blob: 3de0b12e8593164cda09d74e851487c8c0d5e878 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrDrawState_DEFINED
#define GrDrawState_DEFINED
#include "GrBackendEffectFactory.h"
#include "GrBlend.h"
#include "GrColor.h"
#include "GrEffectStage.h"
#include "GrPaint.h"
#include "GrPoint.h"
#include "GrRenderTarget.h"
#include "GrStencil.h"
#include "GrTemplates.h"
#include "GrTexture.h"
#include "GrTypesPriv.h"
#include "effects/GrSimpleTextureEffect.h"
#include "SkMatrix.h"
#include "SkTypes.h"
#include "SkXfermode.h"
class GrDrawState : public SkRefCnt {
public:
SK_DECLARE_INST_COUNT(GrDrawState)
GrDrawState() {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
this->reset();
}
GrDrawState(const SkMatrix& initialViewMatrix) {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
this->reset(initialViewMatrix);
}
/**
* Copies another draw state.
**/
GrDrawState(const GrDrawState& state) : INHERITED() {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
*this = state;
}
/**
* Copies another draw state with a preconcat to the view matrix.
**/
GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix) {
SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
*this = state;
if (!preConcatMatrix.isIdentity()) {
for (int i = 0; i < fColorStages.count(); ++i) {
fColorStages[i].localCoordChange(preConcatMatrix);
}
for (int i = 0; i < fCoverageStages.count(); ++i) {
fCoverageStages[i].localCoordChange(preConcatMatrix);
}
}
}
virtual ~GrDrawState() { SkASSERT(0 == fBlockEffectRemovalCnt); }
/**
* Resets to the default state. GrEffects will be removed from all stages.
*/
void reset() { this->onReset(NULL); }
void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); }
/**
* Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that
* GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint
* equivalents are set to default values. Clipping will be enabled.
*/
void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*);
///////////////////////////////////////////////////////////////////////////
/// @name Vertex Attributes
////
enum {
kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4,
};
/**
* The format of vertices is represented as an array of GrVertexAttribs, with each representing
* the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in
* GrTypesPriv.h).
*
* The mapping of attributes with kEffect bindings to GrEffect inputs is specified when
* setEffect is called.
*/
/**
* Sets vertex attributes for next draw. The object driving the templatization
* should be a global GrVertexAttrib array that is never changed.
*/
template <const GrVertexAttrib A[]> void setVertexAttribs(int count) {
this->setVertexAttribs(A, count);
}
const GrVertexAttrib* getVertexAttribs() const { return fCommon.fVAPtr; }
int getVertexAttribCount() const { return fCommon.fVACount; }
size_t getVertexSize() const;
/**
* Sets default vertex attributes for next draw. The default is a single attribute:
* {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType}
*/
void setDefaultVertexAttribs();
/**
* Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the
* binding does not appear in the current attribs. These bindings should appear only once in
* the attrib array.
*/
int positionAttributeIndex() const {
return fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
}
int localCoordAttributeIndex() const {
return fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
int colorVertexAttributeIndex() const {
return fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
int coverageVertexAttributeIndex() const {
return fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool hasLocalCoordAttribute() const {
return -1 != fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
bool hasColorVertexAttribute() const {
return -1 != fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
bool hasCoverageVertexAttribute() const {
return -1 != fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool validateVertexAttribs() const;
/**
* Helper to save/restore vertex attribs
*/
class AutoVertexAttribRestore {
public:
AutoVertexAttribRestore(GrDrawState* drawState) {
SkASSERT(NULL != drawState);
fDrawState = drawState;
fVAPtr = drawState->fCommon.fVAPtr;
fVACount = drawState->fCommon.fVACount;
fDrawState->setDefaultVertexAttribs();
}
~AutoVertexAttribRestore(){
fDrawState->setVertexAttribs(fVAPtr, fVACount);
}
private:
GrDrawState* fDrawState;
const GrVertexAttrib* fVAPtr;
int fVACount;
};
/**
* Accessing positions, local coords, or colors, of a vertex within an array is a hassle
* involving casts and simple math. These helpers exist to keep GrDrawTarget clients' code a bit
* nicer looking.
*/
/**
* Gets a pointer to a GrPoint of a vertex's position or texture
* coordinate.
* @param vertices the vertex array
* @param vertexIndex the index of the vertex in the array
* @param vertexSize the size of each vertex in the array
* @param offset the offset in bytes of the vertex component.
* Defaults to zero (corresponding to vertex position)
* @return pointer to the vertex component as a GrPoint
*/
static GrPoint* GetVertexPoint(void* vertices,
int vertexIndex,
int vertexSize,
int offset = 0) {
intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<GrPoint*>(start + offset +
vertexIndex * vertexSize);
}
static const GrPoint* GetVertexPoint(const void* vertices,
int vertexIndex,
int vertexSize,
int offset = 0) {
intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<const GrPoint*>(start + offset +
vertexIndex * vertexSize);
}
/**
* Gets a pointer to a GrColor inside a vertex within a vertex array.
* @param vertices the vetex array
* @param vertexIndex the index of the vertex in the array
* @param vertexSize the size of each vertex in the array
* @param offset the offset in bytes of the vertex color
* @return pointer to the vertex component as a GrColor
*/
static GrColor* GetVertexColor(void* vertices,
int vertexIndex,
int vertexSize,
int offset) {
intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<GrColor*>(start + offset +
vertexIndex * vertexSize);
}
static const GrColor* GetVertexColor(const void* vertices,
int vertexIndex,
int vertexSize,
int offset) {
const intptr_t start = GrTCast<intptr_t>(vertices);
return GrTCast<const GrColor*>(start + offset +
vertexIndex * vertexSize);
}
/// @}
/**
* Determines whether src alpha is guaranteed to be one for all src pixels
*/
bool srcAlphaWillBeOne() const;
/**
* Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
*/
bool hasSolidCoverage() const;
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Color
////
/**
* Sets color for next draw to a premultiplied-alpha color.
*
* @param color the color to set.
*/
void setColor(GrColor color) { fCommon.fColor = color; }
GrColor getColor() const { return fCommon.fColor; }
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
*
* @param alpha The alpha value to set as the color.
*/
void setAlpha(uint8_t a) {
this->setColor((a << 24) | (a << 16) | (a << 8) | a);
}
/**
* Constructor sets the color to be 'color' which is undone by the destructor.
*/
class AutoColorRestore : public ::SkNoncopyable {
public:
AutoColorRestore() : fDrawState(NULL), fOldColor(0) {}
AutoColorRestore(GrDrawState* drawState, GrColor color) {
fDrawState = NULL;
this->set(drawState, color);
}
void reset() {
if (NULL != fDrawState) {
fDrawState->setColor(fOldColor);
fDrawState = NULL;
}
}
void set(GrDrawState* drawState, GrColor color) {
this->reset();
fDrawState = drawState;
fOldColor = fDrawState->getColor();
fDrawState->setColor(color);
}
~AutoColorRestore() { this->reset(); }
private:
GrDrawState* fDrawState;
GrColor fOldColor;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage
////
/**
* Sets a constant fractional coverage to be applied to the draw. The
* initial value (after construction or reset()) is 0xff. The constant
* coverage is ignored when per-vertex coverage is provided.
*/
void setCoverage(uint8_t coverage) {
fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage);
}
uint8_t getCoverage() const {
return GrColorUnpackR(fCommon.fCoverage);
}
GrColor getCoverageColor() const {
return fCommon.fCoverage;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Effect Stages
/// Each stage hosts a GrEffect. The effect produces an output color or coverage in the fragment
/// shader. Its inputs are the output from the previous stage as well as some variables
/// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
/// the fragment position, local coordinates).
///
/// The stages are divided into two sets, color-computing and coverage-computing. The final
/// color stage produces the final pixel color. The coverage-computing stages function exactly
/// as the color-computing but the output of the final coverage stage is treated as a fractional
/// pixel coverage rather than as input to the src/dst color blend step.
///
/// The input color to the first color-stage is either the constant color or interpolated
/// per-vertex colors. The input to the first coverage stage is either a constant coverage
/// (usually full-coverage) or interpolated per-vertex coverage.
///
/// See the documentation of kCoverageDrawing_StateBit for information about disabling the
/// the color / coverage distinction.
////
const GrEffectRef* addColorEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
SkASSERT(NULL != effect);
SkNEW_APPEND_TO_TARRAY(&fColorStages, GrEffectStage, (effect, attr0, attr1));
return effect;
}
const GrEffectRef* addCoverageEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
SkASSERT(NULL != effect);
SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrEffectStage, (effect, attr0, attr1));
return effect;
}
/**
* Creates a GrSimpleTextureEffect that uses local coords as texture coordinates.
*/
void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix) {
GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
this->addColorEffect(effect)->unref();
}
void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix) {
GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
this->addCoverageEffect(effect)->unref();
}
void addColorTextureEffect(GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params) {
GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
this->addColorEffect(effect)->unref();
}
void addCoverageTextureEffect(GrTexture* texture,
const SkMatrix& matrix,
const GrTextureParams& params) {
GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
this->addCoverageEffect(effect)->unref();
}
/**
* When this object is destroyed it will remove any effects from the draw state that were added
* after its constructor.
*/
class AutoRestoreEffects : public ::SkNoncopyable {
public:
AutoRestoreEffects() : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {}
AutoRestoreEffects(GrDrawState* ds) : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {
this->set(ds);
}
~AutoRestoreEffects() { this->set(NULL); }
void set(GrDrawState* ds) {
if (NULL != fDrawState) {
int n = fDrawState->fColorStages.count() - fColorEffectCnt;
SkASSERT(n >= 0);
fDrawState->fColorStages.pop_back_n(n);
n = fDrawState->fCoverageStages.count() - fCoverageEffectCnt;
SkASSERT(n >= 0);
fDrawState->fCoverageStages.pop_back_n(n);
SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
}
fDrawState = ds;
if (NULL != ds) {
fColorEffectCnt = ds->fColorStages.count();
fCoverageEffectCnt = ds->fCoverageStages.count();
SkDEBUGCODE(++ds->fBlockEffectRemovalCnt;)
}
}
private:
GrDrawState* fDrawState;
int fColorEffectCnt;
int fCoverageEffectCnt;
};
int numColorStages() const { return fColorStages.count(); }
int numCoverageStages() const { return fCoverageStages.count(); }
int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; }
const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; }
/**
* Checks whether any of the effects will read the dst pixel color.
*/
bool willEffectReadDstColor() const;
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Blending
////
/**
* Sets the blending function coefficients.
*
* The blend function will be:
* D' = sat(S*srcCoef + D*dstCoef)
*
* where D is the existing destination color, S is the incoming source
* color, and D' is the new destination color that will be written. sat()
* is the saturation function.
*
* @param srcCoef coefficient applied to the src color.
* @param dstCoef coefficient applied to the dst color.
*/
void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
fCommon.fSrcBlend = srcCoeff;
fCommon.fDstBlend = dstCoeff;
#ifdef SK_DEBUG
if (GrBlendCoeffRefsDst(dstCoeff)) {
GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n");
}
if (GrBlendCoeffRefsSrc(srcCoeff)) {
GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n");
}
#endif
}
GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; }
GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; }
void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
GrBlendCoeff* dstBlendCoeff) const {
*srcBlendCoeff = fCommon.fSrcBlend;
*dstBlendCoeff = fCommon.fDstBlend;
}
/**
* Sets the blending function constant referenced by the following blending
* coefficients:
* kConstC_GrBlendCoeff
* kIConstC_GrBlendCoeff
* kConstA_GrBlendCoeff
* kIConstA_GrBlendCoeff
*
* @param constant the constant to set
*/
void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; }
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fCommon.fBlendConstant; }
/**
* Determines whether multiplying the computed per-pixel color by the pixel's fractional
* coverage before the blend will give the correct final destination color. In general it
* will not as coverage is applied after blending.
*/
bool canTweakAlphaForCoverage() const;
/**
* Optimizations for blending / coverage to that can be applied based on the current state.
*/
enum BlendOptFlags {
/**
* No optimization
*/
kNone_BlendOpt = 0,
/**
* Don't draw at all
*/
kSkipDraw_BlendOptFlag = 0x1,
/**
* Emit the src color, disable HW blending (replace dst with src)
*/
kDisableBlend_BlendOptFlag = 0x2,
/**
* The coverage value does not have to be computed separately from alpha, the the output
* color can be the modulation of the two.
*/
kCoverageAsAlpha_BlendOptFlag = 0x4,
/**
* Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are
* "don't cares".
*/
kEmitCoverage_BlendOptFlag = 0x8,
/**
* Emit transparent black instead of the src color, no need to compute coverage.
*/
kEmitTransBlack_BlendOptFlag = 0x10,
};
GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags);
/**
* Determines what optimizations can be applied based on the blend. The coefficients may have
* to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional
* params that receive the tweaked coefficients. Normally the function looks at the current
* state to see if coverage is enabled. By setting forceCoverage the caller can speculatively
* determine the blend optimizations that would be used if there was partial pixel coverage.
*
* Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for
* playback) must call this function and respect the flags that replace the output color.
*/
BlendOptFlags getBlendOpts(bool forceCoverage = false,
GrBlendCoeff* srcCoeff = NULL,
GrBlendCoeff* dstCoeff = NULL) const;
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name View Matrix
////
/**
* Sets the view matrix to identity and updates any installed effects to compensate for the
* coord system change.
*/
bool setIdentityViewMatrix();
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; }
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(SkMatrix* matrix) const {
// TODO: determine whether we really need to leave matrix unmodified
// at call sites when inversion fails.
SkMatrix inverse;
if (fCommon.fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
////////////////////////////////////////////////////////////////////////////
/**
* Preconcats the current view matrix and restores the previous view matrix in the destructor.
* Effect matrices are automatically adjusted to compensate and adjusted back in the destructor.
*/
class AutoViewMatrixRestore : public ::SkNoncopyable {
public:
AutoViewMatrixRestore() : fDrawState(NULL) {}
AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) {
fDrawState = NULL;
this->set(ds, preconcatMatrix);
}
~AutoViewMatrixRestore() { this->restore(); }
/**
* Can be called prior to destructor to restore the original matrix.
*/
void restore();
void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix);
/** Sets the draw state's matrix to identity. This can fail because the current view matrix
is not invertible. */
bool setIdentity(GrDrawState* drawState);
private:
void doEffectCoordChanges(const SkMatrix& coordChangeMatrix);
GrDrawState* fDrawState;
SkMatrix fViewMatrix;
int fNumColorStages;
SkAutoSTArray<8, GrEffectStage::SavedCoordChange> fSavedCoordChanges;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Render Target
////
/**
* Sets the render-target used at the next drawing call
*
* @param target The render target to set.
*/
void setRenderTarget(GrRenderTarget* target) {
fRenderTarget.reset(SkSafeRef(target));
}
/**
* Retrieves the currently set render-target.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
class AutoRenderTargetRestore : public ::SkNoncopyable {
public:
AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
fDrawState = NULL;
fSavedTarget = NULL;
this->set(ds, newTarget);
}
~AutoRenderTargetRestore() { this->restore(); }
void restore() {
if (NULL != fDrawState) {
fDrawState->setRenderTarget(fSavedTarget);
fDrawState = NULL;
}
SkSafeSetNull(fSavedTarget);
}
void set(GrDrawState* ds, GrRenderTarget* newTarget) {
this->restore();
if (NULL != ds) {
SkASSERT(NULL == fSavedTarget);
fSavedTarget = ds->getRenderTarget();
SkSafeRef(fSavedTarget);
ds->setRenderTarget(newTarget);
fDrawState = ds;
}
}
private:
GrDrawState* fDrawState;
GrRenderTarget* fSavedTarget;
};
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Stencil
////
/**
* Sets the stencil settings to use for the next draw.
* Changing the clip has the side-effect of possibly zeroing
* out the client settable stencil bits. So multipass algorithms
* using stencil should not change the clip between passes.
* @param settings the stencil settings to use.
*/
void setStencil(const GrStencilSettings& settings) {
fCommon.fStencilSettings = settings;
}
/**
* Shortcut to disable stencil testing and ops.
*/
void disableStencil() {
fCommon.fStencilSettings.setDisabled();
}
const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; }
GrStencilSettings* stencil() { return &fCommon.fStencilSettings; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name State Flags
////
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
* or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
* the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Usually coverage is applied after color blending. The color is blended using the coeffs
* specified by setBlendFunc(). The blended color is then combined with dst using coeffs
* of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
* this case there is no distinction between coverage and color and the caller needs direct
* control over the blend coeffs. When set, there will be a single blend step controlled by
* setBlendFunc() which will use coverage*color as the src color.
*/
kCoverageDrawing_StateBit = 0x10,
// Users of the class may add additional bits to the vector
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1,
};
void resetStateFlags() {
fCommon.fFlagBits = 0;
}
/**
* Enable render state settings.
*
* @param stateBits bitfield of StateBits specifying the states to enable
*/
void enableState(uint32_t stateBits) {
fCommon.fFlagBits |= stateBits;
}
/**
* Disable render state settings.
*
* @param stateBits bitfield of StateBits specifying the states to disable
*/
void disableState(uint32_t stateBits) {
fCommon.fFlagBits &= ~(stateBits);
}
/**
* Enable or disable stateBits based on a boolean.
*
* @param stateBits bitfield of StateBits to enable or disable
* @param enable if true enable stateBits, otherwise disable
*/
void setState(uint32_t stateBits, bool enable) {
if (enable) {
this->enableState(stateBits);
} else {
this->disableState(stateBits);
}
}
bool isDitherState() const {
return 0 != (fCommon.fFlagBits & kDither_StateBit);
}
bool isHWAntialiasState() const {
return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit);
}
bool isClipState() const {
return 0 != (fCommon.fFlagBits & kClip_StateBit);
}
bool isColorWriteDisabled() const {
return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit);
}
bool isCoverageDrawing() const {
return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit);
}
bool isStateFlagEnabled(uint32_t stateBit) const {
return 0 != (stateBit & fCommon.fFlagBits);
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
enum DrawFace {
kInvalid_DrawFace = -1,
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
};
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
*/
void setDrawFace(DrawFace face) {
SkASSERT(kInvalid_DrawFace != face);
fCommon.fDrawFace = face;
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
DrawFace getDrawFace() const { return fCommon.fDrawFace; }
/// @}
///////////////////////////////////////////////////////////////////////////
bool operator ==(const GrDrawState& s) const {
if (fRenderTarget.get() != s.fRenderTarget.get() ||
fColorStages.count() != s.fColorStages.count() ||
fCoverageStages.count() != s.fCoverageStages.count() ||
fCommon != s.fCommon) {
return false;
}
for (int i = 0; i < fColorStages.count(); i++) {
if (fColorStages[i] != s.fColorStages[i]) {
return false;
}
}
for (int i = 0; i < fCoverageStages.count(); i++) {
if (fCoverageStages[i] != s.fCoverageStages[i]) {
return false;
}
}
return true;
}
bool operator !=(const GrDrawState& s) const { return !(*this == s); }
GrDrawState& operator= (const GrDrawState& s) {
SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
this->setRenderTarget(s.fRenderTarget.get());
fCommon = s.fCommon;
fColorStages = s.fColorStages;
fCoverageStages = s.fCoverageStages;
return *this;
}
private:
void onReset(const SkMatrix* initialViewMatrix) {
SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
fColorStages.reset();
fCoverageStages.reset();
fRenderTarget.reset(NULL);
this->setDefaultVertexAttribs();
fCommon.fColor = 0xffffffff;
if (NULL == initialViewMatrix) {
fCommon.fViewMatrix.reset();
} else {
fCommon.fViewMatrix = *initialViewMatrix;
}
fCommon.fSrcBlend = kOne_GrBlendCoeff;
fCommon.fDstBlend = kZero_GrBlendCoeff;
fCommon.fBlendConstant = 0x0;
fCommon.fFlagBits = 0x0;
fCommon.fStencilSettings.setDisabled();
fCommon.fCoverage = 0xffffffff;
fCommon.fDrawFace = kBoth_DrawFace;
}
/** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */
struct CommonState {
// These fields are roughly sorted by decreasing likelihood of being different in op==
GrColor fColor;
SkMatrix fViewMatrix;
GrBlendCoeff fSrcBlend;
GrBlendCoeff fDstBlend;
GrColor fBlendConstant;
uint32_t fFlagBits;
const GrVertexAttrib* fVAPtr;
int fVACount;
GrStencilSettings fStencilSettings;
GrColor fCoverage;
DrawFace fDrawFace;
// This is simply a different representation of info in fVertexAttribs and thus does
// not need to be compared in op==.
int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];
bool operator== (const CommonState& other) const {
bool result = fColor == other.fColor &&
fViewMatrix.cheapEqualTo(other.fViewMatrix) &&
fSrcBlend == other.fSrcBlend &&
fDstBlend == other.fDstBlend &&
fBlendConstant == other.fBlendConstant &&
fFlagBits == other.fFlagBits &&
fVACount == other.fVACount &&
!memcmp(fVAPtr, other.fVAPtr, fVACount * sizeof(GrVertexAttrib)) &&
fStencilSettings == other.fStencilSettings &&
fCoverage == other.fCoverage &&
fDrawFace == other.fDrawFace;
SkASSERT(!result || 0 == memcmp(fFixedFunctionVertexAttribIndices,
other.fFixedFunctionVertexAttribIndices,
sizeof(fFixedFunctionVertexAttribIndices)));
return result;
}
bool operator!= (const CommonState& other) const { return !(*this == other); }
};
/** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef.
DeferredState must directly reference GrEffects, however. */
struct SavedEffectStage {
SavedEffectStage() : fEffect(NULL) {}
const GrEffect* fEffect;
GrEffectStage::SavedCoordChange fCoordChange;
};
public:
/**
* DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource
* objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal
* dispose mechanism returns them to the cache. This allows recycling resources through the
* the cache while they are in a deferred draw queue.
*/
class DeferredState {
public:
DeferredState() : fRenderTarget(NULL) {
SkDEBUGCODE(fInitialized = false;)
}
// TODO: Remove this when DeferredState no longer holds a ref to the RT
~DeferredState() { SkSafeUnref(fRenderTarget); }
void saveFrom(const GrDrawState& drawState) {
fCommon = drawState.fCommon;
// TODO: Here we will copy the GrRenderTarget pointer without taking a ref.
fRenderTarget = drawState.fRenderTarget.get();
SkSafeRef(fRenderTarget);
// Here we ref the effects directly rather than the effect-refs. TODO: When the effect-
// ref gets fully unref'ed it will cause the underlying effect to unref its resources
// and recycle them to the cache (if no one else is holding a ref to the resources).
fStages.reset(drawState.fColorStages.count() + drawState.fCoverageStages.count());
fColorStageCnt = drawState.fColorStages.count();
for (int i = 0; i < fColorStageCnt; ++i) {
fStages[i].saveFrom(drawState.fColorStages[i]);
}
for (int i = 0; i < drawState.fCoverageStages.count(); ++i) {
fStages[i + fColorStageCnt].saveFrom(drawState.fCoverageStages[i]);
}
SkDEBUGCODE(fInitialized = true;)
}
void restoreTo(GrDrawState* drawState) {
SkASSERT(fInitialized);
drawState->fCommon = fCommon;
drawState->setRenderTarget(fRenderTarget);
// reinflate color/cov stage arrays.
drawState->fColorStages.reset();
for (int i = 0; i < fColorStageCnt; ++i) {
SkNEW_APPEND_TO_TARRAY(&drawState->fColorStages, GrEffectStage, (fStages[i]));
}
int coverageStageCnt = fStages.count() - fColorStageCnt;
drawState->fCoverageStages.reset();
for (int i = 0; i < coverageStageCnt; ++i) {
SkNEW_APPEND_TO_TARRAY(&drawState->fCoverageStages,
GrEffectStage, (fStages[i + fColorStageCnt]));
}
}
bool isEqual(const GrDrawState& state) const {
int numCoverageStages = fStages.count() - fColorStageCnt;
if (fRenderTarget != state.fRenderTarget.get() ||
fColorStageCnt != state.fColorStages.count() ||
numCoverageStages != state.fCoverageStages.count() ||
fCommon != state.fCommon) {
return false;
}
bool explicitLocalCoords = state.hasLocalCoordAttribute();
for (int i = 0; i < fColorStageCnt; ++i) {
if (!fStages[i].isEqual(state.fColorStages[i], explicitLocalCoords)) {
return false;
}
}
for (int i = 0; i < numCoverageStages; ++i) {
int s = fColorStageCnt + i;
if (!fStages[s].isEqual(state.fCoverageStages[i], explicitLocalCoords)) {
return false;
}
}
return true;
}
private:
typedef SkAutoSTArray<8, GrEffectStage::DeferredStage> DeferredStageArray;
GrRenderTarget* fRenderTarget;
CommonState fCommon;
int fColorStageCnt;
DeferredStageArray fStages;
SkDEBUGCODE(bool fInitialized;)
};
private:
SkAutoTUnref<GrRenderTarget> fRenderTarget;
CommonState fCommon;
typedef SkSTArray<4, GrEffectStage> EffectStageArray;
EffectStageArray fColorStages;
EffectStageArray fCoverageStages;
// Some of the auto restore objects assume that no effects are removed during their lifetime.
// This is used to assert that this condition holds.
SkDEBUGCODE(int fBlockEffectRemovalCnt;)
/**
* Sets vertex attributes for next draw.
*
* @param attribs the array of vertex attributes to set.
* @param count the number of attributes being set, limited to kMaxVertexAttribCnt.
*/
void setVertexAttribs(const GrVertexAttrib attribs[], int count);
typedef SkRefCnt INHERITED;
};
GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags);
#endif