done = true; |
| return NULL; |
| } |
| } |
| SortableTop* sortableTop = sortableTops.append(); |
| sortableTop->fSegment = current; |
| sortableTop->fIndex = *indexPtr; |
| sortableTop->fEndIndex = *endIndexPtr; |
| #if DEBUG_SORT |
| SkDebugf("%s current=%d index=%d endIndex=%d tHit=%1.9g hitDx=%1.9g try=%d vert=%d\n", |
| __FUNCTION__, current->debugID(), *indexPtr, *endIndexPtr, tHit, hitDx, tryAgain, |
| *onlyVertical); |
| #endif |
| if (*onlyVertical) { |
| return current; |
| } |
| if (tryAgain) { |
| continue; |
| } |
| if (angleIncludeType < SkOpAngle::kBinarySingle) { |
| break; |
| } |
| oppContourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit, |
| &hitOppDx, &tryAgain, NULL, true); |
| } while (tryAgain); |
| bool success = current->initWinding(*indexPtr, *endIndexPtr, tHit, contourWinding, hitDx, |
| oppContourWinding, hitOppDx); |
| if (current->done()) { |
| return NULL; |
| } else if (!success) { // check if the span has a valid winding |
| int min = SkTMin(*indexPtr, *endIndexPtr); |
| const SkOpSpan& span = current->span(min); |
| if (span.fWindSum == SK_MinS32) { |
| return NULL; |
| } |
| } |
| return current; |
| } |
| |
| static bool calcAngles(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| if (!contour->calcAngles()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static void checkDuplicates(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->checkDuplicates(); |
| } |
| } |
| |
| static bool checkEnds(SkTArray<SkOpContour*, true>* contourList) { |
| // it's hard to determine if the end of a cubic or conic nearly intersects another curve. |
| // instead, look to see if the connecting curve intersected at that same end. |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| if (!contour->checkEnds()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool checkMultiples(SkTArray<SkOpContour*, true>* contourList) { |
| bool hasMultiples = false; |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->checkMultiples(); |
| hasMultiples |= contour->hasMultiples(); |
| } |
| return hasMultiples; |
| } |
| |
| // A small interval of a pair of curves may collapse to lines for each, triggering coincidence |
| static void checkSmall(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->checkSmall(); |
| } |
| } |
| |
| // A tiny interval may indicate an undiscovered coincidence. Find and fix. |
| static void checkTiny(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->checkTiny(); |
| } |
| } |
| |
| static void fixOtherTIndex(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->fixOtherTIndex(); |
| } |
| } |
| |
| static void joinCoincidence(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->joinCoincidence(); |
| } |
| } |
| |
| static void sortAngles(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->sortAngles(); |
| } |
| } |
| |
| static void sortSegments(SkTArray<SkOpContour*, true>* contourList) { |
| int contourCount = (*contourList).count(); |
| for (int cTest = 0; cTest < contourCount; ++cTest) { |
| SkOpContour* contour = (*contourList)[cTest]; |
| contour->sortSegments(); |
| } |
| } |
| |
| void MakeContourList(SkTArray<SkOpContour>& contours, SkTArray<SkOpContour*, true>& list, |
| bool evenOdd, bool oppEvenOdd) { |
| int count = contours.count(); |
| if (count == 0) { |
| return; |
| } |
| for (int index = 0; index < count; ++index) { |
| SkOpContour& contour = contours[index]; |
| contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); |
| list.push_back(&contour); |
| } |
| SkTQSort<SkOpContour>(list.begin(), list.end() - 1); |
| } |
| |
| class DistanceLessThan { |
| public: |
| DistanceLessThan(double* distances) : fDistances(distances) { } |
| double* fDistances; |
| bool operator()(const int one, const int two) { |
| return fDistances[one] < fDistances[two]; |
| } |
| }; |
| |
| /* |
| check start and end of each contour |
| if not the same, record them |
| match them up |
| connect closest |
| reassemble contour pieces into new path |
| */ |
| void Assemble(const SkPathWriter& path, SkPathWriter* simple) { |
| #if DEBUG_PATH_CONSTRUCTION |
| SkDebugf("%s\n", __FUNCTION__); |
| #endif |
| SkTArray<SkOpContour> contours; |
| SkOpEdgeBuilder builder(path, contours); |
| builder.finish(); |
| int count = contours.count(); |
| int outer; |
| SkTArray<int, true> runs(count); // indices of partial contours |
| for (outer = 0; outer < count; ++outer) { |
| const SkOpContour& eContour = contours[outer]; |
| const SkPoint& eStart = eContour.start(); |
| const SkPoint& eEnd = eContour.end(); |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%s contour", __FUNCTION__); |
| if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) { |
| SkDebugf("[%d]", runs.count()); |
| } else { |
| SkDebugf(" "); |
| } |
| SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", |
| eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); |
| #endif |
| if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) { |
| eContour.toPath(simple); |
| continue; |
| } |
| runs.push_back(outer); |
| } |
| count = runs.count(); |
| if (count == 0) { |
| return; |
| } |
| SkTArray<int, true> sLink, eLink; |
| sLink.push_back_n(count); |
| eLink.push_back_n(count); |
| int rIndex, iIndex; |
| for (rIndex = 0; rIndex < count; ++rIndex) { |
| sLink[rIndex] = eLink[rIndex] = SK_MaxS32; |
| } |
| const int ends = count * 2; // all starts and ends |
| const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 |
| SkTArray<double, true> distances; |
| distances.push_back_n(entries); |
| for (rIndex = 0; rIndex < ends - 1; ++rIndex) { |
| outer = runs[rIndex >> 1]; |
| const SkOpContour& oContour = contours[outer]; |
| const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); |
| const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) |
| * ends - rIndex - 1; |
| for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { |
| int inner = runs[iIndex >> 1]; |
| const SkOpContour& iContour = contours[inner]; |
| const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); |
| double dx = iPt.fX - oPt.fX; |
| double dy = iPt.fY - oPt.fY; |
| double dist = dx * dx + dy * dy; |
| distances[row + iIndex] = dist; // oStart distance from iStart |
| } |
| } |
| SkTArray<int, true> sortedDist; |
| sortedDist.push_back_n(entries); |
| for (rIndex = 0; rIndex < entries; ++rIndex) { |
| sortedDist[rIndex] = rIndex; |
| } |
| SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin())); |
| int remaining = count; // number of start/end pairs |
| for (rIndex = 0; rIndex < entries; ++rIndex) { |
| int pair = sortedDist[rIndex]; |
| int row = pair / ends; |
| int col = pair - row * ends; |
| int thingOne = row < col ? row : ends - row - 2; |
| int ndxOne = thingOne >> 1; |
| bool endOne = thingOne & 1; |
| int* linkOne = endOne ? eLink.begin() : sLink.begin(); |
| if (linkOne[ndxOne] != SK_MaxS32) { |
| continue; |
| } |
| int thingTwo = row < col ? col : ends - row + col - 1; |
| int ndxTwo = thingTwo >> 1; |
| bool endTwo = thingTwo & 1; |
| int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); |
| if (linkTwo[ndxTwo] != SK_MaxS32) { |
| continue; |
| } |
| SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); |
| bool flip = endOne == endTwo; |
| linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; |
| linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; |
| if (!--remaining) { |
| break; |
| } |
| } |
| SkASSERT(!remaining); |
| #if DEBUG_ASSEMBLE |
| for (rIndex = 0; rIndex < count; ++rIndex) { |
| int s = sLink[rIndex]; |
| int e = eLink[rIndex]; |
| SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', |
| s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); |
| } |
| #endif |
| rIndex = 0; |
| do { |
| bool forward = true; |
| bool first = true; |
| int sIndex = sLink[rIndex]; |
| SkASSERT(sIndex != SK_MaxS32); |
| sLink[rIndex] = SK_MaxS32; |
| int eIndex; |
| if (sIndex < 0) { |
| eIndex = sLink[~sIndex]; |
| sLink[~sIndex] = SK_MaxS32; |
| } else { |
| eIndex = eLink[sIndex]; |
| eLink[sIndex] = SK_MaxS32; |
| } |
| SkASSERT(eIndex != SK_MaxS32); |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', |
| sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', |
| eIndex < 0 ? ~eIndex : eIndex); |
| #endif |
| do { |
| outer = runs[rIndex]; |
| const SkOpContour& contour = contours[outer]; |
| if (first) { |
| first = false; |
| const SkPoint* startPtr = &contour.start(); |
| simple->deferredMove(startPtr[0]); |
| } |
| if (forward) { |
| contour.toPartialForward(simple); |
| } else { |
| contour.toPartialBackward(simple); |
| } |
| #if DEBUG_ASSEMBLE |
| SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, |
| eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, |
| sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); |
| #endif |
| if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { |
| simple->close(); |
| break; |
| } |
| if (forward) { |
| eIndex = eLink[rIndex]; |
| SkASSERT(eIndex != SK_MaxS32); |
| eLink[rIndex] = SK_MaxS32; |
| if (eIndex >= 0) { |
| SkASSERT(sLink[eIndex] == rIndex); |
| sLink[eIndex] = SK_MaxS32; |
| } else { |
| SkASSERT(eLink[~eIndex] == ~rIndex); |
| eLink[~eIndex] = SK_MaxS32; |
| } |
| } else { |
| eIndex = sLink[rIndex]; |
| SkASSERT(eIndex != SK_MaxS32); |
| sLink[rIndex] = SK_MaxS32; |
| if (eIndex >= 0) { |
| SkASSERT(eLink[eIndex] == rIndex); |
| eLink[eIndex] = SK_MaxS32; |
| } else { |
| SkASSERT(sLink[~eIndex] == ~rIndex); |
| sLink[~eIndex] = SK_MaxS32; |
| } |
| } |
| rIndex = eIndex; |
| if (rIndex < 0) { |
| forward ^= 1; |
| rIndex = ~rIndex; |
| } |
| } while (true); |
| for (rIndex = 0; rIndex < count; ++rIndex) { |
| if (sLink[rIndex] != SK_MaxS32) { |
| break; |
| } |
| } |
| } while (rIndex < count); |
| #if DEBUG_ASSEMBLE |
| for (rIndex = 0; rIndex < count; ++rIndex) { |
| SkASSERT(sLink[rIndex] == SK_MaxS32); |
| SkASSERT(eLink[rIndex] == SK_MaxS32); |
| } |
| #endif |
| } |
| |
| bool HandleCoincidence(SkTArray<SkOpContour*, true>* contourList, int total) { |
| #if DEBUG_SHOW_WINDING |
| SkOpContour::debugShowWindingValues(contourList); |
| #endif |
| if (!CoincidenceCheck(contourList, total)) { |
| return false; |
| } |
| #if DEBUG_SHOW_WINDING |
| SkOpContour::debugShowWindingValues(contourList); |
| #endif |
| fixOtherTIndex(contourList); |
| if (!checkEnds(contourList)) { // check if connecting curve intersected at the same end |
| return false; |
| } |
| bool hasM = checkMultiples(contourList); // check if intersections agree on t and point values |
| SkTDArray<SkOpSegment::AlignedSpan> aligned; |
| if (hasM) { |
| alignMultiples(contourList, &aligned); // align pairs of identical points |
| alignCoincidence(contourList, aligned); |
| } |
| checkDuplicates(contourList); // check if spans have the same number on the other end |
| checkTiny(contourList); // if pair have the same end points, mark them as parallel |
| checkSmall(contourList); // a pair of curves with a small span may turn into coincident lines |
| joinCoincidence(contourList); // join curves that connect to a coincident pair |
| sortSegments(contourList); |
| if (!calcAngles(contourList)) { |
| return false; |
| } |
| sortAngles(contourList); |
| #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY |
| DebugShowActiveSpans(*contourList); |
| #endif |
| return true; |
| } |