| #include "CurveIntersection.h" |
| #include "Extrema.h" |
| #include "IntersectionUtilities.h" |
| #include "LineParameters.h" |
| |
| static double interp_quad_coords(double a, double b, double c, double t) |
| { |
| double ab = interp(a, b, t); |
| double bc = interp(b, c, t); |
| return interp(ab, bc, t); |
| } |
| |
| static int coincident_line(const Quadratic& quad, Quadratic& reduction) { |
| reduction[0] = reduction[1] = quad[0]; |
| return 1; |
| } |
| |
| static int vertical_line(const Quadratic& quad, Quadratic& reduction) { |
| double tValue; |
| reduction[0] = quad[0]; |
| reduction[1] = quad[2]; |
| int smaller = reduction[1].y > reduction[0].y; |
| int larger = smaller ^ 1; |
| if (findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) { |
| double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue); |
| if (reduction[smaller].y > yExtrema) { |
| reduction[smaller].y = yExtrema; |
| } else if (reduction[larger].y < yExtrema) { |
| reduction[larger].y = yExtrema; |
| } |
| } |
| return 2; |
| } |
| |
| static int horizontal_line(const Quadratic& quad, Quadratic& reduction) { |
| double tValue; |
| reduction[0] = quad[0]; |
| reduction[1] = quad[2]; |
| int smaller = reduction[1].x > reduction[0].x; |
| int larger = smaller ^ 1; |
| if (findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) { |
| double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); |
| if (reduction[smaller].x > xExtrema) { |
| reduction[smaller].x = xExtrema; |
| } else if (reduction[larger].x < xExtrema) { |
| reduction[larger].x = xExtrema; |
| } |
| } |
| return 2; |
| } |
| |
| static int check_linear(const Quadratic& quad, Quadratic& reduction, |
| int minX, int maxX, int minY, int maxY) { |
| int startIndex = 0; |
| int endIndex = 2; |
| while (quad[startIndex].approximatelyEqual(quad[endIndex])) { |
| --endIndex; |
| if (endIndex == 0) { |
| printf("%s shouldn't get here if all four points are about equal", __FUNCTION__); |
| assert(0); |
| } |
| } |
| if (!isLinear(quad, startIndex, endIndex)) { |
| return 0; |
| } |
| // four are colinear: return line formed by outside |
| reduction[0] = quad[0]; |
| reduction[1] = quad[2]; |
| int sameSide; |
| bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y; |
| if (useX) { |
| sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x); |
| } else { |
| sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y); |
| } |
| if ((sameSide & 3) != 2) { |
| return 2; |
| } |
| double tValue; |
| int root; |
| if (useX) { |
| root = findExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue); |
| } else { |
| root = findExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue); |
| } |
| if (root) { |
| _Point extrema; |
| extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); |
| extrema.y = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue); |
| // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller |
| int replace; |
| if (useX) { |
| if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) { |
| return 2; |
| } |
| replace = (extrema.x < quad[0].x | extrema.x < quad[2].x) |
| ^ quad[0].x < quad[2].x; |
| } else { |
| if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) { |
| return 2; |
| } |
| replace = (extrema.y < quad[0].y | extrema.y < quad[2].y) |
| ^ quad[0].y < quad[2].y; |
| } |
| reduction[replace] = extrema; |
| } |
| return 2; |
| } |
| |
| bool isLinear(const Quadratic& quad, int startIndex, int endIndex) { |
| LineParameters lineParameters; |
| lineParameters.quadEndPoints(quad, startIndex, endIndex); |
| // FIXME: maybe it's possible to avoid this and compare non-normalized |
| lineParameters.normalize(); |
| double distance = lineParameters.controlPtDistance(quad); |
| return approximately_zero(distance); |
| } |
| |
| // reduce to a quadratic or smaller |
| // look for identical points |
| // look for all four points in a line |
| // note that three points in a line doesn't simplify a cubic |
| // look for approximation with single quadratic |
| // save approximation with multiple quadratics for later |
| int reduceOrder(const Quadratic& quad, Quadratic& reduction) { |
| int index, minX, maxX, minY, maxY; |
| int minXSet, minYSet; |
| minX = maxX = minY = maxY = 0; |
| minXSet = minYSet = 0; |
| for (index = 1; index < 3; ++index) { |
| if (quad[minX].x > quad[index].x) { |
| minX = index; |
| } |
| if (quad[minY].y > quad[index].y) { |
| minY = index; |
| } |
| if (quad[maxX].x < quad[index].x) { |
| maxX = index; |
| } |
| if (quad[maxY].y < quad[index].y) { |
| maxY = index; |
| } |
| } |
| for (index = 0; index < 3; ++index) { |
| if (approximately_equal(quad[index].x, quad[minX].x)) { |
| minXSet |= 1 << index; |
| } |
| if (approximately_equal(quad[index].y, quad[minY].y)) { |
| minYSet |= 1 << index; |
| } |
| } |
| if (minXSet == 0x7) { // test for vertical line |
| if (minYSet == 0x7) { // return 1 if all four are coincident |
| return coincident_line(quad, reduction); |
| } |
| return vertical_line(quad, reduction); |
| } |
| if (minYSet == 0xF) { // test for horizontal line |
| return horizontal_line(quad, reduction); |
| } |
| int result = check_linear(quad, reduction, minX, maxX, minY, maxY); |
| if (result) { |
| return result; |
| } |
| memcpy(reduction, quad, sizeof(Quadratic)); |
| return 3; |
| } |