| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrContext.h" |
| |
| #include "effects/GrSingleTextureEffect.h" |
| #include "effects/GrConfigConversionEffect.h" |
| |
| #include "GrAARectRenderer.h" |
| #include "GrBufferAllocPool.h" |
| #include "GrGpu.h" |
| #include "GrDrawTargetCaps.h" |
| #include "GrIndexBuffer.h" |
| #include "GrInOrderDrawBuffer.h" |
| #include "GrOvalRenderer.h" |
| #include "GrPathRenderer.h" |
| #include "GrPathUtils.h" |
| #include "GrResourceCache.h" |
| #include "GrSoftwarePathRenderer.h" |
| #include "GrStencilBuffer.h" |
| #include "GrTextStrike.h" |
| #include "SkRTConf.h" |
| #include "SkRRect.h" |
| #include "SkStrokeRec.h" |
| #include "SkTLazy.h" |
| #include "SkTLS.h" |
| #include "SkTrace.h" |
| |
| // It can be useful to set this to false to test whether a bug is caused by using the |
| // InOrderDrawBuffer, to compare performance of using/not using InOrderDrawBuffer, or to make |
| // debugging simpler. |
| SK_CONF_DECLARE(bool, c_Defer, "gpu.deferContext", true, |
| "Defers rendering in GrContext via GrInOrderDrawBuffer."); |
| |
| #define BUFFERED_DRAW (c_Defer ? kYes_BufferedDraw : kNo_BufferedDraw) |
| |
| #ifdef SK_DEBUG |
| // change this to a 1 to see notifications when partial coverage fails |
| #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 |
| #else |
| #define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0 |
| #endif |
| |
| static const size_t MAX_RESOURCE_CACHE_COUNT = GR_DEFAULT_RESOURCE_CACHE_COUNT_LIMIT; |
| static const size_t MAX_RESOURCE_CACHE_BYTES = GR_DEFAULT_RESOURCE_CACHE_MB_LIMIT * 1024 * 1024; |
| |
| static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15; |
| static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4; |
| |
| static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11; |
| static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4; |
| |
| #define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this) |
| |
| // Glorified typedef to avoid including GrDrawState.h in GrContext.h |
| class GrContext::AutoRestoreEffects : public GrDrawState::AutoRestoreEffects {}; |
| |
| class GrContext::AutoCheckFlush { |
| public: |
| AutoCheckFlush(GrContext* context) : fContext(context) { SkASSERT(NULL != context); } |
| |
| ~AutoCheckFlush() { |
| if (fContext->fFlushToReduceCacheSize) { |
| fContext->flush(); |
| } |
| } |
| |
| private: |
| GrContext* fContext; |
| }; |
| |
| GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext) { |
| GrContext* context = SkNEW(GrContext); |
| if (context->init(backend, backendContext)) { |
| return context; |
| } else { |
| context->unref(); |
| return NULL; |
| } |
| } |
| |
| GrContext::GrContext() { |
| fDrawState = NULL; |
| fGpu = NULL; |
| fClip = NULL; |
| fPathRendererChain = NULL; |
| fSoftwarePathRenderer = NULL; |
| fTextureCache = NULL; |
| fFontCache = NULL; |
| fDrawBuffer = NULL; |
| fDrawBufferVBAllocPool = NULL; |
| fDrawBufferIBAllocPool = NULL; |
| fFlushToReduceCacheSize = false; |
| fAARectRenderer = NULL; |
| fOvalRenderer = NULL; |
| fViewMatrix.reset(); |
| fMaxTextureSizeOverride = 1 << 20; |
| } |
| |
| bool GrContext::init(GrBackend backend, GrBackendContext backendContext) { |
| SkASSERT(NULL == fGpu); |
| |
| fGpu = GrGpu::Create(backend, backendContext, this); |
| if (NULL == fGpu) { |
| return false; |
| } |
| |
| fDrawState = SkNEW(GrDrawState); |
| fGpu->setDrawState(fDrawState); |
| |
| fTextureCache = SkNEW_ARGS(GrResourceCache, |
| (MAX_RESOURCE_CACHE_COUNT, |
| MAX_RESOURCE_CACHE_BYTES)); |
| fTextureCache->setOverbudgetCallback(OverbudgetCB, this); |
| |
| fFontCache = SkNEW_ARGS(GrFontCache, (fGpu)); |
| |
| fLastDrawWasBuffered = kNo_BufferedDraw; |
| |
| fAARectRenderer = SkNEW(GrAARectRenderer); |
| fOvalRenderer = SkNEW(GrOvalRenderer); |
| |
| fDidTestPMConversions = false; |
| |
| this->setupDrawBuffer(); |
| |
| return true; |
| } |
| |
| GrContext::~GrContext() { |
| if (NULL == fGpu) { |
| return; |
| } |
| |
| this->flush(); |
| |
| for (int i = 0; i < fCleanUpData.count(); ++i) { |
| (*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo); |
| } |
| |
| // Since the gpu can hold scratch textures, give it a chance to let go |
| // of them before freeing the texture cache |
| fGpu->purgeResources(); |
| |
| delete fTextureCache; |
| fTextureCache = NULL; |
| delete fFontCache; |
| delete fDrawBuffer; |
| delete fDrawBufferVBAllocPool; |
| delete fDrawBufferIBAllocPool; |
| |
| fAARectRenderer->unref(); |
| fOvalRenderer->unref(); |
| |
| fGpu->unref(); |
| SkSafeUnref(fPathRendererChain); |
| SkSafeUnref(fSoftwarePathRenderer); |
| fDrawState->unref(); |
| } |
| |
| void GrContext::contextLost() { |
| this->contextDestroyed(); |
| this->setupDrawBuffer(); |
| } |
| |
| void GrContext::contextDestroyed() { |
| // abandon first to so destructors |
| // don't try to free the resources in the API. |
| fGpu->abandonResources(); |
| |
| // a path renderer may be holding onto resources that |
| // are now unusable |
| SkSafeSetNull(fPathRendererChain); |
| SkSafeSetNull(fSoftwarePathRenderer); |
| |
| delete fDrawBuffer; |
| fDrawBuffer = NULL; |
| |
| delete fDrawBufferVBAllocPool; |
| fDrawBufferVBAllocPool = NULL; |
| |
| delete fDrawBufferIBAllocPool; |
| fDrawBufferIBAllocPool = NULL; |
| |
| fAARectRenderer->reset(); |
| fOvalRenderer->reset(); |
| |
| fTextureCache->purgeAllUnlocked(); |
| |
| fFontCache->freeAll(); |
| fGpu->markContextDirty(); |
| } |
| |
| void GrContext::resetContext(uint32_t state) { |
| fGpu->markContextDirty(state); |
| } |
| |
| void GrContext::freeGpuResources() { |
| this->flush(); |
| |
| fGpu->purgeResources(); |
| |
| fAARectRenderer->reset(); |
| fOvalRenderer->reset(); |
| |
| fTextureCache->purgeAllUnlocked(); |
| fFontCache->freeAll(); |
| // a path renderer may be holding onto resources |
| SkSafeSetNull(fPathRendererChain); |
| SkSafeSetNull(fSoftwarePathRenderer); |
| } |
| |
| size_t GrContext::getGpuTextureCacheBytes() const { |
| return fTextureCache->getCachedResourceBytes(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrTexture* GrContext::findAndRefTexture(const GrTextureDesc& desc, |
| const GrCacheID& cacheID, |
| const GrTextureParams* params) { |
| GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID); |
| GrResource* resource = fTextureCache->find(resourceKey); |
| SkSafeRef(resource); |
| return static_cast<GrTexture*>(resource); |
| } |
| |
| bool GrContext::isTextureInCache(const GrTextureDesc& desc, |
| const GrCacheID& cacheID, |
| const GrTextureParams* params) const { |
| GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID); |
| return fTextureCache->hasKey(resourceKey); |
| } |
| |
| void GrContext::addStencilBuffer(GrStencilBuffer* sb) { |
| ASSERT_OWNED_RESOURCE(sb); |
| |
| GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(), |
| sb->height(), |
| sb->numSamples()); |
| fTextureCache->addResource(resourceKey, sb); |
| } |
| |
| GrStencilBuffer* GrContext::findStencilBuffer(int width, int height, |
| int sampleCnt) { |
| GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width, |
| height, |
| sampleCnt); |
| GrResource* resource = fTextureCache->find(resourceKey); |
| return static_cast<GrStencilBuffer*>(resource); |
| } |
| |
| static void stretchImage(void* dst, |
| int dstW, |
| int dstH, |
| void* src, |
| int srcW, |
| int srcH, |
| size_t bpp) { |
| GrFixed dx = (srcW << 16) / dstW; |
| GrFixed dy = (srcH << 16) / dstH; |
| |
| GrFixed y = dy >> 1; |
| |
| size_t dstXLimit = dstW*bpp; |
| for (int j = 0; j < dstH; ++j) { |
| GrFixed x = dx >> 1; |
| void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp; |
| void* dstRow = (uint8_t*)dst + j*dstW*bpp; |
| for (size_t i = 0; i < dstXLimit; i += bpp) { |
| memcpy((uint8_t*) dstRow + i, |
| (uint8_t*) srcRow + (x>>16)*bpp, |
| bpp); |
| x += dx; |
| } |
| y += dy; |
| } |
| } |
| |
| namespace { |
| |
| // position + local coordinate |
| extern const GrVertexAttrib gVertexAttribs[] = { |
| {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
| {kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding} |
| }; |
| |
| }; |
| |
| // The desired texture is NPOT and tiled but that isn't supported by |
| // the current hardware. Resize the texture to be a POT |
| GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc, |
| const GrCacheID& cacheID, |
| void* srcData, |
| size_t rowBytes, |
| bool filter) { |
| SkAutoTUnref<GrTexture> clampedTexture(this->findAndRefTexture(desc, cacheID, NULL)); |
| if (NULL == clampedTexture) { |
| clampedTexture.reset(this->createTexture(NULL, desc, cacheID, srcData, rowBytes)); |
| |
| if (NULL == clampedTexture) { |
| return NULL; |
| } |
| } |
| |
| GrTextureDesc rtDesc = desc; |
| rtDesc.fFlags = rtDesc.fFlags | |
| kRenderTarget_GrTextureFlagBit | |
| kNoStencil_GrTextureFlagBit; |
| rtDesc.fWidth = GrNextPow2(desc.fWidth); |
| rtDesc.fHeight = GrNextPow2(desc.fHeight); |
| |
| GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0); |
| |
| if (NULL != texture) { |
| GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); |
| GrDrawState* drawState = fGpu->drawState(); |
| drawState->setRenderTarget(texture->asRenderTarget()); |
| |
| // if filtering is not desired then we want to ensure all |
| // texels in the resampled image are copies of texels from |
| // the original. |
| GrTextureParams params(SkShader::kClamp_TileMode, filter ? GrTextureParams::kBilerp_FilterMode : |
| GrTextureParams::kNone_FilterMode); |
| drawState->addColorTextureEffect(clampedTexture, SkMatrix::I(), params); |
| |
| drawState->setVertexAttribs<gVertexAttribs>(SK_ARRAY_COUNT(gVertexAttribs)); |
| |
| GrDrawTarget::AutoReleaseGeometry arg(fGpu, 4, 0); |
| |
| if (arg.succeeded()) { |
| GrPoint* verts = (GrPoint*) arg.vertices(); |
| verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2 * sizeof(GrPoint)); |
| verts[1].setIRectFan(0, 0, 1, 1, 2 * sizeof(GrPoint)); |
| fGpu->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4); |
| } |
| } else { |
| // TODO: Our CPU stretch doesn't filter. But we create separate |
| // stretched textures when the texture params is either filtered or |
| // not. Either implement filtered stretch blit on CPU or just create |
| // one when FBO case fails. |
| |
| rtDesc.fFlags = kNone_GrTextureFlags; |
| // no longer need to clamp at min RT size. |
| rtDesc.fWidth = GrNextPow2(desc.fWidth); |
| rtDesc.fHeight = GrNextPow2(desc.fHeight); |
| size_t bpp = GrBytesPerPixel(desc.fConfig); |
| SkAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight); |
| stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight, |
| srcData, desc.fWidth, desc.fHeight, bpp); |
| |
| size_t stretchedRowBytes = rtDesc.fWidth * bpp; |
| |
| SkDEBUGCODE(GrTexture* texture = )fGpu->createTexture(rtDesc, stretchedPixels.get(), |
| stretchedRowBytes); |
| SkASSERT(NULL != texture); |
| } |
| |
| return texture; |
| } |
| |
| GrTexture* GrContext::createTexture(const GrTextureParams* params, |
| const GrTextureDesc& desc, |
| const GrCacheID& cacheID, |
| void* srcData, |
| size_t rowBytes, |
| GrResourceKey* cacheKey) { |
| SK_TRACE_EVENT0("GrContext::createTexture"); |
| |
| GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID); |
| |
| GrTexture* texture; |
| if (GrTexture::NeedsResizing(resourceKey)) { |
| texture = this->createResizedTexture(desc, cacheID, |
| srcData, rowBytes, |
| GrTexture::NeedsBilerp(resourceKey)); |
| } else { |
| texture= fGpu->createTexture(desc, srcData, rowBytes); |
| } |
| |
| if (NULL != texture) { |
| // Adding a resource could put us overbudget. Try to free up the |
| // necessary space before adding it. |
| fTextureCache->purgeAsNeeded(1, texture->sizeInBytes()); |
| fTextureCache->addResource(resourceKey, texture); |
| |
| if (NULL != cacheKey) { |
| *cacheKey = resourceKey; |
| } |
| } |
| |
| return texture; |
| } |
| |
| static GrTexture* create_scratch_texture(GrGpu* gpu, |
| GrResourceCache* textureCache, |
| const GrTextureDesc& desc) { |
| GrTexture* texture = gpu->createTexture(desc, NULL, 0); |
| if (NULL != texture) { |
| GrResourceKey key = GrTexture::ComputeScratchKey(texture->desc()); |
| // Adding a resource could put us overbudget. Try to free up the |
| // necessary space before adding it. |
| textureCache->purgeAsNeeded(1, texture->sizeInBytes()); |
| // Make the resource exclusive so future 'find' calls don't return it |
| textureCache->addResource(key, texture, GrResourceCache::kHide_OwnershipFlag); |
| } |
| return texture; |
| } |
| |
| GrTexture* GrContext::lockAndRefScratchTexture(const GrTextureDesc& inDesc, ScratchTexMatch match) { |
| |
| SkASSERT((inDesc.fFlags & kRenderTarget_GrTextureFlagBit) || |
| !(inDesc.fFlags & kNoStencil_GrTextureFlagBit)); |
| |
| // Renderable A8 targets are not universally supported (e.g., not on ANGLE) |
| SkASSERT(this->isConfigRenderable(kAlpha_8_GrPixelConfig, inDesc.fSampleCnt > 0) || |
| !(inDesc.fFlags & kRenderTarget_GrTextureFlagBit) || |
| (inDesc.fConfig != kAlpha_8_GrPixelConfig)); |
| |
| if (!fGpu->caps()->reuseScratchTextures() && |
| !(inDesc.fFlags & kRenderTarget_GrTextureFlagBit)) { |
| // If we're never recycling this texture we can always make it the right size |
| return create_scratch_texture(fGpu, fTextureCache, inDesc); |
| } |
| |
| GrTextureDesc desc = inDesc; |
| |
| if (kApprox_ScratchTexMatch == match) { |
| // bin by pow2 with a reasonable min |
| static const int MIN_SIZE = 16; |
| desc.fWidth = GrMax(MIN_SIZE, GrNextPow2(desc.fWidth)); |
| desc.fHeight = GrMax(MIN_SIZE, GrNextPow2(desc.fHeight)); |
| } |
| |
| GrResource* resource = NULL; |
| int origWidth = desc.fWidth; |
| int origHeight = desc.fHeight; |
| |
| do { |
| GrResourceKey key = GrTexture::ComputeScratchKey(desc); |
| // Ensure we have exclusive access to the texture so future 'find' calls don't return it |
| resource = fTextureCache->find(key, GrResourceCache::kHide_OwnershipFlag); |
| if (NULL != resource) { |
| resource->ref(); |
| break; |
| } |
| if (kExact_ScratchTexMatch == match) { |
| break; |
| } |
| // We had a cache miss and we are in approx mode, relax the fit of the flags. |
| |
| // We no longer try to reuse textures that were previously used as render targets in |
| // situations where no RT is needed; doing otherwise can confuse the video driver and |
| // cause significant performance problems in some cases. |
| if (desc.fFlags & kNoStencil_GrTextureFlagBit) { |
| desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit; |
| } else { |
| break; |
| } |
| |
| } while (true); |
| |
| if (NULL == resource) { |
| desc.fFlags = inDesc.fFlags; |
| desc.fWidth = origWidth; |
| desc.fHeight = origHeight; |
| resource = create_scratch_texture(fGpu, fTextureCache, desc); |
| } |
| |
| return static_cast<GrTexture*>(resource); |
| } |
| |
| void GrContext::addExistingTextureToCache(GrTexture* texture) { |
| |
| if (NULL == texture) { |
| return; |
| } |
| |
| // This texture should already have a cache entry since it was once |
| // attached |
| SkASSERT(NULL != texture->getCacheEntry()); |
| |
| // Conceptually, the cache entry is going to assume responsibility |
| // for the creation ref. Assert refcnt == 1. |
| SkASSERT(texture->unique()); |
| |
| if (fGpu->caps()->reuseScratchTextures() || NULL != texture->asRenderTarget()) { |
| // Since this texture came from an AutoScratchTexture it should |
| // still be in the exclusive pile. Recycle it. |
| fTextureCache->makeNonExclusive(texture->getCacheEntry()); |
| this->purgeCache(); |
| } else if (texture->getDeferredRefCount() <= 0) { |
| // When we aren't reusing textures we know this scratch texture |
| // will never be reused and would be just wasting time in the cache |
| fTextureCache->makeNonExclusive(texture->getCacheEntry()); |
| fTextureCache->deleteResource(texture->getCacheEntry()); |
| } else { |
| // In this case (fDeferredRefCount > 0) but the cache is the only |
| // one holding a real ref. Mark the object so when the deferred |
| // ref count goes to 0 the texture will be deleted (remember |
| // in this code path scratch textures aren't getting reused). |
| texture->setNeedsDeferredUnref(); |
| } |
| } |
| |
| |
| void GrContext::unlockScratchTexture(GrTexture* texture) { |
| ASSERT_OWNED_RESOURCE(texture); |
| SkASSERT(NULL != texture->getCacheEntry()); |
| |
| // If this is a scratch texture we detached it from the cache |
| // while it was locked (to avoid two callers simultaneously getting |
| // the same texture). |
| if (texture->getCacheEntry()->key().isScratch()) { |
| if (fGpu->caps()->reuseScratchTextures() || NULL != texture->asRenderTarget()) { |
| fTextureCache->makeNonExclusive(texture->getCacheEntry()); |
| this->purgeCache(); |
| } else if (texture->unique() && texture->getDeferredRefCount() <= 0) { |
| // Only the cache now knows about this texture. Since we're never |
| // reusing scratch textures (in this code path) it would just be |
| // wasting time sitting in the cache. |
| fTextureCache->makeNonExclusive(texture->getCacheEntry()); |
| fTextureCache->deleteResource(texture->getCacheEntry()); |
| } else { |
| // In this case (fRefCnt > 1 || defRefCnt > 0) but we don't really |
| // want to readd it to the cache (since it will never be reused). |
| // Instead, give up the cache's ref and leave the decision up to |
| // addExistingTextureToCache once its ref count reaches 0. For |
| // this to work we need to leave it in the exclusive list. |
| texture->setFlag((GrTextureFlags) GrTexture::kReturnToCache_FlagBit); |
| // Give up the cache's ref to the texture |
| texture->unref(); |
| } |
| } |
| } |
| |
| void GrContext::purgeCache() { |
| if (NULL != fTextureCache) { |
| fTextureCache->purgeAsNeeded(); |
| } |
| } |
| |
| bool GrContext::OverbudgetCB(void* data) { |
| SkASSERT(NULL != data); |
| |
| GrContext* context = reinterpret_cast<GrContext*>(data); |
| |
| // Flush the InOrderDrawBuffer to possibly free up some textures |
| context->fFlushToReduceCacheSize = true; |
| |
| return true; |
| } |
| |
| |
| GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& descIn, |
| void* srcData, |
| size_t rowBytes) { |
| GrTextureDesc descCopy = descIn; |
| return fGpu->createTexture(descCopy, srcData, rowBytes); |
| } |
| |
| void GrContext::getTextureCacheLimits(int* maxTextures, |
| size_t* maxTextureBytes) const { |
| fTextureCache->getLimits(maxTextures, maxTextureBytes); |
| } |
| |
| void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) { |
| fTextureCache->setLimits(maxTextures, maxTextureBytes); |
| } |
| |
| int GrContext::getMaxTextureSize() const { |
| return GrMin(fGpu->caps()->maxTextureSize(), fMaxTextureSizeOverride); |
| } |
| |
| int GrContext::getMaxRenderTargetSize() const { |
| return fGpu->caps()->maxRenderTargetSize(); |
| } |
| |
| int GrContext::getMaxSampleCount() const { |
| return fGpu->caps()->maxSampleCount(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrTexture* GrContext::wrapBackendTexture(const GrBackendTextureDesc& desc) { |
| return fGpu->wrapBackendTexture(desc); |
| } |
| |
| GrRenderTarget* GrContext::wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) { |
| return fGpu->wrapBackendRenderTarget(desc); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params, |
| int width, int height) const { |
| const GrDrawTargetCaps* caps = fGpu->caps(); |
| if (!caps->eightBitPaletteSupport()) { |
| return false; |
| } |
| |
| bool isPow2 = GrIsPow2(width) && GrIsPow2(height); |
| |
| if (!isPow2) { |
| bool tiled = NULL != params && params->isTiled(); |
| if (tiled && !caps->npotTextureTileSupport()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::clear(const SkIRect* rect, |
| const GrColor color, |
| bool canIgnoreRect, |
| GrRenderTarget* target) { |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| this->prepareToDraw(NULL, BUFFERED_DRAW, &are, &acf)->clear(rect, color, |
| canIgnoreRect, target); |
| } |
| |
| void GrContext::drawPaint(const GrPaint& origPaint) { |
| // set rect to be big enough to fill the space, but not super-huge, so we |
| // don't overflow fixed-point implementations |
| SkRect r; |
| r.setLTRB(0, 0, |
| SkIntToScalar(getRenderTarget()->width()), |
| SkIntToScalar(getRenderTarget()->height())); |
| SkMatrix inverse; |
| SkTCopyOnFirstWrite<GrPaint> paint(origPaint); |
| AutoMatrix am; |
| |
| // We attempt to map r by the inverse matrix and draw that. mapRect will |
| // map the four corners and bound them with a new rect. This will not |
| // produce a correct result for some perspective matrices. |
| if (!this->getMatrix().hasPerspective()) { |
| if (!fViewMatrix.invert(&inverse)) { |
| GrPrintf("Could not invert matrix\n"); |
| return; |
| } |
| inverse.mapRect(&r); |
| } else { |
| if (!am.setIdentity(this, paint.writable())) { |
| GrPrintf("Could not invert matrix\n"); |
| return; |
| } |
| } |
| // by definition this fills the entire clip, no need for AA |
| if (paint->isAntiAlias()) { |
| paint.writable()->setAntiAlias(false); |
| } |
| this->drawRect(*paint, r); |
| } |
| |
| #ifdef SK_DEVELOPER |
| void GrContext::dumpFontCache() const { |
| fFontCache->dump(); |
| } |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /* create a triangle strip that strokes the specified triangle. There are 8 |
| unique vertices, but we repreat the last 2 to close up. Alternatively we |
| could use an indices array, and then only send 8 verts, but not sure that |
| would be faster. |
| */ |
| static void setStrokeRectStrip(GrPoint verts[10], SkRect rect, |
| SkScalar width) { |
| const SkScalar rad = SkScalarHalf(width); |
| rect.sort(); |
| |
| verts[0].set(rect.fLeft + rad, rect.fTop + rad); |
| verts[1].set(rect.fLeft - rad, rect.fTop - rad); |
| verts[2].set(rect.fRight - rad, rect.fTop + rad); |
| verts[3].set(rect.fRight + rad, rect.fTop - rad); |
| verts[4].set(rect.fRight - rad, rect.fBottom - rad); |
| verts[5].set(rect.fRight + rad, rect.fBottom + rad); |
| verts[6].set(rect.fLeft + rad, rect.fBottom - rad); |
| verts[7].set(rect.fLeft - rad, rect.fBottom + rad); |
| verts[8] = verts[0]; |
| verts[9] = verts[1]; |
| } |
| |
| static bool isIRect(const SkRect& r) { |
| return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) && |
| SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom); |
| } |
| |
| static bool apply_aa_to_rect(GrDrawTarget* target, |
| const SkRect& rect, |
| SkScalar strokeWidth, |
| const SkMatrix& combinedMatrix, |
| SkRect* devBoundRect, |
| bool* useVertexCoverage) { |
| // we use a simple coverage ramp to do aa on axis-aligned rects |
| // we check if the rect will be axis-aligned, and the rect won't land on |
| // integer coords. |
| |
| // we are keeping around the "tweak the alpha" trick because |
| // it is our only hope for the fixed-pipe implementation. |
| // In a shader implementation we can give a separate coverage input |
| // TODO: remove this ugliness when we drop the fixed-pipe impl |
| *useVertexCoverage = false; |
| if (!target->getDrawState().canTweakAlphaForCoverage()) { |
| if (target->shouldDisableCoverageAAForBlend()) { |
| #ifdef SK_DEBUG |
| //GrPrintf("Turning off AA to correctly apply blend.\n"); |
| #endif |
| return false; |
| } else { |
| *useVertexCoverage = true; |
| } |
| } |
| const GrDrawState& drawState = target->getDrawState(); |
| if (drawState.getRenderTarget()->isMultisampled()) { |
| return false; |
| } |
| |
| if (0 == strokeWidth && target->willUseHWAALines()) { |
| return false; |
| } |
| |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| if (strokeWidth >= 0) { |
| #endif |
| if (!combinedMatrix.preservesAxisAlignment()) { |
| return false; |
| } |
| |
| #if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT) |
| } else { |
| if (!combinedMatrix.preservesRightAngles()) { |
| return false; |
| } |
| } |
| #endif |
| |
| combinedMatrix.mapRect(devBoundRect, rect); |
| |
| if (strokeWidth < 0) { |
| return !isIRect(*devBoundRect); |
| } else { |
| return true; |
| } |
| } |
| |
| static inline bool rect_contains_inclusive(const SkRect& rect, const SkPoint& point) { |
| return point.fX >= rect.fLeft && point.fX <= rect.fRight && |
| point.fY >= rect.fTop && point.fY <= rect.fBottom; |
| } |
| |
| void GrContext::drawRect(const GrPaint& paint, |
| const SkRect& rect, |
| const SkStrokeRec* stroke, |
| const SkMatrix* matrix) { |
| SK_TRACE_EVENT0("GrContext::drawRect"); |
| |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); |
| |
| SkScalar width = stroke == NULL ? -1 : stroke->getWidth(); |
| SkMatrix combinedMatrix = target->drawState()->getViewMatrix(); |
| if (NULL != matrix) { |
| combinedMatrix.preConcat(*matrix); |
| } |
| |
| // Check if this is a full RT draw and can be replaced with a clear. We don't bother checking |
| // cases where the RT is fully inside a stroke. |
| if (width < 0) { |
| SkRect rtRect; |
| target->getDrawState().getRenderTarget()->getBoundsRect(&rtRect); |
| SkRect clipSpaceRTRect = rtRect; |
| bool checkClip = false; |
| if (NULL != this->getClip()) { |
| checkClip = true; |
| clipSpaceRTRect.offset(SkIntToScalar(this->getClip()->fOrigin.fX), |
| SkIntToScalar(this->getClip()->fOrigin.fY)); |
| } |
| // Does the clip contain the entire RT? |
| if (!checkClip || target->getClip()->fClipStack->quickContains(clipSpaceRTRect)) { |
| SkMatrix invM; |
| if (!combinedMatrix.invert(&invM)) { |
| return; |
| } |
| // Does the rect bound the RT? |
| SkPoint srcSpaceRTQuad[4]; |
| invM.mapRectToQuad(srcSpaceRTQuad, rtRect); |
| if (rect_contains_inclusive(rect, srcSpaceRTQuad[0]) && |
| rect_contains_inclusive(rect, srcSpaceRTQuad[1]) && |
| rect_contains_inclusive(rect, srcSpaceRTQuad[2]) && |
| rect_contains_inclusive(rect, srcSpaceRTQuad[3])) { |
| // Will it blend? |
| GrColor clearColor; |
| if (paint.isOpaqueAndConstantColor(&clearColor)) { |
| target->clear(NULL, clearColor, true); |
| return; |
| } |
| } |
| } |
| } |
| |
| SkRect devBoundRect; |
| bool useVertexCoverage; |
| bool needAA = paint.isAntiAlias() && |
| !target->getDrawState().getRenderTarget()->isMultisampled(); |
| bool doAA = needAA && apply_aa_to_rect(target, rect, width, combinedMatrix, &devBoundRect, |
| &useVertexCoverage); |
| if (doAA) { |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(target->drawState())) { |
| return; |
| } |
| if (width >= 0) { |
| fAARectRenderer->strokeAARect(this->getGpu(), target, rect, |
| combinedMatrix, devBoundRect, |
| stroke, useVertexCoverage); |
| } else { |
| // filled AA rect |
| fAARectRenderer->fillAARect(this->getGpu(), target, |
| rect, combinedMatrix, devBoundRect, |
| useVertexCoverage); |
| } |
| return; |
| } |
| |
| if (width >= 0) { |
| // TODO: consider making static vertex buffers for these cases. |
| // Hairline could be done by just adding closing vertex to |
| // unitSquareVertexBuffer() |
| |
| static const int worstCaseVertCount = 10; |
| target->drawState()->setDefaultVertexAttribs(); |
| GrDrawTarget::AutoReleaseGeometry geo(target, worstCaseVertCount, 0); |
| |
| if (!geo.succeeded()) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return; |
| } |
| |
| GrPrimitiveType primType; |
| int vertCount; |
| GrPoint* vertex = geo.positions(); |
| |
| if (width > 0) { |
| vertCount = 10; |
| primType = kTriangleStrip_GrPrimitiveType; |
| setStrokeRectStrip(vertex, rect, width); |
| } else { |
| // hairline |
| vertCount = 5; |
| primType = kLineStrip_GrPrimitiveType; |
| vertex[0].set(rect.fLeft, rect.fTop); |
| vertex[1].set(rect.fRight, rect.fTop); |
| vertex[2].set(rect.fRight, rect.fBottom); |
| vertex[3].set(rect.fLeft, rect.fBottom); |
| vertex[4].set(rect.fLeft, rect.fTop); |
| } |
| |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (NULL != matrix) { |
| GrDrawState* drawState = target->drawState(); |
| avmr.set(drawState, *matrix); |
| } |
| |
| target->drawNonIndexed(primType, 0, vertCount); |
| } else { |
| // filled BW rect |
| target->drawSimpleRect(rect, matrix); |
| } |
| } |
| |
| void GrContext::drawRectToRect(const GrPaint& paint, |
| const SkRect& dstRect, |
| const SkRect& localRect, |
| const SkMatrix* dstMatrix, |
| const SkMatrix* localMatrix) { |
| SK_TRACE_EVENT0("GrContext::drawRectToRect"); |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); |
| |
| target->drawRect(dstRect, dstMatrix, &localRect, localMatrix); |
| } |
| |
| namespace { |
| |
| extern const GrVertexAttrib gPosUVColorAttribs[] = { |
| {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, |
| {kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding }, |
| {kVec4ub_GrVertexAttribType, 2*sizeof(GrPoint), kColor_GrVertexAttribBinding} |
| }; |
| |
| extern const GrVertexAttrib gPosColorAttribs[] = { |
| {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
| {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kColor_GrVertexAttribBinding}, |
| }; |
| |
| static void set_vertex_attributes(GrDrawState* drawState, |
| const GrPoint* texCoords, |
| const GrColor* colors, |
| int* colorOffset, |
| int* texOffset) { |
| *texOffset = -1; |
| *colorOffset = -1; |
| |
| if (NULL != texCoords && NULL != colors) { |
| *texOffset = sizeof(GrPoint); |
| *colorOffset = 2*sizeof(GrPoint); |
| drawState->setVertexAttribs<gPosUVColorAttribs>(3); |
| } else if (NULL != texCoords) { |
| *texOffset = sizeof(GrPoint); |
| drawState->setVertexAttribs<gPosUVColorAttribs>(2); |
| } else if (NULL != colors) { |
| *colorOffset = sizeof(GrPoint); |
| drawState->setVertexAttribs<gPosColorAttribs>(2); |
| } else { |
| drawState->setVertexAttribs<gPosColorAttribs>(1); |
| } |
| } |
| |
| }; |
| |
| void GrContext::drawVertices(const GrPaint& paint, |
| GrPrimitiveType primitiveType, |
| int vertexCount, |
| const GrPoint positions[], |
| const GrPoint texCoords[], |
| const GrColor colors[], |
| const uint16_t indices[], |
| int indexCount) { |
| SK_TRACE_EVENT0("GrContext::drawVertices"); |
| |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| GrDrawTarget::AutoReleaseGeometry geo; // must be inside AutoCheckFlush scope |
| |
| GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); |
| |
| GrDrawState* drawState = target->drawState(); |
| |
| int colorOffset = -1, texOffset = -1; |
| set_vertex_attributes(drawState, texCoords, colors, &colorOffset, &texOffset); |
| |
| size_t vertexSize = drawState->getVertexSize(); |
| if (sizeof(GrPoint) != vertexSize) { |
| if (!geo.set(target, vertexCount, 0)) { |
| GrPrintf("Failed to get space for vertices!\n"); |
| return; |
| } |
| void* curVertex = geo.vertices(); |
| |
| for (int i = 0; i < vertexCount; ++i) { |
| *((GrPoint*)curVertex) = positions[i]; |
| |
| if (texOffset >= 0) { |
| *(GrPoint*)((intptr_t)curVertex + texOffset) = texCoords[i]; |
| } |
| if (colorOffset >= 0) { |
| *(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i]; |
| } |
| curVertex = (void*)((intptr_t)curVertex + vertexSize); |
| } |
| } else { |
| target->setVertexSourceToArray(positions, vertexCount); |
| } |
| |
| // we don't currently apply offscreen AA to this path. Need improved |
| // management of GrDrawTarget's geometry to avoid copying points per-tile. |
| |
| if (NULL != indices) { |
| target->setIndexSourceToArray(indices, indexCount); |
| target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount); |
| target->resetIndexSource(); |
| } else { |
| target->drawNonIndexed(primitiveType, 0, vertexCount); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::drawRRect(const GrPaint& paint, |
| const SkRRect& rect, |
| const SkStrokeRec& stroke) { |
| if (rect.isEmpty()) { |
| return; |
| } |
| |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); |
| |
| if (!fOvalRenderer->drawSimpleRRect(target, this, paint.isAntiAlias(), rect, stroke)) { |
| SkPath path; |
| path.addRRect(rect); |
| this->internalDrawPath(target, paint.isAntiAlias(), path, stroke); |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::drawOval(const GrPaint& paint, |
| const SkRect& oval, |
| const SkStrokeRec& stroke) { |
| if (oval.isEmpty()) { |
| return; |
| } |
| |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); |
| |
| if (!fOvalRenderer->drawOval(target, this, paint.isAntiAlias(), oval, stroke)) { |
| SkPath path; |
| path.addOval(oval); |
| this->internalDrawPath(target, paint.isAntiAlias(), path, stroke); |
| } |
| } |
| |
| // Can 'path' be drawn as a pair of filled nested rectangles? |
| static bool is_nested_rects(GrDrawTarget* target, |
| const SkPath& path, |
| const SkStrokeRec& stroke, |
| SkRect rects[2], |
| bool* useVertexCoverage) { |
| SkASSERT(stroke.isFillStyle()); |
| |
| if (path.isInverseFillType()) { |
| return false; |
| } |
| |
| const GrDrawState& drawState = target->getDrawState(); |
| |
| // TODO: this restriction could be lifted if we were willing to apply |
| // the matrix to all the points individually rather than just to the rect |
| if (!drawState.getViewMatrix().preservesAxisAlignment()) { |
| return false; |
| } |
| |
| *useVertexCoverage = false; |
| if (!target->getDrawState().canTweakAlphaForCoverage()) { |
| if (target->shouldDisableCoverageAAForBlend()) { |
| return false; |
| } else { |
| *useVertexCoverage = true; |
| } |
| } |
| |
| SkPath::Direction dirs[2]; |
| if (!path.isNestedRects(rects, dirs)) { |
| return false; |
| } |
| |
| if (SkPath::kWinding_FillType == path.getFillType() && dirs[0] == dirs[1]) { |
| // The two rects need to be wound opposite to each other |
| return false; |
| } |
| |
| // Right now, nested rects where the margin is not the same width |
| // all around do not render correctly |
| const SkScalar* outer = rects[0].asScalars(); |
| const SkScalar* inner = rects[1].asScalars(); |
| |
| SkScalar margin = SkScalarAbs(outer[0] - inner[0]); |
| for (int i = 1; i < 4; ++i) { |
| SkScalar temp = SkScalarAbs(outer[i] - inner[i]); |
| if (!SkScalarNearlyEqual(margin, temp)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void GrContext::drawPath(const GrPaint& paint, const SkPath& path, const SkStrokeRec& stroke) { |
| |
| if (path.isEmpty()) { |
| if (path.isInverseFillType()) { |
| this->drawPaint(paint); |
| } |
| return; |
| } |
| |
| // Note that internalDrawPath may sw-rasterize the path into a scratch texture. |
| // Scratch textures can be recycled after they are returned to the texture |
| // cache. This presents a potential hazard for buffered drawing. However, |
| // the writePixels that uploads to the scratch will perform a flush so we're |
| // OK. |
| AutoRestoreEffects are; |
| AutoCheckFlush acf(this); |
| GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf); |
| GrDrawState* drawState = target->drawState(); |
| |
| bool useCoverageAA = paint.isAntiAlias() && !drawState->getRenderTarget()->isMultisampled(); |
| |
| if (useCoverageAA && stroke.getWidth() < 0 && !path.isConvex()) { |
| // Concave AA paths are expensive - try to avoid them for special cases |
| bool useVertexCoverage; |
| SkRect rects[2]; |
| |
| if (is_nested_rects(target, path, stroke, rects, &useVertexCoverage)) { |
| SkMatrix origViewMatrix = drawState->getViewMatrix(); |
| GrDrawState::AutoViewMatrixRestore avmr; |
| if (!avmr.setIdentity(target->drawState())) { |
| return; |
| } |
| |
| fAARectRenderer->fillAANestedRects(this->getGpu(), target, |
| rects, |
| origViewMatrix, |
| useVertexCoverage); |
| return; |
| } |
| } |
| |
| SkRect ovalRect; |
| bool isOval = path.isOval(&ovalRect); |
| |
| if (!isOval || path.isInverseFillType() |
| || !fOvalRenderer->drawOval(target, this, paint.isAntiAlias(), ovalRect, stroke)) { |
| this->internalDrawPath(target, paint.isAntiAlias(), path, stroke); |
| } |
| } |
| |
| void GrContext::internalDrawPath(GrDrawTarget* target, bool useAA, const SkPath& path, |
| const SkStrokeRec& origStroke) { |
| SkASSERT(!path.isEmpty()); |
| |
| // An Assumption here is that path renderer would use some form of tweaking |
| // the src color (either the input alpha or in the frag shader) to implement |
| // aa. If we have some future driver-mojo path AA that can do the right |
| // thing WRT to the blend then we'll need some query on the PR. |
| bool useCoverageAA = useAA && |
| !target->getDrawState().getRenderTarget()->isMultisampled() && |
| !target->shouldDisableCoverageAAForBlend(); |
| |
| |
| GrPathRendererChain::DrawType type = |
| useCoverageAA ? GrPathRendererChain::kColorAntiAlias_DrawType : |
| GrPathRendererChain::kColor_DrawType; |
| |
| const SkPath* pathPtr = &path; |
| SkTLazy<SkPath> tmpPath; |
| SkTCopyOnFirstWrite<SkStrokeRec> stroke(origStroke); |
| |
| // Try a 1st time without stroking the path and without allowing the SW renderer |
| GrPathRenderer* pr = this->getPathRenderer(*pathPtr, *stroke, target, false, type); |
| |
| if (NULL == pr) { |
| if (!GrPathRenderer::IsStrokeHairlineOrEquivalent(*stroke, this->getMatrix(), NULL)) { |
| // It didn't work the 1st time, so try again with the stroked path |
| if (stroke->applyToPath(tmpPath.init(), *pathPtr)) { |
| pathPtr = tmpPath.get(); |
| stroke.writable()->setFillStyle(); |
| if (pathPtr->isEmpty()) { |
| return; |
| } |
| } |
| } |
| |
| // This time, allow SW renderer |
| pr = this->getPathRenderer(*pathPtr, *stroke, target, true, type); |
| } |
| |
| if (NULL == pr) { |
| #ifdef SK_DEBUG |
| GrPrintf("Unable to find path renderer compatible with path.\n"); |
| #endif |
| return; |
| } |
| |
| pr->drawPath(*pathPtr, *stroke, target, useCoverageAA); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrContext::flush(int flagsBitfield) { |
| if (NULL == fDrawBuffer) { |
| return; |
| } |
| |
| if (kDiscard_FlushBit & flagsBitfield) { |
| fDrawBuffer->reset(); |
| } else { |
| fDrawBuffer->flush(); |
| } |
| fFlushToReduceCacheSize = false; |
| } |
| |
| bool GrContext::writeTexturePixels(GrTexture* texture, |
| int left, int top, int width, int height, |
| GrPixelConfig config, const void* buffer, size_t rowBytes, |
| uint32_t flags) { |
| SK_TRACE_EVENT0("GrContext::writeTexturePixels"); |
| ASSERT_OWNED_RESOURCE(texture); |
| |
| if ((kUnpremul_PixelOpsFlag & flags) || !fGpu->canWriteTexturePixels(texture, config)) { |
| if (NULL != texture->asRenderTarget()) { |
| return this->writeRenderTargetPixels(texture->asRenderTarget(), |
| left, top, width, height, |
| config, buffer, rowBytes, flags); |
| } else { |
| return false; |
| } |
| } |
| |
| if (!(kDontFlush_PixelOpsFlag & flags)) { |
| this->flush(); |
| } |
| |
| return fGpu->writeTexturePixels(texture, left, top, width, height, |
| config, buffer, rowBytes); |
| } |
| |
| bool GrContext::readTexturePixels(GrTexture* texture, |
| int left, int top, int width, int height, |
| GrPixelConfig config, void* buffer, size_t rowBytes, |
| uint32_t flags) { |
| SK_TRACE_EVENT0("GrContext::readTexturePixels"); |
| ASSERT_OWNED_RESOURCE(texture); |
| |
| GrRenderTarget* target = texture->asRenderTarget(); |
| if (NULL != target) { |
| return this->readRenderTargetPixels(target, |
| left, top, width, height, |
| config, buffer, rowBytes, |
| flags); |
| } else { |
| // TODO: make this more efficient for cases where we're reading the entire |
| // texture, i.e., use GetTexImage() instead |
| |
| // create scratch rendertarget and read from that |
| GrAutoScratchTexture ast; |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = config; |
| desc.fOrigin = kTopLeft_GrSurfaceOrigin; |
| ast.set(this, desc, kExact_ScratchTexMatch); |
| GrTexture* dst = ast.texture(); |
| if (NULL != dst && NULL != (target = dst->asRenderTarget())) { |
| this->copyTexture(texture, target, NULL); |
| return this->readRenderTargetPixels(target, |
| left, top, width, height, |
| config, buffer, rowBytes, |
| flags); |
| } |
| |
| return false; |
| } |
| } |
| |
| #include "SkConfig8888.h" |
| |
| namespace { |
| /** |
| * Converts a GrPixelConfig to a SkCanvas::Config8888. Only byte-per-channel |
| * formats are representable as Config8888 and so the function returns false |
| * if the GrPixelConfig has no equivalent Config8888. |
| */ |
| bool grconfig_to_config8888(GrPixelConfig config, |
| bool unpremul, |
| SkCanvas::Config8888* config8888) { |
| switch (config) { |
| case kRGBA_8888_GrPixelConfig: |
| if (unpremul) { |
| *config8888 = SkCanvas::kRGBA_Unpremul_Config8888; |
| } else { |
| *config8888 = SkCanvas::kRGBA_Premul_Config8888; |
| } |
| return true; |
| case kBGRA_8888_GrPixelConfig: |
| if (unpremul) { |
| *config8888 = SkCanvas::kBGRA_Unpremul_Config8888; |
| } else { |
| *config8888 = SkCanvas::kBGRA_Premul_Config8888; |
| } |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // It returns a configuration with where the byte position of the R & B components are swapped in |
| // relation to the input config. This should only be called with the result of |
| // grconfig_to_config8888 as it will fail for other configs. |
| SkCanvas::Config8888 swap_config8888_red_and_blue(SkCanvas::Config8888 config8888) { |
| switch (config8888) { |
| case SkCanvas::kBGRA_Premul_Config8888: |
| return SkCanvas::kRGBA_Premul_Config8888; |
| case SkCanvas::kBGRA_Unpremul_Config8888: |
| return SkCanvas::kRGBA_Unpremul_Config8888; |
| case SkCanvas::kRGBA_Premul_Config8888: |
| return SkCanvas::kBGRA_Premul_Config8888; |
| case SkCanvas::kRGBA_Unpremul_Config8888: |
| return SkCanvas::kBGRA_Unpremul_Config8888; |
| default: |
| GrCrash("Unexpected input"); |
| return SkCanvas::kBGRA_Unpremul_Config8888;; |
| } |
| } |
| } |
| |
| bool GrContext::readRenderTargetPixels(GrRenderTarget* target, |
| int left, int top, int width, int height, |
| GrPixelConfig dstConfig, void* buffer, size_t rowBytes, |
| uint32_t flags) { |
| SK_TRACE_EVENT0("GrContext::readRenderTargetPixels"); |
| ASSERT_OWNED_RESOURCE(target); |
| |
| if (NULL == target) { |
| target = fRenderTarget.get(); |
| if (NULL == target) { |
| return false; |
| } |
| } |
| |
| if (!(kDontFlush_PixelOpsFlag & flags)) { |
| this->flush(); |
| } |
| |
| // Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul. |
| |
| // If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll |
| // either do the flipY by drawing into a scratch with a matrix or on the cpu after the read. |
| bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top, |
| width, height, dstConfig, |
| rowBytes); |
| // We ignore the preferred config if it is different than our config unless it is an R/B swap. |
| // In that case we'll perform an R and B swap while drawing to a scratch texture of the swapped |
| // config. Then we will call readPixels on the scratch with the swapped config. The swaps during |
| // the draw cancels out the fact that we call readPixels with a config that is R/B swapped from |
| // dstConfig. |
| GrPixelConfig readConfig = dstConfig; |
| bool swapRAndB = false; |
| if (GrPixelConfigSwapRAndB(dstConfig) == |
| fGpu->preferredReadPixelsConfig(dstConfig, target->config())) { |
| readConfig = GrPixelConfigSwapRAndB(readConfig); |
| swapRAndB = true; |
| } |
| |
| bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags); |
| |
| if (unpremul && !GrPixelConfigIs8888(dstConfig)) { |
| // The unpremul flag is only allowed for these two configs. |
| return false; |
| } |
| |
| // If the src is a texture and we would have to do conversions after read pixels, we instead |
| // do the conversions by drawing the src to a scratch texture. If we handle any of the |
| // conversions in the draw we set the corresponding bool to false so that we don't reapply it |
| // on the read back pixels. |
| GrTexture* src = target->asTexture(); |
| GrAutoScratchTexture ast; |
| if (NULL != src && (swapRAndB || unpremul || flipY)) { |
| // Make the scratch a render target because we don't have a robust readTexturePixels as of |
| // yet. It calls this function. |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = readConfig; |
| desc.fOrigin = kTopLeft_GrSurfaceOrigin; |
| |
| // When a full read back is faster than a partial we could always make the scratch exactly |
| // match the passed rect. However, if we see many different size rectangles we will trash |
| // our texture cache and pay the cost of creating and destroying many textures. So, we only |
| // request an exact match when the caller is reading an entire RT. |
| ScratchTexMatch match = kApprox_ScratchTexMatch; |
| if (0 == left && |
| 0 == top && |
| target->width() == width && |
| target->height() == height && |
| fGpu->fullReadPixelsIsFasterThanPartial()) { |
| match = kExact_ScratchTexMatch; |
| } |
| ast.set(this, desc, match); |
| GrTexture* texture = ast.texture(); |
| if (texture) { |
| // compute a matrix to perform the draw |
| SkMatrix textureMatrix; |
| textureMatrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top); |
| textureMatrix.postIDiv(src->width(), src->height()); |
| |
| SkAutoTUnref<const GrEffectRef> effect; |
| if (unpremul) { |
| effect.reset(this->createPMToUPMEffect(src, swapRAndB, textureMatrix)); |
| if (NULL != effect) { |
| unpremul = false; // we no longer need to do this on CPU after the read back. |
| } |
| } |
| // If we failed to create a PM->UPM effect and have no other conversions to perform then |
| // there is no longer any point to using the scratch. |
| if (NULL != effect || flipY || swapRAndB) { |
| if (!effect) { |
| effect.reset(GrConfigConversionEffect::Create( |
| src, |
| swapRAndB, |
| GrConfigConversionEffect::kNone_PMConversion, |
| textureMatrix)); |
| } |
| swapRAndB = false; // we will handle the swap in the draw. |
| |
| // We protect the existing geometry here since it may not be |
| // clear to the caller that a draw operation (i.e., drawSimpleRect) |
| // can be invoked in this method |
| GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit); |
| GrDrawState* drawState = fGpu->drawState(); |
| SkASSERT(effect); |
| drawState->addColorEffect(effect); |
| |
| drawState->setRenderTarget(texture->asRenderTarget()); |
| SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)); |
| fGpu->drawSimpleRect(rect, NULL); |
| // we want to read back from the scratch's origin |
| left = 0; |
| top = 0; |
| target = texture->asRenderTarget(); |
| } |
| } |
| } |
| if (!fGpu->readPixels(target, |
| left, top, width, height, |
| readConfig, buffer, rowBytes)) { |
| return false; |
| } |
| // Perform any conversions we weren't able to perform using a scratch texture. |
| if (unpremul || swapRAndB) { |
| // These are initialized to suppress a warning |
| SkCanvas::Config8888 srcC8888 = SkCanvas::kNative_Premul_Config8888; |
| SkCanvas::Config8888 dstC8888 = SkCanvas::kNative_Premul_Config8888; |
| |
| SkDEBUGCODE(bool c8888IsValid =) grconfig_to_config8888(dstConfig, false, &srcC8888); |
| grconfig_to_config8888(dstConfig, unpremul, &dstC8888); |
| |
| if (swapRAndB) { |
| SkASSERT(c8888IsValid); // we should only do r/b swap on 8888 configs |
| srcC8888 = swap_config8888_red_and_blue(srcC8888); |
| } |
| SkASSERT(c8888IsValid); |
| uint32_t* b32 = reinterpret_cast<uint32_t*>(buffer); |
| SkConvertConfig8888Pixels(b32, rowBytes, dstC8888, |
| b32, rowBytes, srcC8888, |
| width, height); |
| } |
| return true; |
| } |
| |
| void GrContext::resolveRenderTarget(GrRenderTarget* target) { |
| SkASSERT(target); |
| ASSERT_OWNED_RESOURCE(target); |
| // In the future we may track whether there are any pending draws to this |
| // target. We don't today so we always perform a flush. We don't promise |
| // this to our clients, though. |
| this->flush(); |
| fGpu->resolveRenderTarget(target); |
| } |
| |
| void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst, const SkIPoint* topLeft) { |
| if (NULL == src || NULL == dst) { |
| return; |
| } |
| ASSERT_OWNED_RESOURCE(src); |
| |
| // Writes pending to the source texture are not tracked, so a flush |
| // is required to ensure that the copy captures the most recent contents |
| // of the source texture. See similar behavior in |
| // GrContext::resolveRenderTarget. |
| this->flush(); |
| |
| GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit); |
| GrDrawState* drawState = fGpu->drawState(); |
| drawState->setRenderTarget(dst); |
| SkMatrix sampleM; |
| sampleM.setIDiv(src->width(), src->height()); |
| SkIRect srcRect = SkIRect::MakeWH(dst->width(), dst->height()); |
| if (NULL != topLeft) { |
| srcRect.offset(*topLeft); |
| } |
| SkIRect srcBounds = SkIRect::MakeWH(src->width(), src->height()); |
| if (!srcRect.intersect(srcBounds)) { |
| return; |
| } |
| sampleM.preTranslate(SkIntToScalar(srcRect.fLeft), SkIntToScalar(srcRect.fTop)); |
| drawState->addColorTextureEffect(src, sampleM); |
| SkRect dstR = SkRect::MakeWH(SkIntToScalar(srcRect.width()), SkIntToScalar(srcRect.height())); |
| fGpu->drawSimpleRect(dstR, NULL); |
| } |
| |
| bool GrContext::writeRenderTargetPixels(GrRenderTarget* target, |
| int left, int top, int width, int height, |
| GrPixelConfig srcConfig, |
| const void* buffer, |
| size_t rowBytes, |
| uint32_t flags) { |
| SK_TRACE_EVENT0("GrContext::writeRenderTargetPixels"); |
| ASSERT_OWNED_RESOURCE(target); |
| |
| if (NULL == target) { |
| target = fRenderTarget.get(); |
| if (NULL == target) { |
| return false; |
| } |
| } |
| |
| // TODO: when underlying api has a direct way to do this we should use it (e.g. glDrawPixels on |
| // desktop GL). |
| |
| // We will always call some form of writeTexturePixels and we will pass our flags on to it. |
| // Thus, we don't perform a flush here since that call will do it (if the kNoFlush flag isn't |
| // set.) |
| |
| // If the RT is also a texture and we don't have to premultiply then take the texture path. |
| // We expect to be at least as fast or faster since it doesn't use an intermediate texture as |
| // we do below. |
| |
| #if !defined(SK_BUILD_FOR_MAC) |
| // At least some drivers on the Mac get confused when glTexImage2D is called on a texture |
| // attached to an FBO. The FBO still sees the old image. TODO: determine what OS versions and/or |
| // HW is affected. |
| if (NULL != target->asTexture() && !(kUnpremul_PixelOpsFlag & flags) && |
| fGpu->canWriteTexturePixels(target->asTexture(), srcConfig)) { |
| return this->writeTexturePixels(target->asTexture(), |
| left, top, width, height, |
| srcConfig, buffer, rowBytes, flags); |
| } |
| #endif |
| |
| // We ignore the preferred config unless it is a R/B swap of the src config. In that case |
| // we will upload the original src data to a scratch texture but we will spoof it as the swapped |
| // config. This scratch will then have R and B swapped. We correct for this by swapping again |
| // when drawing the scratch to the dst using a conversion effect. |
| bool swapRAndB = false; |
| GrPixelConfig writeConfig = srcConfig; |
| if (GrPixelConfigSwapRAndB(srcConfig) == |
| fGpu->preferredWritePixelsConfig(srcConfig, target->config())) { |
| writeConfig = GrPixelConfigSwapRAndB(srcConfig); |
| swapRAndB = true; |
| } |
| |
| GrTextureDesc desc; |
| desc.fWidth = width; |
| desc.fHeight = height; |
| desc.fConfig = writeConfig; |
| GrAutoScratchTexture ast(this, desc); |
| GrTexture* texture = ast.texture(); |
| if (NULL == texture) { |
| return false; |
| } |
| |
| SkAutoTUnref<const GrEffectRef> effect; |
| SkMatrix textureMatrix; |
| textureMatrix.setIDiv(texture->width(), texture->height()); |
| |
| // allocate a tmp buffer and sw convert the pixels to premul |
| SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0); |
| |
| if (kUnpremul_PixelOpsFlag & flags) { |
| if (!GrPixelConfigIs8888(srcConfig)) { |
| return false; |
| } |
| effect.reset(this->createUPMToPMEffect(texture, swapRAndB, textureMatrix)); |
| // handle the unpremul step on the CPU if we couldn't create an effect to do it. |
| if (NULL == effect) { |
| SkCanvas::Config8888 srcConfig8888, dstConfig8888; |
| SkDEBUGCODE(bool success = ) |
| grconfig_to_config8888(srcConfig, true, &srcConfig8888); |
| SkASSERT(success); |
| SkDEBUGCODE(success = ) |
| grconfig_to_config8888(srcConfig, false, &dstConfig8888); |
| SkASSERT(success); |
| const uint32_t* src = reinterpret_cast<const uint32_t*>(buffer); |
| tmpPixels.reset(width * height); |
| SkConvertConfig8888Pixels(tmpPixels.get(), 4 * width, dstConfig8888, |
| src, rowBytes, srcConfig8888, |
| width, height); |
| buffer = tmpPixels.get(); |
| rowBytes = 4 * width; |
| } |
| } |
| if (NULL == effect) { |
| effect.reset(GrConfigConversionEffect::Create(texture, |
| swapRAndB, |
| GrConfigConversionEffect::kNone_PMConversion, |
| textureMatrix)); |
| } |
| |
| if (!this->writeTexturePixels(texture, |
| 0, 0, width, height, |
| writeConfig, buffer, rowBytes, |
| flags & ~kUnpremul_PixelOpsFlag)) { |
| return false; |
| } |
| |
| // writeRenderTargetPixels can be called in the midst of drawing another |
| // object (e.g., when uploading a SW path rendering to the gpu while |
| // drawing a rect) so preserve the current geometry. |
| SkMatrix matrix; |
| matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top)); |
| GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &matrix); |
| GrDrawState* drawState = fGpu->drawState(); |
| SkASSERT(effect); |
| drawState->addColorEffect(effect); |
| |
| drawState->setRenderTarget(target); |
| |
| fGpu->drawSimpleRect(SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)), NULL); |
| return true; |
| } |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| GrDrawTarget* GrContext::prepareToDraw(const GrPaint* paint, |
| BufferedDraw buffered, |
| AutoRestoreEffects* are, |
| AutoCheckFlush* acf) { |
| // All users of this draw state should be freeing up all effects when they're done. |
| // Otherwise effects that own resources may keep those resources alive indefinitely. |
| SkASSERT(0 == fDrawState->numColorStages() && 0 == fDrawState->numCoverageStages()); |
| |
| if (kNo_BufferedDraw == buffered && kYes_BufferedDraw == fLastDrawWasBuffered) { |
| fDrawBuffer->flush(); |
| fLastDrawWasBuffered = kNo_BufferedDraw; |
| } |
| ASSERT_OWNED_RESOURCE(fRenderTarget.get()); |
| if (NULL != paint) { |
| SkASSERT(NULL != are); |
| SkASSERT(NULL != acf); |
| are->set(fDrawState); |
| fDrawState->setFromPaint(*paint, fViewMatrix, fRenderTarget.get()); |
| #if GR_DEBUG_PARTIAL_COVERAGE_CHECK |
| if ((paint->hasMask() || 0xff != paint->fCoverage) && |
| !fGpu->canApplyCoverage()) { |
| GrPrintf("Partial pixel coverage will be incorrectly blended.\n"); |
| } |
| #endif |
| } else { |
| fDrawState->reset(fViewMatrix); |
| fDrawState->setRenderTarget(fRenderTarget.get()); |
| } |
| GrDrawTarget* target; |
| if (kYes_BufferedDraw == buffered) { |
| fLastDrawWasBuffered = kYes_BufferedDraw; |
| target = fDrawBuffer; |
| } else { |
| SkASSERT(kNo_BufferedDraw == buffered); |
| fLastDrawWasBuffered = kNo_BufferedDraw; |
| target = fGpu; |
| } |
| fDrawState->setState(GrDrawState::kClip_StateBit, NULL != fClip && |
| !fClip->fClipStack->isWideOpen()); |
| target->setClip(fClip); |
| SkASSERT(fDrawState == target->drawState()); |
| return target; |
| } |
| |
| /* |
| * This method finds a path renderer that can draw the specified path on |
| * the provided target. |
| * Due to its expense, the software path renderer has split out so it can |
| * can be individually allowed/disallowed via the "allowSW" boolean. |
| */ |
| GrPathRenderer* GrContext::getPathRenderer(const SkPath& path, |
| const SkStrokeRec& stroke, |
| const GrDrawTarget* target, |
| bool allowSW, |
| GrPathRendererChain::DrawType drawType, |
| GrPathRendererChain::StencilSupport* stencilSupport) { |
| |
| if (NULL == fPathRendererChain) { |
| fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this)); |
| } |
| |
| GrPathRenderer* pr = fPathRendererChain->getPathRenderer(path, |
| stroke, |
| target, |
| drawType, |
| stencilSupport); |
| |
| if (NULL == pr && allowSW) { |
| if (NULL == fSoftwarePathRenderer) { |
| fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this)); |
| } |
| pr = fSoftwarePathRenderer; |
| } |
| |
| return pr; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| bool GrContext::isConfigRenderable(GrPixelConfig config, bool withMSAA) const { |
| return fGpu->caps()->isConfigRenderable(config, withMSAA); |
| } |
| |
| void GrContext::setupDrawBuffer() { |
| SkASSERT(NULL == fDrawBuffer); |
| SkASSERT(NULL == fDrawBufferVBAllocPool); |
| SkASSERT(NULL == fDrawBufferIBAllocPool); |
| |
| fDrawBufferVBAllocPool = |
| SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false, |
| DRAW_BUFFER_VBPOOL_BUFFER_SIZE, |
| DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS)); |
| fDrawBufferIBAllocPool = |
| SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false, |
| DRAW_BUFFER_IBPOOL_BUFFER_SIZE, |
| DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS)); |
| |
| fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu, |
| fDrawBufferVBAllocPool, |
| fDrawBufferIBAllocPool)); |
| |
| fDrawBuffer->setDrawState(fDrawState); |
| } |
| |
| GrDrawTarget* GrContext::getTextTarget() { |
| return this->prepareToDraw(NULL, BUFFERED_DRAW, NULL, NULL); |
| } |
| |
| const GrIndexBuffer* GrContext::getQuadIndexBuffer() const { |
| return fGpu->getQuadIndexBuffer(); |
| } |
| |
| namespace { |
| void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) { |
| GrConfigConversionEffect::PMConversion pmToUPM; |
| GrConfigConversionEffect::PMConversion upmToPM; |
| GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM); |
| *pmToUPMValue = pmToUPM; |
| *upmToPMValue = upmToPM; |
| } |
| } |
| |
| const GrEffectRef* GrContext::createPMToUPMEffect(GrTexture* texture, |
| bool swapRAndB, |
| const SkMatrix& matrix) { |
| if (!fDidTestPMConversions) { |
| test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); |
| fDidTestPMConversions = true; |
| } |
| GrConfigConversionEffect::PMConversion pmToUPM = |
| static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion); |
| if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) { |
| return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM, matrix); |
| } else { |
| return NULL; |
| } |
| } |
| |
| const GrEffectRef* GrContext::createUPMToPMEffect(GrTexture* texture, |
| bool swapRAndB, |
| const SkMatrix& matrix) { |
| if (!fDidTestPMConversions) { |
| test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion); |
| fDidTestPMConversions = true; |
| } |
| GrConfigConversionEffect::PMConversion upmToPM = |
| static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion); |
| if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) { |
| return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM, matrix); |
| } else { |
| return NULL; |
| } |
| } |
| |
| GrPath* GrContext::createPath(const SkPath& inPath, const SkStrokeRec& stroke) { |
| SkASSERT(fGpu->caps()->pathRenderingSupport()); |
| |
| // TODO: now we add to fTextureCache. This should change to fResourceCache. |
| GrResourceKey resourceKey = GrPath::ComputeKey(inPath, stroke); |
| GrPath* path = static_cast<GrPath*>(fTextureCache->find(resourceKey)); |
| if (NULL != path && path->isEqualTo(inPath, stroke)) { |
| path->ref(); |
| } else { |
| path = fGpu->createPath(inPath, stroke); |
| fTextureCache->purgeAsNeeded(1, path->sizeInBytes()); |
| fTextureCache->addResource(resourceKey, path); |
| } |
| return path; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| #if GR_CACHE_STATS |
| void GrContext::printCacheStats() const { |
| fTextureCache->printStats(); |
| } |
| #endif |