| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkPatchUtils.h" |
| |
| #include "SkColorData.h" |
| #include "SkGeometry.h" |
| #include "SkPM4f.h" |
| |
| namespace { |
| enum CubicCtrlPts { |
| kTopP0_CubicCtrlPts = 0, |
| kTopP1_CubicCtrlPts = 1, |
| kTopP2_CubicCtrlPts = 2, |
| kTopP3_CubicCtrlPts = 3, |
| |
| kRightP0_CubicCtrlPts = 3, |
| kRightP1_CubicCtrlPts = 4, |
| kRightP2_CubicCtrlPts = 5, |
| kRightP3_CubicCtrlPts = 6, |
| |
| kBottomP0_CubicCtrlPts = 9, |
| kBottomP1_CubicCtrlPts = 8, |
| kBottomP2_CubicCtrlPts = 7, |
| kBottomP3_CubicCtrlPts = 6, |
| |
| kLeftP0_CubicCtrlPts = 0, |
| kLeftP1_CubicCtrlPts = 11, |
| kLeftP2_CubicCtrlPts = 10, |
| kLeftP3_CubicCtrlPts = 9, |
| }; |
| |
| // Enum for corner also clockwise. |
| enum Corner { |
| kTopLeft_Corner = 0, |
| kTopRight_Corner, |
| kBottomRight_Corner, |
| kBottomLeft_Corner |
| }; |
| } |
| |
| /** |
| * Evaluator to sample the values of a cubic bezier using forward differences. |
| * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
| * adding precalculated values. |
| * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
| * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
| * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
| * obtaining this value (mh) we could just add this constant step to our first sampled point |
| * to compute the next one. |
| * |
| * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
| * apply again forward differences and get linear function to which we can apply again forward |
| * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
| * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
| * difference values. |
| */ |
| |
| class FwDCubicEvaluator { |
| |
| public: |
| |
| /** |
| * Receives the 4 control points of the cubic bezier. |
| */ |
| |
| explicit FwDCubicEvaluator(const SkPoint points[4]) |
| : fCoefs(points) { |
| memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
| |
| this->restart(1); |
| } |
| |
| /** |
| * Restarts the forward differences evaluator to the first value of t = 0. |
| */ |
| void restart(int divisions) { |
| fDivisions = divisions; |
| fCurrent = 0; |
| fMax = fDivisions + 1; |
| Sk2s h = Sk2s(1.f / fDivisions); |
| Sk2s h2 = h * h; |
| Sk2s h3 = h2 * h; |
| Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3; |
| fFwDiff[3] = to_point(fwDiff3); |
| fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2); |
| fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h); |
| fFwDiff[0] = to_point(fCoefs.fD); |
| } |
| |
| /** |
| * Check if the evaluator is still within the range of 0<=t<=1 |
| */ |
| bool done() const { |
| return fCurrent > fMax; |
| } |
| |
| /** |
| * Call next to obtain the SkPoint sampled and move to the next one. |
| */ |
| SkPoint next() { |
| SkPoint point = fFwDiff[0]; |
| fFwDiff[0] += fFwDiff[1]; |
| fFwDiff[1] += fFwDiff[2]; |
| fFwDiff[2] += fFwDiff[3]; |
| fCurrent++; |
| return point; |
| } |
| |
| const SkPoint* getCtrlPoints() const { |
| return fPoints; |
| } |
| |
| private: |
| SkCubicCoeff fCoefs; |
| int fMax, fCurrent, fDivisions; |
| SkPoint fFwDiff[4], fPoints[4]; |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // size in pixels of each partition per axis, adjust this knob |
| static const int kPartitionSize = 10; |
| |
| /** |
| * Calculate the approximate arc length given a bezier curve's control points. |
| * Returns -1 if bad calc (i.e. non-finite) |
| */ |
| static SkScalar approx_arc_length(const SkPoint points[], int count) { |
| if (count < 2) { |
| return 0; |
| } |
| SkScalar arcLength = 0; |
| for (int i = 0; i < count - 1; i++) { |
| arcLength += SkPoint::Distance(points[i], points[i + 1]); |
| } |
| return SkScalarIsFinite(arcLength) ? arcLength : -1; |
| } |
| |
| static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, |
| SkScalar c11) { |
| SkScalar a = c00 * (1.f - tx) + c10 * tx; |
| SkScalar b = c01 * (1.f - tx) + c11 * tx; |
| return a * (1.f - ty) + b * ty; |
| } |
| |
| static Sk4f bilerp(SkScalar tx, SkScalar ty, |
| const Sk4f& c00, const Sk4f& c10, const Sk4f& c01, const Sk4f& c11) { |
| Sk4f a = c00 * (1.f - tx) + c10 * tx; |
| Sk4f b = c01 * (1.f - tx) + c11 * tx; |
| return a * (1.f - ty) + b * ty; |
| } |
| |
| SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) { |
| // Approximate length of each cubic. |
| SkPoint pts[kNumPtsCubic]; |
| SkPatchUtils::GetTopCubic(cubics, pts); |
| matrix->mapPoints(pts, kNumPtsCubic); |
| SkScalar topLength = approx_arc_length(pts, kNumPtsCubic); |
| |
| SkPatchUtils::GetBottomCubic(cubics, pts); |
| matrix->mapPoints(pts, kNumPtsCubic); |
| SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic); |
| |
| SkPatchUtils::GetLeftCubic(cubics, pts); |
| matrix->mapPoints(pts, kNumPtsCubic); |
| SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic); |
| |
| SkPatchUtils::GetRightCubic(cubics, pts); |
| matrix->mapPoints(pts, kNumPtsCubic); |
| SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic); |
| |
| if (topLength < 0 || bottomLength < 0 || leftLength < 0 || rightLength < 0) { |
| return {0, 0}; // negative length is a sentinel for bad length (i.e. non-finite) |
| } |
| |
| // Level of detail per axis, based on the larger side between top and bottom or left and right |
| int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize); |
| int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize); |
| |
| return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY)); |
| } |
| |
| void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| points[0] = cubics[kTopP0_CubicCtrlPts]; |
| points[1] = cubics[kTopP1_CubicCtrlPts]; |
| points[2] = cubics[kTopP2_CubicCtrlPts]; |
| points[3] = cubics[kTopP3_CubicCtrlPts]; |
| } |
| |
| void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| points[0] = cubics[kBottomP0_CubicCtrlPts]; |
| points[1] = cubics[kBottomP1_CubicCtrlPts]; |
| points[2] = cubics[kBottomP2_CubicCtrlPts]; |
| points[3] = cubics[kBottomP3_CubicCtrlPts]; |
| } |
| |
| void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| points[0] = cubics[kLeftP0_CubicCtrlPts]; |
| points[1] = cubics[kLeftP1_CubicCtrlPts]; |
| points[2] = cubics[kLeftP2_CubicCtrlPts]; |
| points[3] = cubics[kLeftP3_CubicCtrlPts]; |
| } |
| |
| void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| points[0] = cubics[kRightP0_CubicCtrlPts]; |
| points[1] = cubics[kRightP1_CubicCtrlPts]; |
| points[2] = cubics[kRightP2_CubicCtrlPts]; |
| points[3] = cubics[kRightP3_CubicCtrlPts]; |
| } |
| |
| #include "SkPM4fPriv.h" |
| #include "SkColorSpaceXform.h" |
| |
| struct SkRGBAf { |
| float fVec[4]; |
| |
| static SkRGBAf From4f(const Sk4f& x) { |
| SkRGBAf c; |
| x.store(c.fVec); |
| return c; |
| } |
| |
| static SkRGBAf FromBGRA32(SkColor c) { |
| return From4f(swizzle_rb(SkNx_cast<float>(Sk4b::Load(&c)) * (1/255.0f))); |
| } |
| |
| Sk4f to4f() const { |
| return Sk4f::Load(fVec); |
| } |
| |
| SkColor toBGRA32() const { |
| SkColor color; |
| SkNx_cast<uint8_t>(swizzle_rb(this->to4f()) * Sk4f(255) + Sk4f(0.5f)).store(&color); |
| return color; |
| } |
| |
| SkRGBAf premul() const { |
| float a = fVec[3]; |
| return From4f(this->to4f() * Sk4f(a, a, a, 1)); |
| } |
| |
| SkRGBAf unpremul() const { |
| float a = fVec[3]; |
| float inv = a ? 1/a : 0; |
| return From4f(this->to4f() * Sk4f(inv, inv, inv, 1)); |
| } |
| }; |
| |
| static void skcolor_to_linear(SkRGBAf dst[], const SkColor src[], int count, SkColorSpace* cs, |
| bool doPremul) { |
| if (cs) { |
| auto srcCS = SkColorSpace::MakeSRGB(); |
| auto dstCS = cs->makeLinearGamma(); |
| auto op = doPremul ? SkColorSpaceXform::kPremul_AlphaOp |
| : SkColorSpaceXform::kPreserve_AlphaOp; |
| SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat, dst, |
| srcCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, src, |
| count, op); |
| } else { |
| for (int i = 0; i < count; ++i) { |
| dst[i] = SkRGBAf::FromBGRA32(src[i]); |
| if (doPremul) { |
| dst[i] = dst[i].premul(); |
| } |
| } |
| } |
| } |
| |
| static void linear_to_skcolor(SkColor dst[], const SkRGBAf src[], int count, SkColorSpace* cs) { |
| if (cs) { |
| auto srcCS = cs->makeLinearGamma(); |
| auto dstCS = SkColorSpace::MakeSRGB(); |
| SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, dst, |
| srcCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat, src, |
| count, SkColorSpaceXform::kPreserve_AlphaOp); |
| } else { |
| for (int i = 0; i < count; ++i) { |
| dst[i] = src[i].toBGRA32(); |
| } |
| } |
| } |
| |
| static void unpremul(SkRGBAf array[], int count) { |
| for (int i = 0; i < count; ++i) { |
| array[i] = array[i].unpremul(); |
| } |
| } |
| |
| sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4], |
| const SkPoint srcTexCoords[4], int lodX, int lodY, |
| bool interpColorsLinearly) { |
| if (lodX < 1 || lodY < 1 || nullptr == cubics) { |
| return nullptr; |
| } |
| |
| // check for overflow in multiplication |
| const int64_t lodX64 = (lodX + 1), |
| lodY64 = (lodY + 1), |
| mult64 = lodX64 * lodY64; |
| if (mult64 > SK_MaxS32) { |
| return nullptr; |
| } |
| |
| int vertexCount = SkToS32(mult64); |
| // it is recommended to generate draw calls of no more than 65536 indices, so we never generate |
| // more than 60000 indices. To accomplish that we resize the LOD and vertex count |
| if (vertexCount > 10000 || lodX > 200 || lodY > 200) { |
| float weightX = static_cast<float>(lodX) / (lodX + lodY); |
| float weightY = static_cast<float>(lodY) / (lodX + lodY); |
| |
| // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of |
| // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6) |
| // Need a min of 1 since we later divide by lod |
| lodX = std::max(1, sk_float_floor2int_no_saturate(weightX * 200)); |
| lodY = std::max(1, sk_float_floor2int_no_saturate(weightY * 200)); |
| vertexCount = (lodX + 1) * (lodY + 1); |
| } |
| const int indexCount = lodX * lodY * 6; |
| uint32_t flags = 0; |
| if (srcTexCoords) { |
| flags |= SkVertices::kHasTexCoords_BuilderFlag; |
| } |
| if (srcColors) { |
| flags |= SkVertices::kHasColors_BuilderFlag; |
| } |
| |
| SkSTArenaAlloc<2048> alloc; |
| SkRGBAf* cornerColors = srcColors ? alloc.makeArray<SkRGBAf>(4) : nullptr; |
| SkRGBAf* tmpColors = srcColors ? alloc.makeArray<SkRGBAf>(vertexCount) : nullptr; |
| auto convertCS = interpColorsLinearly ? SkColorSpace::MakeSRGB() : nullptr; |
| |
| SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags); |
| SkPoint* pos = builder.positions(); |
| SkPoint* texs = builder.texCoords(); |
| uint16_t* indices = builder.indices(); |
| bool is_opaque = false; |
| |
| /* |
| * 1. Should we offer this as a runtime choice, as we do in gradients? |
| * 2. Since drawing the vertices wants premul, shoudl we extend SkVertices to store |
| * premul colors (as floats, w/ a colorspace)? |
| */ |
| bool doPremul = true; |
| if (cornerColors) { |
| SkColor c = ~0; |
| for (int i = 0; i < kNumCorners; i++) { |
| c &= srcColors[i]; |
| } |
| is_opaque = (SkColorGetA(c) == 0xFF); |
| if (is_opaque) { |
| doPremul = false; // no need |
| } |
| |
| skcolor_to_linear(cornerColors, srcColors, kNumCorners, convertCS.get(), doPremul); |
| } |
| |
| SkPoint pts[kNumPtsCubic]; |
| SkPatchUtils::GetBottomCubic(cubics, pts); |
| FwDCubicEvaluator fBottom(pts); |
| SkPatchUtils::GetTopCubic(cubics, pts); |
| FwDCubicEvaluator fTop(pts); |
| SkPatchUtils::GetLeftCubic(cubics, pts); |
| FwDCubicEvaluator fLeft(pts); |
| SkPatchUtils::GetRightCubic(cubics, pts); |
| FwDCubicEvaluator fRight(pts); |
| |
| fBottom.restart(lodX); |
| fTop.restart(lodX); |
| |
| SkScalar u = 0.0f; |
| int stride = lodY + 1; |
| for (int x = 0; x <= lodX; x++) { |
| SkPoint bottom = fBottom.next(), top = fTop.next(); |
| fLeft.restart(lodY); |
| fRight.restart(lodY); |
| SkScalar v = 0.f; |
| for (int y = 0; y <= lodY; y++) { |
| int dataIndex = x * (lodY + 1) + y; |
| |
| SkPoint left = fLeft.next(), right = fRight.next(); |
| |
| SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
| (1.0f - v) * top.y() + v * bottom.y()); |
| SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
| (1.0f - u) * left.y() + u * right.y()); |
| SkPoint s2 = SkPoint::Make( |
| (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x() |
| + u * fTop.getCtrlPoints()[3].x()) |
| + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x() |
| + u * fBottom.getCtrlPoints()[3].x()), |
| (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y() |
| + u * fTop.getCtrlPoints()[3].y()) |
| + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y() |
| + u * fBottom.getCtrlPoints()[3].y())); |
| pos[dataIndex] = s0 + s1 - s2; |
| |
| if (cornerColors) { |
| bilerp(u, v, cornerColors[kTopLeft_Corner].to4f(), |
| cornerColors[kTopRight_Corner].to4f(), |
| cornerColors[kBottomLeft_Corner].to4f(), |
| cornerColors[kBottomRight_Corner].to4f()).store(tmpColors[dataIndex].fVec); |
| if (is_opaque) { |
| tmpColors[dataIndex].fVec[3] = 1; |
| } |
| } |
| |
| if (texs) { |
| texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(), |
| srcTexCoords[kTopRight_Corner].x(), |
| srcTexCoords[kBottomLeft_Corner].x(), |
| srcTexCoords[kBottomRight_Corner].x()), |
| bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(), |
| srcTexCoords[kTopRight_Corner].y(), |
| srcTexCoords[kBottomLeft_Corner].y(), |
| srcTexCoords[kBottomRight_Corner].y())); |
| |
| } |
| |
| if(x < lodX && y < lodY) { |
| int i = 6 * (x * lodY + y); |
| indices[i] = x * stride + y; |
| indices[i + 1] = x * stride + 1 + y; |
| indices[i + 2] = (x + 1) * stride + 1 + y; |
| indices[i + 3] = indices[i]; |
| indices[i + 4] = indices[i + 2]; |
| indices[i + 5] = (x + 1) * stride + y; |
| } |
| v = SkScalarClampMax(v + 1.f / lodY, 1); |
| } |
| u = SkScalarClampMax(u + 1.f / lodX, 1); |
| } |
| |
| if (tmpColors) { |
| if (doPremul) { |
| unpremul(tmpColors, vertexCount); |
| } |
| linear_to_skcolor(builder.colors(), tmpColors, vertexCount, convertCS.get()); |
| } |
| return builder.detach(); |
| } |