blob: ec306cca3ba0097ca9f80bb23eecf26bb6c659a1 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDisplacementMapEffect.h"
#include "SkDevice.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkUnPreMultiply.h"
#include "SkColorPriv.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrDrawContext.h"
#include "GrCoordTransform.h"
#include "GrInvariantOutput.h"
#include "SkGr.h"
#include "effects/GrTextureDomain.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#endif
namespace {
#define kChannelSelectorKeyBits 3; // Max value is 4, so 3 bits are required at most
template<SkDisplacementMapEffect::ChannelSelectorType type>
uint32_t getValue(SkColor, const SkUnPreMultiply::Scale*) {
SkDEBUGFAIL("Unknown channel selector");
return 0;
}
template<> uint32_t getValue<SkDisplacementMapEffect::kR_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale* table) {
return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedR32(l));
}
template<> uint32_t getValue<SkDisplacementMapEffect::kG_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale* table) {
return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedG32(l));
}
template<> uint32_t getValue<SkDisplacementMapEffect::kB_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale* table) {
return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedB32(l));
}
template<> uint32_t getValue<SkDisplacementMapEffect::kA_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale*) {
return SkGetPackedA32(l);
}
template<SkDisplacementMapEffect::ChannelSelectorType typeX,
SkDisplacementMapEffect::ChannelSelectorType typeY>
void computeDisplacement(const SkVector& scale, SkBitmap* dst,
SkBitmap* displ, const SkIPoint& offset,
SkBitmap* src,
const SkIRect& bounds)
{
static const SkScalar Inv8bit = SkScalarInvert(255);
const int srcW = src->width();
const int srcH = src->height();
const SkVector scaleForColor = SkVector::Make(SkScalarMul(scale.fX, Inv8bit),
SkScalarMul(scale.fY, Inv8bit));
const SkVector scaleAdj = SkVector::Make(SK_ScalarHalf - SkScalarMul(scale.fX, SK_ScalarHalf),
SK_ScalarHalf - SkScalarMul(scale.fY, SK_ScalarHalf));
const SkUnPreMultiply::Scale* table = SkUnPreMultiply::GetScaleTable();
SkPMColor* dstPtr = dst->getAddr32(0, 0);
for (int y = bounds.top(); y < bounds.bottom(); ++y) {
const SkPMColor* displPtr = displ->getAddr32(bounds.left() + offset.fX,
y + offset.fY);
for (int x = bounds.left(); x < bounds.right(); ++x, ++displPtr) {
const SkScalar displX = SkScalarMul(scaleForColor.fX,
SkIntToScalar(getValue<typeX>(*displPtr, table))) + scaleAdj.fX;
const SkScalar displY = SkScalarMul(scaleForColor.fY,
SkIntToScalar(getValue<typeY>(*displPtr, table))) + scaleAdj.fY;
// Truncate the displacement values
const int srcX = x + SkScalarTruncToInt(displX);
const int srcY = y + SkScalarTruncToInt(displY);
*dstPtr++ = ((srcX < 0) || (srcX >= srcW) || (srcY < 0) || (srcY >= srcH)) ?
0 : *(src->getAddr32(srcX, srcY));
}
}
}
template<SkDisplacementMapEffect::ChannelSelectorType typeX>
void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale, SkBitmap* dst,
SkBitmap* displ, const SkIPoint& offset,
SkBitmap* src,
const SkIRect& bounds)
{
switch (yChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kR_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kG_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kB_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kA_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown Y channel selector");
}
}
void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale, SkBitmap* dst,
SkBitmap* displ, const SkIPoint& offset,
SkBitmap* src,
const SkIRect& bounds)
{
switch (xChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kR_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kG_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kB_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kA_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown X channel selector");
}
}
bool channel_selector_type_is_valid(SkDisplacementMapEffect::ChannelSelectorType cst) {
switch (cst) {
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
case SkDisplacementMapEffect::kR_ChannelSelectorType:
case SkDisplacementMapEffect::kG_ChannelSelectorType:
case SkDisplacementMapEffect::kB_ChannelSelectorType:
case SkDisplacementMapEffect::kA_ChannelSelectorType:
return true;
default:
break;
}
return false;
}
} // end namespace
///////////////////////////////////////////////////////////////////////////////
SkImageFilter* SkDisplacementMapEffect::Create(ChannelSelectorType xChannelSelector,
ChannelSelectorType yChannelSelector,
SkScalar scale,
SkImageFilter* displacement,
SkImageFilter* color,
const CropRect* cropRect) {
if (!channel_selector_type_is_valid(xChannelSelector) ||
!channel_selector_type_is_valid(yChannelSelector)) {
return nullptr;
}
SkImageFilter* inputs[2] = { displacement, color };
return new SkDisplacementMapEffect(xChannelSelector, yChannelSelector, scale, inputs, cropRect);
}
SkDisplacementMapEffect::SkDisplacementMapEffect(ChannelSelectorType xChannelSelector,
ChannelSelectorType yChannelSelector,
SkScalar scale,
SkImageFilter* inputs[2],
const CropRect* cropRect)
: INHERITED(2, inputs, cropRect)
, fXChannelSelector(xChannelSelector)
, fYChannelSelector(yChannelSelector)
, fScale(scale)
{
}
SkDisplacementMapEffect::~SkDisplacementMapEffect() {
}
SkFlattenable* SkDisplacementMapEffect::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 2);
ChannelSelectorType xsel = (ChannelSelectorType)buffer.readInt();
ChannelSelectorType ysel = (ChannelSelectorType)buffer.readInt();
SkScalar scale = buffer.readScalar();
return Create(xsel, ysel, scale, common.getInput(0), common.getInput(1), &common.cropRect());
}
void SkDisplacementMapEffect::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt((int) fXChannelSelector);
buffer.writeInt((int) fYChannelSelector);
buffer.writeScalar(fScale);
}
bool SkDisplacementMapEffect::onFilterImage(Proxy* proxy,
const SkBitmap& src,
const Context& ctx,
SkBitmap* dst,
SkIPoint* offset) const {
SkBitmap displ = src, color = src;
SkIPoint colorOffset = SkIPoint::Make(0, 0), displOffset = SkIPoint::Make(0, 0);
if (!this->filterInput(1, proxy, src, ctx, &color, &colorOffset) ||
!this->filterInput(0, proxy, src, ctx, &displ, &displOffset)) {
return false;
}
if ((displ.colorType() != kN32_SkColorType) ||
(color.colorType() != kN32_SkColorType)) {
return false;
}
SkIRect bounds;
// Since computeDisplacement does bounds checking on color pixel access, we don't need to pad
// the color bitmap to bounds here.
if (!this->applyCropRect(ctx, color, colorOffset, &bounds)) {
return false;
}
SkIRect displBounds;
if (!this->applyCropRect(ctx, proxy, displ, &displOffset, &displBounds, &displ)) {
return false;
}
if (!bounds.intersect(displBounds)) {
return false;
}
SkAutoLockPixels alp_displacement(displ), alp_color(color);
if (!displ.getPixels() || !color.getPixels()) {
return false;
}
SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(bounds.width(), bounds.height()));
if (!device) {
return false;
}
*dst = device->accessBitmap(false);
SkAutoLockPixels alp_dst(*dst);
SkVector scale = SkVector::Make(fScale, fScale);
ctx.ctm().mapVectors(&scale, 1);
SkIRect colorBounds = bounds;
colorBounds.offset(-colorOffset);
computeDisplacement(fXChannelSelector, fYChannelSelector, scale, dst,
&displ, colorOffset - displOffset, &color, colorBounds);
offset->fX = bounds.left();
offset->fY = bounds.top();
return true;
}
void SkDisplacementMapEffect::computeFastBounds(const SkRect& src, SkRect* dst) const {
if (this->getColorInput()) {
this->getColorInput()->computeFastBounds(src, dst);
} else {
*dst = src;
}
dst->outset(SkScalarAbs(fScale) * SK_ScalarHalf, SkScalarAbs(fScale) * SK_ScalarHalf);
}
void SkDisplacementMapEffect::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst, MapDirection) const {
*dst = src;
SkVector scale = SkVector::Make(fScale, fScale);
ctm.mapVectors(&scale, 1);
dst->outset(SkScalarCeilToInt(SkScalarAbs(scale.fX) * SK_ScalarHalf),
SkScalarCeilToInt(SkScalarAbs(scale.fY) * SK_ScalarHalf));
}
bool SkDisplacementMapEffect::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst, MapDirection direction) const {
// Recurse only into color input.
if (this->getColorInput()) {
return this->getColorInput()->filterBounds(src, ctm, dst, direction);
}
*dst = src;
return true;
}
#ifndef SK_IGNORE_TO_STRING
void SkDisplacementMapEffect::toString(SkString* str) const {
str->appendf("SkDisplacementMapEffect: (");
str->appendf("scale: %f ", fScale);
str->appendf("displacement: (");
if (this->getDisplacementInput()) {
this->getDisplacementInput()->toString(str);
}
str->appendf(") color: (");
if (this->getColorInput()) {
this->getColorInput()->toString(str);
}
str->appendf("))");
}
#endif
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
class GrGLDisplacementMapEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override;
private:
GrGLSLProgramDataManager::UniformHandle fScaleUni;
GrTextureDomain::GLDomain fGLDomain;
typedef GrGLSLFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GrDisplacementMapEffect : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create(
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, SkVector scale,
GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color,
const SkISize& colorDimensions) {
return new GrDisplacementMapEffect(xChannelSelector, yChannelSelector, scale, displacement,
offsetMatrix, color, colorDimensions);
}
virtual ~GrDisplacementMapEffect();
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector() const
{ return fXChannelSelector; }
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector() const
{ return fYChannelSelector; }
const SkVector& scale() const { return fScale; }
const char* name() const override { return "DisplacementMap"; }
const GrTextureDomain& domain() const { return fDomain; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
return new GrGLDisplacementMapEffect;
}
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
GrGLDisplacementMapEffect::GenKey(*this, caps, b);
}
bool onIsEqual(const GrFragmentProcessor&) const override;
void onComputeInvariantOutput(GrInvariantOutput* inout) const override;
GrDisplacementMapEffect(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale,
GrTexture* displacement, const SkMatrix& offsetMatrix,
GrTexture* color,
const SkISize& colorDimensions);
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
GrCoordTransform fDisplacementTransform;
GrTextureAccess fDisplacementAccess;
GrCoordTransform fColorTransform;
GrTextureDomain fDomain;
GrTextureAccess fColorAccess;
SkDisplacementMapEffect::ChannelSelectorType fXChannelSelector;
SkDisplacementMapEffect::ChannelSelectorType fYChannelSelector;
SkVector fScale;
typedef GrFragmentProcessor INHERITED;
};
bool SkDisplacementMapEffect::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
SkBitmap colorBM = src;
SkIPoint colorOffset = SkIPoint::Make(0, 0);
if (!this->filterInputGPU(1, proxy, src, ctx, &colorBM, &colorOffset)) {
return false;
}
SkBitmap displacementBM = src;
SkIPoint displacementOffset = SkIPoint::Make(0, 0);
if (!this->filterInputGPU(0, proxy, src, ctx, &displacementBM, &displacementOffset)) {
return false;
}
SkIRect bounds;
// Since GrDisplacementMapEffect does bounds checking on color pixel access, we don't need to
// pad the color bitmap to bounds here.
if (!this->applyCropRect(ctx, colorBM, colorOffset, &bounds)) {
return false;
}
SkIRect displBounds;
if (!this->applyCropRect(ctx, proxy, displacementBM,
&displacementOffset, &displBounds, &displacementBM)) {
return false;
}
if (!bounds.intersect(displBounds)) {
return false;
}
GrTexture* color = colorBM.getTexture();
GrTexture* displacement = displacementBM.getTexture();
GrContext* context = color->getContext();
GrSurfaceDesc desc;
desc.fFlags = kRenderTarget_GrSurfaceFlag;
desc.fWidth = bounds.width();
desc.fHeight = bounds.height();
desc.fConfig = kSkia8888_GrPixelConfig;
SkAutoTUnref<GrTexture> dst(context->textureProvider()->createApproxTexture(desc));
if (!dst) {
return false;
}
SkVector scale = SkVector::Make(fScale, fScale);
ctx.ctm().mapVectors(&scale, 1);
GrPaint paint;
SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displacement);
offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displacementOffset.fX),
SkIntToScalar(colorOffset.fY - displacementOffset.fY));
paint.addColorFragmentProcessor(
GrDisplacementMapEffect::Create(fXChannelSelector,
fYChannelSelector,
scale,
displacement,
offsetMatrix,
color,
colorBM.dimensions()))->unref();
paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
SkIRect colorBounds = bounds;
colorBounds.offset(-colorOffset);
SkMatrix matrix;
matrix.setTranslate(-SkIntToScalar(colorBounds.x()),
-SkIntToScalar(colorBounds.y()));
SkAutoTUnref<GrDrawContext> drawContext(context->drawContext(dst->asRenderTarget()));
if (!drawContext) {
return false;
}
drawContext->drawRect(GrClip::WideOpen(), paint, matrix, SkRect::Make(colorBounds));
offset->fX = bounds.left();
offset->fY = bounds.top();
GrWrapTextureInBitmap(dst, bounds.width(), bounds.height(), false, result);
return true;
}
///////////////////////////////////////////////////////////////////////////////
GrDisplacementMapEffect::GrDisplacementMapEffect(
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale,
GrTexture* displacement,
const SkMatrix& offsetMatrix,
GrTexture* color,
const SkISize& colorDimensions)
: fDisplacementTransform(kLocal_GrCoordSet, offsetMatrix, displacement,
GrTextureParams::kNone_FilterMode)
, fDisplacementAccess(displacement)
, fColorTransform(kLocal_GrCoordSet, color, GrTextureParams::kNone_FilterMode)
, fDomain(GrTextureDomain::MakeTexelDomain(color, SkIRect::MakeSize(colorDimensions)),
GrTextureDomain::kDecal_Mode)
, fColorAccess(color)
, fXChannelSelector(xChannelSelector)
, fYChannelSelector(yChannelSelector)
, fScale(scale) {
this->initClassID<GrDisplacementMapEffect>();
this->addCoordTransform(&fDisplacementTransform);
this->addTextureAccess(&fDisplacementAccess);
this->addCoordTransform(&fColorTransform);
this->addTextureAccess(&fColorAccess);
}
GrDisplacementMapEffect::~GrDisplacementMapEffect() {
}
bool GrDisplacementMapEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrDisplacementMapEffect& s = sBase.cast<GrDisplacementMapEffect>();
return fXChannelSelector == s.fXChannelSelector &&
fYChannelSelector == s.fYChannelSelector &&
fScale == s.fScale;
}
void GrDisplacementMapEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const {
// Any displacement offset bringing a pixel out of bounds will output a color of (0,0,0,0),
// so the only way we'd get a constant alpha is if the input color image has a constant alpha
// and no displacement offset push any texture coordinates out of bounds OR if the constant
// alpha is 0. Since this isn't trivial to compute at this point, let's assume the output is
// not of constant color when a displacement effect is applied.
inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput);
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDisplacementMapEffect);
const GrFragmentProcessor* GrDisplacementMapEffect::TestCreate(GrProcessorTestData* d) {
int texIdxDispl = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
GrProcessorUnitTest::kAlphaTextureIdx;
int texIdxColor = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
GrProcessorUnitTest::kAlphaTextureIdx;
static const int kMaxComponent = 4;
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector =
static_cast<SkDisplacementMapEffect::ChannelSelectorType>(
d->fRandom->nextRangeU(1, kMaxComponent));
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector =
static_cast<SkDisplacementMapEffect::ChannelSelectorType>(
d->fRandom->nextRangeU(1, kMaxComponent));
SkVector scale = SkVector::Make(d->fRandom->nextRangeScalar(0, 100.0f),
d->fRandom->nextRangeScalar(0, 100.0f));
SkISize colorDimensions;
colorDimensions.fWidth = d->fRandom->nextRangeU(0, d->fTextures[texIdxColor]->width());
colorDimensions.fHeight = d->fRandom->nextRangeU(0, d->fTextures[texIdxColor]->height());
return GrDisplacementMapEffect::Create(xChannelSelector, yChannelSelector, scale,
d->fTextures[texIdxDispl], SkMatrix::I(),
d->fTextures[texIdxColor], colorDimensions);
}
///////////////////////////////////////////////////////////////////////////////
void GrGLDisplacementMapEffect::emitCode(EmitArgs& args) {
const GrDisplacementMapEffect& displacementMap = args.fFp.cast<GrDisplacementMapEffect>();
const GrTextureDomain& domain = displacementMap.domain();
fScaleUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision, "Scale");
const char* scaleUni = args.fUniformHandler->getUniformCStr(fScaleUni);
const char* dColor = "dColor";
const char* cCoords = "cCoords";
const char* nearZero = "1e-6"; // Since 6.10352e−5 is the smallest half float, use
// a number smaller than that to approximate 0, but
// leave room for 32-bit float GPU rounding errors.
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("\t\tvec4 %s = ", dColor);
fragBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(),
args.fCoords[0].getType());
fragBuilder->codeAppend(";\n");
// Unpremultiply the displacement
fragBuilder->codeAppendf(
"\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);",
dColor, dColor, nearZero, dColor, dColor);
SkString coords2D = fragBuilder->ensureFSCoords2D(args.fCoords, 1);
fragBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.",
cCoords, coords2D.c_str(), scaleUni, dColor);
switch (displacementMap.xChannelSelector()) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fragBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fragBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fragBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fragBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown X channel selector");
}
switch (displacementMap.yChannelSelector()) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fragBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fragBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fragBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fragBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown Y channel selector");
}
fragBuilder->codeAppend("-vec2(0.5));\t\t");
fGLDomain.sampleTexture(fragBuilder,
args.fUniformHandler,
args.fGLSLCaps,
domain,
args.fOutputColor,
SkString(cCoords),
args.fSamplers[1]);
fragBuilder->codeAppend(";\n");
}
void GrGLDisplacementMapEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>();
GrTexture* colorTex = displacementMap.texture(1);
SkScalar scaleX = displacementMap.scale().fX / colorTex->width();
SkScalar scaleY = displacementMap.scale().fY / colorTex->height();
pdman.set2f(fScaleUni, SkScalarToFloat(scaleX),
colorTex->origin() == kTopLeft_GrSurfaceOrigin ?
SkScalarToFloat(scaleY) : SkScalarToFloat(-scaleY));
fGLDomain.setData(pdman, displacementMap.domain(), colorTex->origin());
}
void GrGLDisplacementMapEffect::GenKey(const GrProcessor& proc,
const GrGLSLCaps&, GrProcessorKeyBuilder* b) {
const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>();
uint32_t xKey = displacementMap.xChannelSelector();
uint32_t yKey = displacementMap.yChannelSelector() << kChannelSelectorKeyBits;
b->add32(xKey | yKey);
}
#endif